首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The GNSS-Acoustics (GNSS-A) method couples acoustics with GNSS to allow the precise localization of a seafloor reference in a global frame. This method can extend on-shore GNSS networks and allows the monitoring of hazardous oceanic tectonic phenomena. The goal of this study is to test the influence of both acoustics ray tracing techniques and spatial heterogeneities of acoustic wave speed on positioning accuracy. We test three different ray tracing methods: the eikonal method (3D sound speed field), the Snell-Descartes method (2D sound speed profile), and an equivalent sound speed method. We also compare the processing execution time. The eikonal method is compatible with the Snell-Descartes method (by up to 10 ppm in term of propagation time difference) but takes approximately a thousand times longer to run. We used the 3D eikonal ray tracing to characterize the influence of a lateral sound speed gradient on acoustic ray propagation and positioning accuracy. For a deep water (? 3,000 m) situation, frequent in subduction zones such as the Lesser Antilles, not accounting for lateral sound speed gradients can induce an error of up to 5 cm in the horizontal positioning of a seafloor transponder, even when the GNSS-A measurements are made over the barycenter of a seafloor transponder array.  相似文献   

2.
A system-theoretic approach is proposed to investigate the feasibility of reconstructing a sound velocity profile (SVP) from acoustical hydrophone measurements. A state-space representation of the normal-mode propagation model is used. It is shown that this representation can be utilized to investigate the so-called observability of the SVP from noisy measurement data. A model-based processor is developed to extract the required information, and it is shown that even in cases where limited SVP information is available, the SVP can be estimated using this approach. Based on this framework, investigations are made of model-based solutions to the sound velocity profile and related parameter estimation problems. In particular, a processor is designed that allows in situ recursive estimation of the sound velocity profile from simulated data  相似文献   

3.
为准确获取深远海海洋声速资料,充分了解深水声速规律,选取了西太地区两个水深超过5000m的S1和S2站位的声速资料为研究对象,以SVP(声速剖面仪)实测资料为参考标准,通过对CTD资料利用Chen-Millero、Del-Grosso以及Wilson的3种经验公式计算的声速与SVP资料进行对比分析,得出Del-Grosso经验公式计算的声速误差最小。为进一步提高声速资料精度,对Del-Grosso公式进行修正,并利用另外3个站位数据进行验证,发现利用校正后的公式计算的声速资料精度明显提升,这为其他深远海区利用CTD或其他温盐深资料获取高精度声速资料提供参考。  相似文献   

4.
超短基线定位解算中的距离观测值是指换能器与水下应答器之间的直线距离,而海水声速的不均匀分布导致声波在海水中的实际传播路径为连续弯曲的曲线,需要结合实测声速剖面进行声线修正。根据声速在分层介质中的传播特性,本文提出了一种基于二次多项式拟合的声线跟踪算法,采用线性插值方法对声速剖面数据进行合理加密并按等深度进行分层,设定每层声速梯度是不断变化的,用二次多项式拟合声速,基于运动学原理建立了完整的数学解算模型。仿真结果表明,该方法修正后的水下目标分布具有明显的收敛性,且优于等梯度声线跟踪算法和等效声速剖面法,显著提高了超短基线水声定位系统的定位精度。  相似文献   

5.
The Marine Physical Laboratory of the Scripps Institution of Oceanography has developed an acoustic relay transponder for precise relative positioning of near-bottom instruments and geologic sampling devices. Although specifically designed to position equipment lowered on standard wire ropes without a need to maintain direct electrical contact with the surface ship, the relay transponder may be used to track free vehicles, such as deep submersibles, from the surface. The relay transponder is positioned relative to an array of bottom-anchored acoustic transponders. It is interrogated acoustically from the surface ship; it then sequentially interrogates the bottom transponders which, in turn, reply to the ship. From the measurement of the total travel time (ship to relay transponder to bottom transponder to ship) and assuming, or knowing, the sound velocity of the water, we obtain a relayed range measurement. These relayed ranges, used in conjunction with ship to bottom-transponder ranges, allow us to calculate the position of the relay transponder. A recent application of this technique is described in which several gravity core samples from the crest of the Horizon Guyot were positioned with respect to the detailed bathymetry and the geology within the area. The estimated error in positioning the samples is less than 20 m inside a navigational net extending over 100 km2.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

