首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Theoretical and experimental studies were conducted to eliminate the re-reflected waves in a wave channel by installing a wavefilter in front of the wavemaker. A thin porous mesh is installed in front of the wavemaker.to serve as a wavefilter. A porous-effect parameter [Chwang, A. T. and Li, W. (1983), A piston-type porous wavemaker theory. J. Engng Math. 17, 301–313], G0 = bω/μL0, is employed to characterize the transmissability of the wavefilter. Theoretical relationships are established between the amplitude of progressive wave and G0, and the distances between the wavefilter, the wavemaker and the test structure. The proper location for the wavefilter to eliminate re-reflected waves can be determined. Several experimental tests were conducted to verify the theory.Both theoretical and experimental studies show that re-reflected waves can be effectively eliminated by placing a wavefilter at a proper position between the wavemaker and the test structure, provided G0 ≤ 1. For G0 > 1 however, the wavefilter would fail.  相似文献   

2.
The elimination of re-reflected waves in a wave channel by installing a porous medium in front of the wavemaker is investigated. The thickness of the porous wall required to eliminate the re-reflected waves is shown to be related to th porosity, friction coefficient, and wave period, as well as to both the positions of the porous medium and the test structure. However, this study indicates that the goal of eliminating re-reflected waves can be achieved by simply varying the thickness of the porous medium according to the wave period, with all the other factors arbitrarily selected.Assuming that the oscillation amplitude of the wavemaker board is constant, the primitive wave amplitude, before reaching the porous medium, becomes smaller as the wave period is increased. In addition, the study found that the required thickness of the porous medium for eliminating the re-reflected wave becomes larger as the wave period is increased. This results in a trend which further reduces the wave amplitude after the wave passes through the porous medium. In consequence, the oscillation amplitude of a wavemaker board has to be adjusted in a larger scale if the wave period is to be increased.  相似文献   

3.
A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.  相似文献   

4.
In this paper, a multi-channel structure was developed to attenuate waves with various wave periods. By ignoring energy losses and the factor of channel width, a simple and straightforward method was used to tackle this problem. The theoretical solution showed that a single reflected channel structure could attenuate waves of a certain wave period, while a multi-channel structure could attenuate waves with various wave periods. If an interval of 0.05<relative water depth<0.15 is concerned, a structure consisting of four reflected channels could provide a transmission coefficient of less than 0.2. Experimental tests were conducted to verify the theoretical solutions. Both theoretical solution and experimental data indicated that waves with various wave periods would be effectively attenuated after passing through the multi-channel structure. Although some factors are neglected in treating this problem, the method is applicable. An allowed transmission coefficient can be provided by a multi-channel structure only if the computed peak value is not larger than that value.  相似文献   

5.
A new coupling model of wave interaction with porous medium is established in which the wave field solver is based on the two dimensional Reynolds Averaged Navier-Stokes (RANS) equations with a closure. Incident waves, which could be linear waves, cnoidal waves or solitary waves, are produced by a piston-type wave maker in the computational domain and the free surface is traced through the Piecewise Linear Interface Construction-Volume of Fluid (PLIC-VOF) method. Nonlinear Forchheimer equations are adopted to calculate the flow field within the porous media. By introducing a velocity–pressure correction equation, the wave field and the porous flow field are highly and efficiently coupled. The two fields are solved simultaneously and no boundary condition is needed at the interface of the internal porous flow and the external wave. The newly developed numerical model is used to simulate wave interaction with porous seabed and the numerical results agree well with the experimental data. The additional numerical tests are also conducted to study the effects of seabed thickness, porosity and permeability coefficient on wave damping and the pore water pressure responses.  相似文献   

