首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ciliated protozoans are important constituents of periphytic communities in aquatic habitats, including river-floodplain ecosystems. As the knowledge about the diversity and ecological importance of periphytic ciliates in floodplain habitats is still limited, the main objectives of this study were to analyse the temporal variations in the community structure and functional role and reveal the main environmental factors controlling community dynamics. The study was conducted in one of the Danube's largest conserved floodplains – Kopački Rit in Croatia. In situ research included two experimental series in a lake, the first from spring till winter and the second from summer till winter. Samples were collected biweekly using glass slides as artificial substrates for periphyton development. During the study, two hydrological (low-water and high-water) periods interchanged. High-water periods were characterized by greater water transparency and nutrient concentrations, while electrical conductivity, chlorophyll a concentration, total suspended solids and particulate organic matter in water were higher during low-water periods. Furthermore, hydrological changes greatly affected the periphytic ciliate communities and the highest abundances were registered during low water levels. We identified a total of 133 ciliate taxa, among which the peritrichs, sessile filter feeders, were the dominant representatives in the periphyton, with the highest densities registered in the absence of floods. During extremely high water levels, the composition of the ciliate community in periphyton changed, with mobile ciliates, predators and filter feeders, becoming dominant. This study indicates that the main food source for periphytic ciliates in a floodplain lake are bacteria and algae, confirming the important role of these microorganisms in the lake food web, by making the carbon fixed in bacteria and algae available for the organisms of higher trophic levels. Additionally, periphytic ciliates have a considerable effect on planktonic organisms in the lake, thus connecting benthic and pelagic food webs, especially during low-water periods.  相似文献   

2.
The Mississippi River Valley Alluvial Aquifer ranks among the most overdrafted aquifers in the United States due to intensive irrigation. Concern over declining water levels has increased focus on understanding the sources of recharge. Numerous oxbow lakes overlie the aquifer that are often considered hydraulically disconnected from the groundwater system due to fine-grained bottom sediments. In the current study, groundwater levels in and around a 445-ha oxbow lake-wetland in Mississippi were monitored for a 2-year period that included an unusually long low-water condition in the lake (>17 months), followed by a high-water event lasting over 4 months before returning to earlier low-water levels. The high-water pulse (>4 m rise) provided a unique opportunity to track the impact in the underlying alluvial aquifer. During low-water conditions, groundwater flowed westward beneath the lake. Following the lake rise, groundwater beneath and near the perimeter responded as quickly as the same day, with more delayed responses moving away from the lake. Within 2 months, a groundwater mound formed near the centre of the oxbow (>3 m increase), with a reversal in the local hydraulic gradient towards the east. Flow returned to a westward gradient when the lake level dropped back below 0.3 m. Analysis of precipitation and nearby river stage could not account for the observed behavior. Recharge to the aquifer is attributed to rising water levels spreading over point bar deposits and into the surrounding forested wetlands where preferential flow pathways are likely to exist due to buried and decomposing tree remains. An earlier study in the wetland demonstrated an increasing redox potential in isolated zones, consistent with the existence of preferential flow pathways through the bottom sediments (Lahiri & Davidson, 2020). Retaining high-water levels in oxbow lakes could be a relatively low-cost water management practice for enhancing aquifer recharge.  相似文献   

3.
Ershova  M. G. 《Water Resources》2003,30(2):124-135
A box model of water mass composition is used to determine the genetic structure of the main water mass (MWM) of the Mozhaisk Reservoir in the high-water 1986–1987 and for four constructed scenarios. The greatest difference between the genetic compositions of the spring, summer, and autumn modifications of MWM manifested itself in that the winter reservoir water of the previous water management year predominates in a low-water year. Elevated proportions of snowmelt flood water were recorded in the spring and summer of a medium-water year (with high snowmelt flood and low rain floods) and in the winter of a low-water year. Possible variations (up to 27%) in the salinity and color index of MWM in years with different genetic composition are demonstrated and shown to be attributable to different water abundance in these years. The genetic structure of the reservoir water is supposed to affect possible variations in the phosphorus content of the reservoir MWM.  相似文献   