6.
海洋中声速起伏导致水声信道发生变化,进而引起声线到达结构的变化,对水声传播及定位精度产生一定影响。为讨论这一效应,基于TDOA体制建立了考虑声线弯曲的水下目标无源定位模型,分析了声速起伏对水下声传播路径及传播时间的影响,进而研究了声速起伏对水下无源定位测量精度影响程度。结果表明:当水平传播距离较大时,声速剖面起伏对声传播路径及传播时间的影响更为显著;以典型四元阵为例,若基线长度为20 km,接收阵位于水下5 km处,在不考虑其它随机误差影响下,海洋声速起伏造成的声源定位误差量级在0.5 m以内。分析结果有助于更好地利用环境特征优化无源定位测量方案,可为高精度水下无源定位系统设计及精度评估提供依据。  相似文献   

7.
Matsui  R.  Kido  M.  Niwa  Y.  Honsho  C. 《Marine Geophysical Researches》2019,40(4):541-555

Traditional Global Navigation Satellite System-Acoustic (GNSS-A) positioning assumes the Layered Model in the sound speed structure, and any of horizontal perturbation of seawater degrades its accuracy. However, the use of the Gradient Model analytically demonstrated that the horizontal gradient of the sound speed structure and displacement can simultaneously be solved using multiple transponders for each of ping. We applied this technique to our observed data and found it unsuitable for real data. We confirmed that a horizontal perturbation with wavelength shorter than the horizontal extent of the transponder array significantly violates the linear approximation in the Gradient Model. Our vertical 2D numerical simulation of internal waves (IWs) forced by tidal oscillation showed that such small-scale IWs could effectively be generated by nonlinear cascade from large-scale IWs of the major tidal constituents. In addition, a small-scale IW in deep water typically has a period of 3–4 h, which degrades positioning accuracy significantly, whereas an IW of much shorter period in shallow water has less effect after removal of the fluctuation by time averaging within a typical observation period. Apparent array position obtained in the synthetic test based on the simulated IW-derived sound speed structure showed features quite similar to that observed in real surveys. To incorporate such deeper perturbation, we proposed a Disturbance Model using dual sea surface platforms, that can solve time-varying perturbation in the vicinity of each transponder.

  相似文献   

8.
海水声速直接测量和间接测量结果分析   总被引:2,自引:0,他引:2  
文中使用了2001~2003年问的海上调查的CTD和声速仪SVP数据,通过直接测量的声速与常用的三种利用CTD计算声速的经验公式所计算的声速剖面进行对比,并采用了相关运算和回归分析,结果表明:在三个经验公式中,Chen-Miller公式与实测声速吻合得最好;表明历史上大量的CTD资料(河口区除外)可直接用来换算声速剖面,进而用于声场预报。  相似文献   

9.
This study utilized circular and straight-line survey patterns for acoustic ranging to determine the position of a seafloor transponder and mean sound speed of the water column. To reduce the considerable computational burden and eliminate the risk of arriving at a local minimum on least-squares inversion, the position of a seafloor transponder was estimated by utilizing optimization approaches. Based on the implicit function theorem, the Jacobian for this inverse problem was derived to investigate the constraints of employing circular and straight-line survey patterns to estimate the position of a transponder. Both cases, with and without knowledge of the vertical sound speed profile, were considered. A transponder positioning experiment was conducted at sea to collect acoustic and GPS observations. With significant uncertainties inherent in GPS measurements and the use of a commercial acoustic transponder not designed for precise ranging, experimental results indicate that the transponder position can be estimated accurately on the order of decimeters. Moreover, the mean sound speed of the water column estimated by the proposed optimization scheme is in agreement with that derived from conductivity, temperature, and density (CTD) measurements.  相似文献   

