首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The 2006 western Java tsunami deposited a discontinuous sheet of sand up to 20 cm thick, flooded coastal southern Java to a depth of at least 8 m and inundated up to 1 km inland. In most places the primarily heavy mineral sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet probably record the passage of up to two individual waves, a point noted in eyewitness accounts. We studied the 2006 tsunami deposits in detail along a flow parallel transect about 750 m long, 15 km east of Cilacap. The tsunami deposit first becomes discernable from the underlying sediment 70 m from the shoreline. From 75 to 300 m inland the deposit has been laid down in rice paddies, and maintains a thickness of 10–20 cm. Landward of 300 m the deposit thins dramatically, reaching 1 mm by 450 m inland. From 450 m to the edge of deposition (around 700 m inland) the deposit remains <1 mm thick. Deposition generally attended inundation—along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. The thicker part of the deposit contains primarily sand indistinguishable from that found on the beach 3 weeks after the event, but after about 450 m (and roughly coinciding with the decrease in thickness) the tsunami sediment shifts to become more like the underlying paddy soil than the beach sand. Grain sizes within the deposit tend to fine upward and landward, although overall upward fining takes place in two discrete pulses, with an initial section of inverse grading followed by a section of normal grading. The two inversely graded sections are also density graded, with denser grains at the base, and less dense grains at the top. The two normally graded sections show no trends in density. The inversely graded sections show high density sediment to the base and become less dense upward and represents traction carpet flows at the base of the tsunami. These are suggestive of high shear rates in the flow. Because of the grain sorting in the traction carpet, the landward-fining trends usually seen in tsunami deposits are masked, although lateral changes of mean sediment grain size along the transect do show overall landward fining, with more variation as the deposit tapers off. The deposit is also thicker in the more seaward portions than would be produced by tsunamis lacking traction carpets.  相似文献   

2.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

3.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   

4.
Erosion and Sedimentation from the 17 July, 1998 Papua New Guinea Tsunami   总被引:1,自引:0,他引:1  
— This paper describes erosion and sedimentation associated with the 17 July 1998 Papua New Guinea tsunami. Observed within two months of the tsunami, distinct deposits of a layer averaging 8-cm thick of gray sand rested on a brown muddy soil. In most cases the sand is normally graded, with more coarse sand near the base and fine sand at the top. In some cases the deposit contains rip-up clasts of muddy soil and in some locations it has a mud cap. Detailed measurements of coastal topography, tsunami flow height and direction indicators, and deposit thickness were made in the field, and samples of the deposit were collected for grain-size analysis in the laboratory. Four shore-normal transects were examined in detail to assess the shore-normal and along shore distribution of the tsunami deposit. Near the shoreline, the tsunami eroded approximately 10–25 cm of sand from the beach and berm. The sandy layer deposited by the tsunami began 50–150 m inland from the shoreline and extended across the coastal plain to within about 40 m of the limit of inundation; a total distance of up to 750 m from the beach. As much as 2/3 of the sand in the deposit originated from offshore. Across most of the coastal plain the deposit thickness and mean grain size varied little. In the along-shore direction the deposit thickness varied with the tsunami wave height; both largest near the entrance to Sissano Lagoon.  相似文献   

5.
The 2010 Mentawai earthquake (magnitude 7.7) generated a destructive tsunami that caused more than 500 casualties in the Mentawai Islands, west of Sumatra, Indonesia. Seismological analyses indicate that this earthquake was an unusual “tsunami earthquake,” which produces much larger tsunamis than expected from the seismic magnitude. We carried out a field survey to measure tsunami heights and inundation distances, an inversion of tsunami waveforms to estimate the slip distribution on the fault, and inundation modeling to compare the measured and simulated tsunami heights. The measured tsunami heights at eight locations on the west coasts of North and South Pagai Island ranged from 2.5 to 9.3 m, but were mostly in the 4–7 m range. At three villages, the tsunami inundation extended more than 300 m. Interviews of local residents indicated that the earthquake ground shaking was less intense than during previous large earthquakes and did not cause any damage. Inversion of tsunami waveforms recorded at nine coastal tide gauges, a nearby GPS buoy, and a DART station indicated a large slip (maximum 6.1 m) on a shallower part of the fault near the trench axis, a distribution similar to other tsunami earthquakes. The total seismic moment estimated from tsunami waveform inversion was 1.0 × 1021 Nm, which corresponded to Mw 7.9. Computed coastal tsunami heights from this tsunami source model using linear equations are similar to the measured tsunami heights. The inundation heights computed by using detailed bathymetry and topography data and nonlinear equations including inundation were smaller than the measured ones. This may have been partly due to the limited resolution and accuracy of publically available bathymetry and topography data. One-dimensional run-up computations using our surveyed topography profiles showed that the computed heights were roughly similar to the measured ones.  相似文献   