4.
In floodplains located in temperate regions, seasonal variations in temperature affect biological communities and these effects may overlap with those of the flood regime. In this study we explored if and how timing (with regard to temperature seasonality) influences the responses of planktonic and free-floating plants communities to floods in a warm temperate floodplain lake and assessed its relevance for determining state shifts. We took samples of zooplankton, phytoplankton, picoplankton, heterotrophic nanoflagellates and free-floating macrophytes at four sites of the lake characterized by the presence-absence of emergent or free-floating macrophytes along a 2-year period with marked hydrological fluctuations associated to river flood dynamics. We performed ANOVA tests to compare the responses of these communities to floods in cold and warm seasons and among sites. Planktonic communities developed high abundances in response to floods that occurred in the cold season, while the growth of free-floating macrophytes was impaired by low winter temperatures. Spring and summer floods favored profuse colonization by free-floating plants and limited the development of planktonic communities. The prolonged absence of floods during warm periods caused environmental conditions that favored Cyanobacteria growth, leading to a “low turbid waters” regime. The occurrence of floods early in the warm season caused phytoplankton dilution and promoted free-floating plant colonization and a shift towards a “high clear waters” state. Zooplankton:phytoplankton biomass ratio was very low during floods in warm seasons, thus zooplankton grazing on phytoplankton seemed to play a minor role in the maintenance of the clear regime.  相似文献   

5.
The mineralization ages reported in the past in the Tuwu-Yandong copper district not only are different,but also fall into the Hercynian epoch.This study has achieved 9 zircon and 7 apatite fission track analysis results.The zircon fission track ages range from 158 Ma to 289 Ma and the apatite ages are between 64 Ma and 140 Ma.The mineralization accords with the regional tectonics in the copper district.We consider that the zircon fission track age could reveal the mineralization age based on annealing zone temperature of 140―300℃ and retention temperature of ~250℃ for zircon fission track,and metallogenetic temperature of 120―350℃ in this ore district.Total three mineralization epochs have been identified,i.e.,289―276 Ma,232―200 Ma and 165―158 Ma,and indicate occurrence of the min-eralization in the Indosinian and Yanshan epochs.Corresponding to apatite fission track ages,the three tectonic-mineralizing epochs are 140―132 Ma,109―97 Ma and 64 Ma,which means age at about 100℃ after the mineralization.The three epochs lasted 146 Ma,108 Ma and about 100 Ma from ~250℃ to ~100℃ and trend decrease from early to late.It is shown by the fission track modeling that this district underwent three stages of geological thermal histories,stable in Cretaceous and cooling both before Cretaceous and after 20 Ma.  相似文献   

6.
This study tested the hypothesis that the flood pulse affects the diet composition and the niche breadth of Moenkhausia forestii, a small characid fish inhabiting the littoral zone of lakes. To this end, we compared the diet composition (at the population and individual levels) between hydrological periods (high and low water phases) in a floodplain lake of the Upper Paraná River. PERMANOVA revealed differences in the diet between periods (pseudoF1,38 = 8.5; p < 0.001), with predominant consumption of chironomid larvae and Ephemeroptera (aquatic resources) in the low-water period and an increase in the contribution of terrestrial resources (Hymenoptera, Coleoptera, and Orthoptera) during the high-water period. Based on the PERMDISP results, inter-individual variability in M. forestii diet also differed between periods (F1,38 = 5.80; p = 0.02), with higher values during the high-water period resulting in a dietary niche expansion. During the low-water period, we observed the dominance of chironomid larvae in the diets of most individuals, resulting in lower inter-individual variability and thus narrower niche breadth. The diet of M. forestii was affected by the flood pulse at both the population and individual levels. The most important difference was found in the origin of food items; during the low-water period, the diet consisted mainly of aquatic resources, and during the high-water period, there was a large contribution of terrestrial resources. This variation is related to the increased availability of allochthonous resources in the high period, when terrestrial areas are flooded by the overflow of the river, thereby increasing the input of resources into the aquatic environment. The increased availability of food resources during this period allowed the expansion of the trophic niche of M. forestii, accompanied by the highest richness (19 items) and the highest evenness of food items. Our findings demonstrated that the flood pulse affected the composition of the M. forestii diet at both the population and individual levels. These results support the importance of the flood pulse, which connects aquatic and terrestrial ecosystems, in providing food resources for fish.  相似文献   