10.
结合声波射线传播规律提出了双曲面模型水声定位的数据模拟方法。利用该方法模拟一定浮标网形下声源位于某区域约2 000m水深处10km×10km范围内的声线双曲面模型定位观测数据,进行定位解算,并将截止角的概念引入水声定位中。定位结果显示,大部分区域水下DGPS定位系统的外符合定位精度在水平方向优于5m,垂直方向优于10m;网形中间区域精度较高,三维定位精度为亚米级。引入角度限制后,定位区域内外符合定位精度水平方向优于1m,垂直方向优于4m。  相似文献   

11.
Hsin-Hung Chen 《Ocean Engineering》2008,35(14-15):1448-1462
Positioning accuracy of an ultra short baseline (USBL) tracking system is significantly reduced with the increase of alignment errors in the installation of sensors. Although techniques for sensor alignment calibration have been developed, they are either complex or lacking in rigor. This study proposes an algorithm to estimate the angular misalignments of a USBL transceiver relative to attitude sensors. The numerical algorithm is based on the positioning errors caused by heading, pitch, and roll misalignments, respectively, when running a circular survey around a seabed transponder. The positioning errors introduced by the angular misalignments outline an iterative scheme of estimating the roll alignment error first, next the heading alignment error, and then finally the pitch alignment error. This makes possible the efficient estimation of all angular misalignments with a high degree of accuracy. With the consideration of measurement error and executing a non-centered and non-perfect circle around the true transponder position, numerical simulations are performed to validate the effectiveness of the proposed algorithm. The simulation results show that the proposed algorithm is robust to the effects of measurement error, non-centered circles, and non-perfect circles. Moreover, the estimates converge fairly quickly, and can be achieved with good accuracy in only a few iterations.  相似文献   

12.
声速剖面对多波束测深影响的新认识   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了声速剖面对多波束测深的影响,并得出了当声速剖面的某一节点偏大时,对边缘多波束的影响使水深偏浅,而对中央部分的波束使水深偏深;当声速剖面的某一节点偏小时,结果反之。该结果对野外资料采集及声速剖面编辑具有特别实际的指导意义。最后指出:当声速剖面出现误差时,中央波束的测深精度并不一定比其他波束的测深精度高。  相似文献   

13.
研究了在海底声速梯度为正的情况下,应答器最大互测距距离的计算方法。对于平坦地形,直接基于声线跟踪的原理计算;对于倾斜地形,首先将实际声线轨迹近似为圆弧,然后利用牛顿法迭代计算初始掠射角,进一步得到两应答器间的水平距离。仿真实验结果表明,应答器的架设高度越高,最大互测距距离越远;同样架设高度,坡度越大的地形互测距距离越短。  相似文献   

14.
We analyze the possibility of existence of critical angles of incidence of sound waves along two paths of propagation of sound typical of the northwest shelf of the Black Sea from the viewpoint of the characteristics of the lower boundary of a waveguide and the space and time structure of the field of sound velocity. The lower boundary of the waveguide may possess the property of acoustic transparency both in the case of a subsurface sound channel and under the conditions of negative refraction if the bottom is formed by fine-aleurite silts responsible for significant losses in the process of propagation of sound. The angles of total internal reflection exist for bottoms formed by shell rocks under all hydrological conditions typical of this region. At the same time, for bottoms formed by fine-aleurite silts, these angles exist only for a certain vertical structure of the field of sound velocity, which enables one to use the range of angles in which the losses caused by the reflections of sound waves from the bottom can be neglected.  相似文献   