6.
The hydrodynamic efficiencies of caisson-type vertical porous seawalls used for protecting coastal areas were calculated in this study. Physical models were developed to compare the wave reflection from vertical plane, semi-porous, and porous seawalls caused by both regular and random waves. Tests were carried out for a wide range of wave heights, wave periods, and different water depths (d=0.165, 0.270 and 0.375 m). The performance regarding the reflected waves from porous and semi-porous seawalls showed improvement when compared with those from the plane seawall. The reflection coefficients of the porous and semi-porous seawalls were calculated as 0.6 and 0.75, respectively, while the coefficient for the fully reflecting plane vertical wall was significantly higher (0.9). It was also observed that the reflection coefficient decreases with increase in wave steepness and relative water depth. In addition, the reduction in the reflection coefficient of porous and semi-porous seawalls, as compared to that of a plane seawall, was observed for both regular and random waves. New equations were also proposed to calculate the reflection coefficient of different types of seawalls with the aid of laboratory experiments. By verifying the developed equations using some other experimental data, it was validated that the equations could be used for practical situations. The results of the present study can be applied to optimize the design of vertical seawalls and for coastal protecting schemes.  相似文献   

7.
Yong Liu  Bin Teng 《Ocean Engineering》2008,35(16):1588-1596
This study examines the hydrodynamic performance of a modified two-layer horizontal-plate breakwater. The breakwater consists of an upper submerged horizontal porous plate and a lower submerged horizontal solid plate. By means of the matched eigenfunction expansion method, a linear analytical solution is developed for the interaction of water waves with the structure. Then the reflection coefficient, the transmission coefficient, the energy-loss coefficient and the wave forces acting on the plates are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a single submerged horizontal solid plate and a single submerged horizontal porous plate. Numerical results show that with a suitable geometrical porosity of the upper plate, the uplift wave forces on both plates can be controlled at a low level. Numerical results also show that the transmission coefficient will be always small if the dimensionless plate length (plate length versus incident wavelength) exceeds a certain moderate value. This is rather significant for practical engineering, as the incident wavelength varies over a wide range in practice. Moreover, it is found that the hydrodynamic performance of the present structure may be further enhanced if the lower plate is also perforated.  相似文献   

8.
The problem of wave propagation and wave damping in a channel with side porous mattresses of arbitrary shape protruding from the walls is studied. The solution was achieved by applying 3-D boundary element method and was employed to study wave field in the channel and to analyze the effect of the geometry of the mattresses and physical and hydraulic properties of porous material on wave damping. The results show that wave damping in the channel strongly depends on wave parameters, especially, on the wave number. Wave reflection and transmission decrease with increasing the wave number. The results also show that the wave field in the channel strongly depends on the geometry of the mattresses as well as on physical and hydraulic properties of porous material used to build these wave dampers. The geometry of the mattresses and physical and hydraulic properties of porous material have a moderate effect on wave reflection and a significant effect on wave transmission. The results show that wave transmission down the channel decreases with increasing the length and thickness of the mattresses. Moreover, wave transmission decreases with increasing the porosity and damping properties of porous media used to build the mattresses. The analysis shows that porous mattresses protruding from the channel walls are very efficient in damping water waves propagating down the channel and may be built in channels to reduce high waves and achieve desired wave conditions. Theoretical results are in reasonable agreement with experimental data.  相似文献   

9.
波浪与大孔隙多孔介质相互作用的耦合数学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了波浪与大孔隙多孔介质相互作用的耦合数学模型,波浪域的控制方程为雷诺时均方程和k-ε紊流模型。对于计算域的入射波采用推板式造波,它可以是线性波、椭圆余弦波和孤立波。采用PLIC-VOF法追踪波浪自由表面。对于多孔介质内的孔隙流场采用非线性Forchheimer方程,两区域共享连续方程,最后导出的波浪域与孔隙流域的压力修正方程具有完全相同的形式,利用这个方程能够同时而不是分别求解波浪场和孔隙流场,避免了在内部边界上给定匹配条件,实现了波浪场与孔隙流场的同步耦合。波浪与粗颗粒海床、平底床面上抛石潜堤及斜坡上抛石潜堤相互作用的验证计算结果表明该模型可用于研究波浪与大孔隙多孔介质相互作用的问题。  相似文献   