7.
The Mekong Delta is one of the largest and most intensively used estuaries in the world. Each year it witnesses widespread flooding which is both the basis of the livelihood for more than 17 million people but also the major hazard. Therefore, a thorough understanding of the hydrologic and hydraulic features is urgently required for various planning purposes. While the general causes and characteristics of the annual floods are understood, the inundation dynamics in the floodplains in Vietnam which are highly controlled by dikes and other control structures have not been investigated in depth. Especially, quantitative analyses are lacking, mainly due to scarce data about the inundation processes in the floodplains. Therefore, a comprehensive monitoring scheme for channel and floodplain inundation was established in a study area in the Plain of Reeds in the northeastern part of the Vietnamese Delta. This in situ data collection was complemented by a series of high‐resolution inundation maps derived from the TerraSAR‐X satellite for the flood seasons 2008 and 2009. Hence, the inundation dynamics in the channels and floodplains, and the interaction between channels and floodplains, could be quantified for the first time. The study identifies the strong human interference which is governed by flood protection levels, cropping patterns and communal water management. In addition, we examine the tidal influence on the inundation in various parts of the Delta, since it is expected that climate change‐induced sea level rise will increase the tidal contribution to floodplain inundation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Floodplains and terraces in river valleys play important roles in the transport dynamics of water and sediment. While flat areas in river valleys can be identified from LiDAR data, directly characterizing them as either floodplain or terraces is not yet possible. To address this challenge, we hypothesize that, since geomorphic features are strongly coupled to hydrological and hydraulic dynamics and their associated variability, there exists a return frequency, or possibly a narrow band of return frequencies, of flow that is associated with floodplain formation; and this association can provide a distinctive signature for distinguishing them from terraces. Based on this hypothesis we develop a novel approach for distinguishing between floodplains and terraces that involves transforming the transverse cross‐sectional geometry of a river valley into a curve, named a river valley hypsometric (RVH) curve, and linking hydraulic inundation frequency with the features of this curve. Our approach establishes that the demarcation between floodplains and terraces can be established from the structure of steps and risers in the RVH curves which can be obtained from the DEM data. Further, it shows that these transitions may themselves be shaped by floods with 10‐ to 100‐year recurrence. We additionally show that, when floodplain width and height (above channel bottom) are normalized by bankfull width and depth, the ratio lies in a narrow range independent of the scale of the river valley. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The effect of land reclamation on the migration and accumulation of heavy metals and some pollutants in small rivers is determined. The study was conducted in the Middle Amur lowland in different phases of hydrological regime and at different extent of floodplain inundation. The formation of the hydrological regime in small rivers in this area is governed by the irregular annual runoff distribution. The seasonal character of flood periods requires water samples to be taken before spring flood (April) and after floods have passed (September–October), and at various extent of floodplain inundation. The field studies of water-courses were carried out in 2009–2014. The water samples were analyzed to determine the concentrations of heavy metals (iron, manganese, copper, nickel, cobalt, lead and zinc), suspended substances, organic carbon (total, dissolved, and suspended), humic and fulvic acids, and volatile organic compounds. The mobility of heavy metals in surface watercourses was shown to reflect the effect of drainage and surface runoff from soil horizons, an increase in the concentrations of suspended and organic compounds, especially, fulvic acids, which enhance their geochemical mobility. During floods, an increase in heavy metals washout from floodplain soils and the dilution of their concentrations causes the formation of a single-type concentration series of heavy metals. In addition, the processes of pollutants migration show an effect of changes in the geomorphological characteristics of floodplain–channel complexes and a decrease in flow velocity in watercourses in the areas where land reclamation was applied. Thus, all factors mentioned above lead to a decrease in water pollution index in the river.  相似文献   