6.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   

7.
Measurements of thickness and grain size along flow‐parallel transects across onshore deposits of the 2004 Indian Ocean tsunami revealed macroscopic horizontal variations and provided new insights into tsunami sedimentation. The tsunami caused severe erosion of beaches, river mouths, and the shallow seafloor along the coast of southwestern Thailand and supplied sufficient sediment to deposit a kilometer‐wide blanket of sand on the land surface. The tsunami deposits generally fine landward with some fluctuations caused by local entrainment and settlement of sediments. Sediments of medium and fine sand are restricted to a few hundreds of meters inland from their source, whereas finer grained sediments were suspended longer and deposited 1 km or more inland. Although the thickness of the tsunami deposits is strongly influenced by local topography, they generally thin landward. In areas of low‐relief topography, the rate of landward thinning is exponential and reflects the dominance of sediment supply to nearshore areas over that to areas farther inland.  相似文献   

8.
We describe the detailed sedimentary characteristics of a tsunami deposit associated with the 2011 Tohoku‐oki tsunami in Hasunuma, a site on the Kujukuri coastal plain, Japan. The thick tsunami deposit was limited to within 350 m from the coastline whereas the inundation area extended about 1 km from the coastline. The tsunami deposit was sampled by excavation at 29 locations along three transects and studied using peels, soft‐X imaging and grain‐size analysis. The deposit covers the pre‐existing soil and reached a maximum measured thickness of 35 cm. It consists mainly of well‐sorted medium to fine sand. On the basis of sedimentary structures and changes in grain size, we divided the tsunami deposit into several sedimentary units, which may correspond to multiple inundation flows. The numbers of units and their sedimentary features vary among the three transects, despite the similar topography. This variation implies a considerable influence of local effects such as elevation, vegetation, microtopography, and distance from footpaths, on the tsunami‐related sedimentation.  相似文献   

9.
Tsunami Deposits   总被引:1,自引:0,他引:1  
—Geological investigations of coastal sediments indicate that prehistoric tsunamis can be identified. Their characterisation has altered our knowledge of the past frequency and magnitude of tsunamis for different areas of the world. Yet there have been relatively few geological studies of modern tsunamis with virtually no direct observations of the processes associated with tsunami sediment transport and deposition. This paper discusses these issues and draws on the results of recent research to summarise our current knowledge on the nature of tsunami deposits.  相似文献   

10.
The southwest Hokkaido tsunami of July 12th, 1993, left continuous onshore sand deposits along the west coast of Oshima Peninsuka, Hokkaido, northern Japan. We investigated spatial distribution and lithofacies of the new tsunami deposits for its identification of ancient tsunami deposits. An eyewitness acount and bent plants helped our interpretation of the onshore tsunami behavior. We regard the following properties as typical of the coastal tsunami sand deposits: (1) The deposits cover the surface almost continuously on gentle topography. (2) Deposit thicknesses and mean grain sizes descrease with distance from the sea. (3) Deposit thicknesses and lithofacies vary greatly across local surface undulation. (4) Graded bedding reflecting tsunami runup and backwash is present in thick deposits. (5) The deposits are widely distributed along the coast and extend inland several tens of meters to 100 m. We examined a candidate for the paleo-tsunami deposits associated with the 1640 Komagatake eruption, and confirmed that the similar patterns are typical of ancient tsunami deposits.  相似文献   