10.
可以连续进行波浪测量的仪器被通称为“自记波浪仪”。按其测量讯号的传输方式划分,可分为有线传输型自记波浪仪和无线传输型自记波浪仪两类。 使用无线传输型自记波浪仪进行海上波浪测量,具有便于取得大风天气下的波浪资料、可长时间(几天或几十天)在离岸较远的海上连续进行波浪测量和节省调查费用等优点。笔  相似文献   

11.
Results of laboratory studies of the damping of gravity–capillary waves on a water surface covered with a film of petroleum product (diesel fuel) in a wide range of change in a film thickness are presented. A nonmonotonic dependence (with a local maximum) of a damping coefficient on film thickness is discovered. Numerical calculations of the dispersion equation for gravity–capillary waves in the presence of a viscoelastic film of arbitrary thickness, which confirmed the existence of the maximum of the damping coefficient as a function of film thickness, are performed. Based on a comparison of the calculation results and the data of laboratory measurements of wave characteristics, the values of parameters in the diesel fuel films are estimated in a wide range of a change in their thickness.  相似文献   

12.
Incompressible SPH flow model for wave interactions with porous media   总被引:1,自引:0,他引:1  
The paper presents an Incompressible Smoothed Particle Hydrodynamics (ISPH) method to simulate wave interactions with a porous medium. The SPH method is a mesh free particle modeling approach that is capable of tracking the large deformation of free surfaces in an easy and accurate manner. The ISPH method employs a strict incompressible hydrodynamic formulation to solve the fluid pressure and the numerical solution is obtained by using a two-step semi-implicit scheme. The ISPH flow model solves the unsteady 2D Navier–Stokes (NS) equations for the flows outside the porous media and the NS type model equations for the flows inside the porous media. The presence of porous media is considered by including additional friction forces into the equations. The developed ISPH model is first validated by the solitary and regular waves damping over a porous bed and the solitary wave interacting with a submerged porous breakwater. The convergence of the method and the sensitivity of relevant model parameters are discussed. Then the model is applied to the breaking wave interacting with a breakwater covered with a layer of porous materials. The computational results demonstrate that the ISPH flow model could provide a promising simulation tool in coastal hydrodynamic applications.  相似文献   

13.
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.  相似文献   

14.
The relationship between significant wave height and period, the variability of significant wave period, the spectral peak enhancement factor, and the directional spreading parameter of large deepwater waves around the Korean Peninsula have been investigated using various sources of wave measurement and hindcasting data. For very large waves comparable to design waves, it is recommended to use the average value of the empirical formulas proposed by Shore Protection Manual in 1977 and by Goda in 2003 for the relationship between significant wave height and period. The standard deviation of significant wave periods non-dimensionalized with respect to the mean value for a certain significant wave height varies between 0.04 and 0.21 with a typical value of 0.1 depending upon different regions and different ranges of significant wave heights. The probability density function of the peak enhancement factor is expressed as a lognormal distribution, with its mean value of 2.14, which is somewhat smaller than the value in the North Sea. For relatively large waves, the probability density function of the directional spreading parameter at peak frequency is also expressed as a lognormal distribution.  相似文献   

15.
俞嘉臻  张显涛  李欣 《海洋工程》2022,40(5):98-110
由于沿海区域的限制以及愈加严重的环境污染,渔业养殖正从近海走向深远海。深远海海域的海况更加恶劣,给养殖装备的设计与性能评估带来新的挑战。为解决该问题,对极端波浪与养殖装备网衣结构的相互作用开展研究。基于waves2Foam建立数值波浪水池,极端波浪模拟采用基于NewWave理论的聚焦波模型,网衣结构模拟采用多孔介质模型,并通过与Morison模型计算的网衣受力等效分析,获得多孔介质模拟网衣结构阻力系数的直接估计方法。然后将多孔介质模型嵌入waves2Foam中,开展聚焦波与网衣结构相互作用的数值模拟,同时开展水槽试验,验证数值模拟的准确性。基于数值模拟结果,系统地分析了不同网衣密实度及不同波浪参数下网衣结构的升阻力特性以及网衣结构对波浪场的扰动规律。研究表明:聚焦波波峰幅值和网衣密实度对网衣结构的升阻力影响较大,且升力峰值出现在阻力为0的时刻;网衣结构对聚焦波的时空演化特性有影响,改变了聚焦波波形。  相似文献   