11.
《水文科学杂志》2012,57(1):33-56
ABSTRACT

Riparian depressional wetlands (haors) in the Upper Meghna River Basin of Bangladesh are invaluable agricultural resources. They are completely flooded between June and November and planted with Boro rice when floodwater recedes in December. However, early harvest period (April/May) floods frequently damage ripening rice. A calibrated/validated Soil and Water Assessment Tool for riparian wetland (SWATrw) model is perturbed with bias free (using an improved quantile mapping approach) climate projections from 17 general circulation models (GCMs) for the period 2031–2050. Projected mean annual rainfall increases (200–500 mm or 7–10%). However, during the harvest period lower rainfall (21–75%) and higher evapotranspiration (1–8%) reduces river discharge (5–18%) and wetland inundation (inundation fraction declines of 0.005–0.14). Flooding risk for Boro rice consequently declines (rationalized flood risk reductions of 0.02–0.12). However, the loss of cultivable land (15.3%) to increases in permanent haor inundation represents a major threat to regional food security.  相似文献   

12.
In this research, variability of spring (from 1 March to 30 May) and flash (from 1 June to 30 November) floods in rivers of different regions was analysed. The territory of Lithuania is divided into three regions according to hydrological regime of the rivers: Western, Central, and Southeastern. The maximum river discharge data of spring and flash floods [a total of 31 water gauging stations (WGS)] were analysed. Comparison of the data of four periods (1922–2013, 1941–2013, 1961–2013, and 1991–2013) with the data of the reference period (1961–1990) was performed. Analysis included the longest discharge data set of the Nemunas River at Smalininkai WGS (1812–2013) as well. Mixed patterns of flood changes in Lithuanian rivers were detected. The analysis of flood discharges of the Nemunas River indicated that both spring and flash floods in Lithuania were getting smaller.  相似文献   

13.
This paper presents the development and application of a distributed rainfall-runoff model for extreme flood estimation, and its use to investigate potential changes in runoff processes, including changes to the ‘rating curve’ due to effects of over-bank flows, during the transition from ‘normal’ floods to ‘extreme’ floods. The model has two components: a hillslope runoff generation model based on a configuration of soil moisture stores in parallel and series, and a distributed flood routing model based on non-linear storage-discharge relationships for individual river reaches that includes the effects of floodplain geometries and roughnesses. The hillslope water balance model contains a number of parameters, which are measured or derived a priori from climate, soil and vegetation data or streamflow recession analyses. For reliable estimation of extreme discharges that may extend beyond recorded data, the parameters of the flood routing model are estimated from hydraulic properties, topographic data and vegetation cover of compound channels (main channel and floodplains). This includes the effects of the interactions between the main channel and floodplain sections, which tend to cause a change to the rating curve. The model is applied to the Collie River Basin, 2545 km2, in Western Australia and used to estimate the probable maximum flood (PMF) from probable maximum precipitation estimates for this region. When moving from normal floods to the PMFs, application of the model demonstrates that the runoff generation process changes with a substantial increase of saturation excess overland flow through the expansion of saturated areas, and the dominant runoff process in the stream channel changes from in-bank to over-bank flows. The effects of floodplain inundation and floodplain vegetation can significantly reduce the magnitude of the estimated PMFs. This study has highlighted the need for the estimation of a number of critical parameters (e.g. cross-sectional geometry, floodplain vegetation, soil depths) through concerted field measurements or surveys, and targeted laboratory experiments.  相似文献   

14.
Data on the Colville River mouth (Alaska, USA) are used to discuss the regularities in hydrological processes taking place in river mouth areas, functioning under extreme arctic conditions. Seasons and periods are recognized in the annual cycle of the Colville river mouth hydrologic regime. A thick ice cover commonly forms in winter in the river, its delta distributaries, and the offshore zone. Water salinity in under-ice water in the distributaries and near-delta river reach appreciably increases in late winter. The spring flood is very short; in this period, snowmelt water propagates toward the ocean first over ice and next under it. A wedge of freshened waters forms in the nearshore zone above fast ice. River runoff abruptly drops in the summer-autumn low-water period. The morphological processes in the distributaries and some ecological conditions in the delta are also discussed.  相似文献   