11.
The stratigraphy of tsunami deposits along the Japan Sea, southwest Hokkaido, northern Japan, reveals tsunami recurrences in this particular area. Sandy tsunami deposits are preserved in small valley plains, whereas gravelly deposits of possible tsunami origin are identified in surficial soils covering a Holocene marine terrace and a slope talus. At least five horizons of tsunami events can be defined in the Okushiri Island, the youngest of which immediately overlies the Ko‐d tephra layer (1640 AD) and was likely formed by the historical Oshima‐Ohshima tsunami in 1741 AD. The four older tsunami deposits, dated using accelerator mass spectrometry 14C, were formed at around the 12th century, 1.5–1.6, 2.4–2.6, and 2.8–3.1 ka, respectively. Tsunami sand beds of the 1741 AD and circa 12th century events are recognized in the Hiyama District of Hokkaido Island, but the older tsunami deposits are missing. The deposits of these two tsunamis are found together at the same sites and distributed in regions where wave heights of the 1993 tsunami (Hokkaido Nansei‐oki earthquake, Mw = 7.7) were less than 3 m. Thus, the 12th century tsunami waves were possibly generated near the south of Okushiri Island, whereas the 1993 tsunami was generated towards the north of the island. The estimated recurrence intervals of paleotsunamis, 200–1100 years with an average of 500 years, likely represents the recurrence interval of large earthquakes which would have occurred along several active faults offshore of southwest Hokkaido.  相似文献   

12.
The accumulation of data sets of past tsunamis is the most basic but reliable way to prepare for future tsunamis because the frequency of tsunami occurrence and their magnitude can be estimated by historical records of tsunamis. Investigation of tsunami deposits preserved in geological layers is an effective measure to understand ancient tsunamis that occurred before historical records began. However, the areas containing tsunami deposits can be narrower than the area of tsunami inundation, thus resulting in underestimation of the magnitude of past tsunamis. A field survey was conducted after the 2010 Chile tsunami and 2011 Japan tsunami to investigate the chemical properties of the tsunami-inundated soil to examine the applicability of tsunami inundation surveys considering water-soluble salts in soil. The soil and tsunami deposits collected in the tsunami-inundated areas are rich in water-soluble ions (Na+, Mg2+, Cl?, Br? and SO 4 2? ) compared with the samples collected in the non-inundated areas. The analytical result that the ratios of Na+, Mg2+, Br? and SO 4 2? to Cl? are nearly the same in the tsunami deposits and in the tsunami-inundated soil suggests that the deposition of these ions resulting from the tsunami inundation does not depend on whether or not tsunami deposits exist. Discriminant analysis of the tsunami-inundated areas using the ion contents shows the high applicability of these ions to the detection of tsunami inundation during periods when the amount of rainfall is limited. To examine the applicability of this method to palaeotsunamis, the continuous monitoring of water-soluble ions in tsunami-inundated soil is needed as a future study.  相似文献   

13.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

14.
Previous research indicates that Yakushima Island, southwestern Japan, may have been struck by a huge tsunami before or soon after the arrival of the Koya pyroclastic flow during the 7.3 ka caldera‐forming Kikai eruption, but this has not yet been confirmed. This paper describes sedimentological and chronostratigraphic evidence showing that Unit TG, one of three gravel beds exposed on the Koseda coast of northeast Yakushima Island and investigated here, is a tsunami deposit. Unit TG is a poorly sorted, 30 cm thick gravel bed overlying a wave‐cut bench and underlying a Koya pyroclastic flow deposit. Sparse wood fragments in Unit TG were dated at 7 416–7 167 cal year BP. The constituent gravel clasts of Unit TG are similar in composition to those of modern beach and river deposits along the Koseda coast. Unit TG also contains pumice clasts whose chemistry is identical to that of pumice derived from the 7.3 ka eruption at Kikai caldera. The long‐axis orientations and composition of gravel clasts in Unit TG suggest that they were transported by a landward‐travelling high‐particle‐concentration flow, which suggests that Unit TG was deposited by a tsunami run‐up flow during the 7.3 ka Kikai caldera eruption, just before the arrival of the major Koya pyroclastic flow at the Koseda coast. Whether the 7.3 ka tsunami was caused by a volcanic eruption or an earthquake remains unclear, but Unit TG demonstrates that a tsunami arrived immediately before emplacement of a Koya pyroclastic flow.  相似文献   