15.
声速是海洋声呐测量中最重要的声学参数之一。拖缆式声速剖面仪可提供实时测量功能,但其缆长不能满足深海测量要求;自容式声速剖面仪可满足深海测量要求,但工作效率低。如何提高野外深海声速剖面测量工作效率是深海调查一项非常有意义的工作。文中详细介绍了基于声学调制解调器的声速剖面遥测系统的主要结构和功能,揭示了水声通信技术在深海非铠装缆测量中的应用优势。  相似文献   

16.
Abstract

In long baseline (LBL) positioning system, errors due to uncertain sound speed are the major facts to its positioning accuracy. In this study, the problem is solved by setting acoustic signal travels between the target and different hydrophones with different sound speed and using particle swarm optimization algorithm to solve the multi-parameter optimization problem to obtain the sound speeds. Presented simulation results show that the proposed algorithm can effectively improve the positioning accuracy of the LBL system compared to existing algorithms and its computational efficiency is high enough.  相似文献   

17.
基于时间平均的海底沉积物声速预测   总被引:2,自引:2,他引:0  
在海底沉积物声速预测中,把不同海域的物理性质完全不同的沉积物试验数据拟合出一个统一的方程存在不足,不但数据过于离散,而且方程中参量的物理意义不明确。借鉴Wyllie等建立的时间平均方程的思路,基于声传播过程中路程、时间和声速之间的基本关系,引入了表征固液双相之间的堆垒方式和耦合状态对声传播路径影响的耦合系数,建立了沉积物声速预测模型。将鹿回头外海、南海南部和北部的沉积物测量数据进行线性回归分析,分别得出适用于不同海域的沉积物声速预测模型,拟合的复相关系数较大,偏差较小,证明该模型能够反映声速随孔隙度的变化规律,且各参数物理意义明确,具有一定的研究和理论探索意义。  相似文献   

18.
提出了一种在声速剖面未知的条件下计算海底控制点水平坐标的方法,根据流体静力学方程将海底应答器的压力值转化为深度值,并以此深度值作为等效声速剖面法的参考深度,基于等效声速剖面法与船底换能器到海底应答器声波的传播时间计算各历元的测距值,通过圆走航利用距离交会法确定海底控制点水平方向的坐标。松花湖的实验表明,这种方法可以获得较高精度的浅海海底控制点水平方向的坐标。  相似文献   

19.
The accuracy of GPS/Acoustic positioning is crucial for monitoring seafloor crustal deformation. However, the slant range residual is currently the only indicator used to evaluate the precision of positioning seafloor transponders. This study employs a unique Seafloor Acoustic Transponder System (SATS) to evaluate the accuracy of GPS/Acoustic seafloor positioning. The SATS has three transponders and an attitude sensor in a single unit, which provides true lengths of transponder baselines and true attitude of the SATS to ensure assessment reliability and validity. The proposed approach was tested through a GPS/Acoustic experiment, in which an off-the-shelf acoustic system was used to collect range measurements. Using GPS/Acoustic geodetic observations, the positions of three transponders on the SATS were estimated by an optimization technique combined with ray-tracing calculations. The accuracy of the GPS/Acoustic seafloor positioning is assessed by comparing the true baselines and attitude with the results derived from the position estimates of the three transponders. A sensitivity analysis is conducted to investigate the robustness of the GPS/Acoustic positioning results to changes of sound speed. Experimental results demonstrate that the use of the SATS can help to assess the validity of the GPS and acoustic travel time measurements in the GPS/Acoustic seafloor positioning.  相似文献   

20.
通过对深海多波束地形调查中实测声速剖面数据质量的研究,探讨声速剖面仪检定以及实际应用中的质量控制措施。利用抛弃式温盐深仪和同海区国际剖面浮标的剖面数据,对声速剖面仪实测数据进行比对,分析声速剖面数据的固定偏差或线性偏差,完成声速剖面数据修正,提高了实测声速剖面数据的应用水平,为大洋专项调查中声速剖面数据的质量控制,提供了一种有效参考方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号