15.
Inundation patterns in two of the largest savanna floodplains of South America were studied by analysis of the 37‐GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer (Nimbus‐7 satellite). Flooded area was estimated at monthly intervals for January 1979 through to August 1987 using mixing models that account for the major landscape units with distinctive microwave emission characteristics. Results are presented separately for five subregions in each of the two floodplain regions to show the spatial as well as temporal variability in inundation patterns. The total area inundated during the 9 years varied between 2069 and 78 460 km2 in the Llanos de Moxos (also spelled as Mojos; median area, 23 383 km2) and 1278 and 105 454 km2 in the Llanos del Orinoco (median, 25 374 km2), not including the open‐water area of permanent lakes and river channels. The correlation between flooded area and river stage was used to extend the inundation records over a 30‐year period in the Moxos (1967–97) and a 58‐year period (1927–85) in the Orinoco. Interannual variability in inundation is greater in the Moxos than the Orinoco. Comparison of these data, however, with a previously published analysis of the Pantanal wetland shows that inundation patterns in these two floodplain regions are not as variable across years as they are in the Pantanal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
: During this century, the characteristics of the Upper Rhone River discharge, flowing into Lake Geneva, have been altered in response to the changes which have occurred in its watershed. Principally, numerous hydroelectric dams have been constructed on the course of the Rhone River tributaries. At present the major reservoirs can hold about 1220106m3 of water, which represents 1/5 of the total annual Rhone River flow. Flow regime characteristics of the river have been modified by the dam operations. Water is released from reservoirs during winter and stored in summer. Large floods have also been reduced in amplitude and frequency. From the available literature data, sediment rating curves have been calculated and used to estimate the evolution of the sediment load from the Rhone River to Lake Geneva. They show that sediment input has decreased by at least a factor 2. This reduction has impacted the occurrence of underflows along the lake bottom, due to the reduction of sediment-laden floods, which in turn may have considerable negative effects on the reoxygenation of Lake Geneva deep waters.  相似文献   

17.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Flood hazard maps used to inform and build resilience in remote communities in the Terai region of southern Nepal are based on outdated and static digital elevation models (DEMs), which do not reflect dynamic river configuration or hydrology. Episodic changes in river course, sediment dynamics, and the distribution of flow down large bifurcation nodes can modify the extent of flooding in this region, but these processes are rarely considered in flood hazard assessment. Here, we develop a 2D hydrodynamic flood model of the Karnali River in the Terai region of west Nepal. A number of scenarios are tested examining different DEMs, variable bed elevations to simulate bed aggradation and incision, and updating bed elevations at a large bifurcation node to reflect field observations. By changing the age of the DEM used in the model, a 9.5% increase in inundation extent was observed for a 20-year flood discharge. Reducing horizontal DEM resolution alone resulted in a <1% change. Uniformly varying the bed elevation led to a 36% change in inundation extent. Finally, changes in bed elevation at the main bifurcation to reflect observed conditions resulted in the diversion of the majority of flow into the west branch, consistent with measured discharge ratios between the two branches, and a 32% change in inundation extent. Although the total flood inundation area was reduced (−4%), there was increased inundation along the west bank. Our results suggest that regular field measurements of bed elevation and updated DEMs following large sediment-generating events, and at topographically sensitive areas such as large river bifurcations, could help improve model inputs in future flood prediction models. This is particularly important following flood events carrying large sediment loads out of mountainous regions that could promote bed aggradation and channel switching across densely populated alluvial river systems and floodplains further downstream. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

19.
The analysis of the data of variations of the apparent electric resistivity of rocks (AR) in the area of the Chirkey HES has been carried out for the period after the water reservoir was filled. For measurements the method of dipole electric sounding has been used with location of potential dipoles around the water reservoir with a distance between them of 5.2–11.3km. The analysis of the data obtained for the period of observations (1976–1988) has shown that the filling of the water reservoir affected the environment for a long time. After it was filled (1975), at different observation points located around the water reservoir a decrease of 1.6–2.4 times was registered in the AR over the period from 1976–1988. This is connected with the process of inundation of the rock mass, which continued for more than 14 years. The process of water filtering into the surrounding rock mass was complicated; that is, it varied in time and space. At the initial stage of the reservoir filling the AR variations of a high amplitude (30–40%) were observed. These variations are considered to be connected with the seismic regime of the area of the water reservoir. A synchronous decrease in the AR, registered at the receiver points was followed by an increase of the number of the earthquakes of energetic class (K = 10). The given anomalous data are connected by an increase in the water filtration into fractured zones, whose filtration features change on being affected by tectonic stresses.  相似文献   

20.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号