15.
Tsunami deposits provide a basis for reconstructing Holocene histories of great earthquakes and tsunamis on the Pacific Coast of southwest Japan. The deposits have been found in the past 15 years at lakes, lagoons, outcrops, and archaeological excavations. The inferred tsunami histories span 3000 years for the Nankai and Suruga Troughs and nearly 10,000 years for the Sagami Trough. The inferred histories contain recurrence intervals of variable length. The shortest of these —100–200 years for the Nankai Trough, 150–300 years for the Sagami Trough — resemble those known from written history of the past 1000–1500 years. Longer intervals inferred from the tsunami deposits probably reflect variability in rupture mode, incompleteness of geologic records, and insufficient research. The region's tsunami history could be clarified by improving the geologic distinction between tsunami and storm, dating the inferred tsunamis more accurately and precisely, and using the deposits to help quantify the source areas and sizes of the parent earthquakes.  相似文献   

16.
Foraminiferal tests are commonly found in tsunami deposits and provide evidence of transport of sea floor sediments, sometimes from source areas more than 100 m deep and several kilometers away. These data contribute to estimates of the physical properties of tsunami waves, such as their amplitude and period. The tractive force of tsunami waves is inversely proportional to the water depth at sediment source areas, whereas the horizontal sediment transport distance by tsunami waves is proportional to the wave period and amplitude. We derived formulas for the amplitudes and periods of tsunami waves as functions of water depth at the sediment source area and sediment transport distance based on foraminiferal assemblages in tsunami deposits. We applied these formulas to derive wave amplitudes and periods from data on tsunami deposits in previous studies. For some examples, estimated wave parameters were reasonable matches for the actual tsunamis, although other cases had improbably large values. Such inconsistencies probably reflect: (i) local amplification of tsunami waves by submarine topography, such as submarine canyons; and (ii) errors in estimated water depth at the sediment source area and sediment transport distance, which mainly derive from insufficient identification of foraminiferal tests.  相似文献   

17.
18.
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450 years ago produced a wave that affected areas 17 m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600 yr BP, and affected areas more than 7 m above high tide at distances of 80 km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600 yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600 yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska.  相似文献   

19.
The 1771 Yaeyama tsunami is successfully reproduced using a simple faulting model without submarine landslide. The Yaeyama tsunami (M 7.4), which struck the southern Ryukyu Islands of Japan, produced unusually high tsunami amplitudes on the southeastern coast of Ishigaki Island and caused significant damage, including 12,000 casualties. Previous tsunami source models for this event have included both seismological faults and submarine landslides. However, no evidence of landslides in the source has been obtained, despite marine surveying of the area. The seismological fault model proposed in this study, describing a fault to the east of Ishigaki Island, successfully reproduces the distribution of tsunami runup on the southern coast of the Ryukyu Islands. The unusual runup heights are found through the numerical simulation attributable to a concentration of tsunami energy toward the southeastern coast of Ishigaki Island by the effect of the shelf to the east. Thus, the unusual runup heights observed on the southeastern coast of Ishigaki Island can be adequately explained by a seismological fault model with wave-ray bending on the adjacent shelf.  相似文献   

20.
We examined the geochemical characteristics and temporal changes of deposits associated with the 2011 Tohoku‐oki tsunami. Stable carbon isotope ratios, biomarkers, and water‐leachable ions were measured in a sandy tsunami deposit and associated soils sampled at Hasunuma, Kujukuri coastal plain, Japan, in 2011 and 2014. At this site, the 2011 tsunami formed a 10–30 cm ‐thick layer of very fine to medium sand. The tsunami deposit was organic‐poor, and no samples contained any detectable biomarkers of either terrigenous or marine origin. In the underlying soil, we identified hydrocarbons and sterols derived from terrestrial plants, but detected no biomarkers of marine origin. In the samples collected in 2011, concentrations of tsunami‐derived water‐leachable ions were highest in the soil immediately beneath the tsunami deposit and then decreased gradually with depth. Because of its finer texture and higher organic content, the soil has a higher water‐holding capacity than the sandy tsunami deposit. This distribution suggests that ions derived from the tsunami quickly penetrated the sand layer and became concentrated in the underlying soil. In the samples collected in 2014, concentrations of water‐leachable ions were very low in both soil and sand. We attribute the decrease in ion concentrations to post‐tsunami rainfall, seepage, and seasonal changes in groundwater level. Although water‐leachable ions derived from seawater were concentrated in the soil beneath the tsunami deposit following the tsunami inundation, they were not retained for more than a few years. To elucidate the behavior of geochemical characteristics associated with tsunamis, further research on organic‐rich muddy deposits (muddy tsunami deposits and soils beneath sandy tsunami deposits) as well as sandy tsunami deposits is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号