16.
The size and shape of the effective test area are crucial to consider when short-crested waves are created by segmented wavemakers. The range of the effective test area of short-crested waves simulated by two-sided segmented wavemakers is analyzed in this paper. The experimental investigation on the wave field distribution of short-crested waves generated by two-sided segmented wavemakers is conducted by using an array of wave gauges. Wave spectra and directional spreading function are analyzed and the results show that when the main direction is at a certain angle with the normal line of wave generators, the wave field of 3D short-crested waves generated by two-sided segmented wavemakers has good spatial uniformity within the model test area. The effective test area can provide good wave environments for seakeeping model tests of various ocean engineering structures in the deep ocean engineering basin.  相似文献   

17.
基于FLUENT软件建立数值波浪水槽,研究椭圆余弦内波及其对墩柱的作用。椭圆余弦内波的生成采用推板造波方法,自由面捕获采用VOF方法。首先,模拟了椭圆余弦内波的生成,比较了不同周期和波高下椭圆余弦内波的波浪形态。然后,在特定的周期和波高条件下模拟了三维椭圆余弦内波对单个墩柱及多个敦柱的作用;分析了各墩柱上受到的惯性力和粘性力的变化趋势,并对不同墩柱下的总波浪力进行了对比;得出了墩柱上受到的波浪力也呈现周期性变化并且在波浪前进方向上后墩柱的受力小于靠前墩柱的结论。  相似文献   

18.
An array of large concentric porous cylinder arrays is mounted in shallow water exposed to cnoidal waves. The interactions between waves and cylinders are studied theoretically using an eigenfunction expansion approach. Semi-analytical solutions of hydrodynamic loads and wave run-up on each cylinder are obtained using first approximation to cnoidal waves. The square array configuration of four-legged identical concentric porous cylinder is investigated in present study. Numerical results reveal the variation of dimensionless wave force and wave run-up on individual cylinder with angle of incidence, porosity parameter, spacing between outer and inner cylinders, spacing between concentric porous cylinders and wave parameter. Different mechanism of wave force is found under different range of scattering parameter.  相似文献   

19.
In this paper, theoretical study is carried out to investigate the general 3D short-crested wave interaction with a concentric two-cylinder system. The interior cylinder is impermeable and the exterior cylinder is thin in thickness and porous to protect the interior cylinder. Both cylinders are surface-piercing and bottom mounted. Analytical solution is derived based on the linear potential theory. The effects of the wide range wave parameters and structure configuration including porosity of the exterior cylinder and the annular spacing on the wave forces, surface elevations and the diffracted wave contours are examined.  相似文献   

20.
A numerical model is developed by combining a porous flow model and a two-phase flow model to simulate wave transformation in porous structure and hydraulic performances of a composite type low-crest seawall. The structure consists of a wide submerged reef, a porous terrace at the top and an impermeable rear wall. The porous flow model is based on the extended Navier-Stokes equations for wave motion in porous media and kε turbulence equations. The two-phase flow model combines the water domain with the air zone of finite thickness above water surface. A unique solution domain is established by satisfying kinematic boundary condition at the interface of air and water. The free surface advection of water wave is modeled by the volume of fluid method with newly developed fluid advection algorithm. Comparison of computed and measured wave properties shows reasonably good agreement. The influence of terrace width and structure porosity is investigated based on numerical results. It is concluded that there exist optimum value of terrace width and porosity that can maximize hydraulic performances. The velocity distributions inside and in front of the structure are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号