首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we present a theoretical method for the study of the general three-body problem by computer simulation developed in the Leningrad State University Astronomical Observatory (LSU AO). This method permits statistical methods to be used for studying the behaviour of triple systems. This is achieved by selecting a representative sample of initial conditions which then reveal general features of the evolution.The main results of numerical experiments on the three-body problem carried out at the LSU AO during the past 25 years have been summarized in the reviews by Anosova (1985), Anosova and Orlov (1985), and Anosova (1986).Systematic studies of about 3 × 104 triple systems with negative total energy (E < 0) have yielded the following main results. Most (93.4%) of the systems decay; the decay always occurs after a close triple approach of the components. In a system with unequal masses, the escaping body usually has the smallest mass. A small fraction (4.3%) of stable systems is formed if the angular momentum is non-zero. The qualitative evolution in three-dimensional cases is the same as for planar systems. Small changes in initial conditions sometimes lead to substantial differences in the final outcome. The decay of triple systems is a stochastic process similar to radioactive decay. The estimated mean lifetime is equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (107.1 ± 1.8) crossing times for equal-mass components. Thus, for solar mass components and a typical dimension d = 0.01 pc, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (1.6 ± 1.5) × 106 y, and for triple galaxies with M = 101° M 0 and d = 50 kpc, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (1.8 ± 1.7) × 1011 y. The value % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] decreases with increasing mass dispersion.In this article we also carry out a theoretical analysis of the changes of the integrals of motion in the general three-body problem used as the controls on the calculations. The following basic results have been found: (1) analytical functions of the changes of the integrals of motion during the integration time have been obtained; (2) changes in the integrals of the mass-centre of a triple system do not correlate with the cumulative integration errors; (3) the cumulative changes of the integral of energy are proportional to the sum of squares of the cumulative errors in the coordinates and the velocities of the bodies; (4) the cumulative changes of the square of the total angular momentum are proportional to the product of the square of these cumulative errors.The analysis of the accuracy of computer simulations conducted in LSU AO for the 3 × 104 triple systems with E < 0 is summarized by the following basic qualitative results: (1) the unstable triple systems decay after a mean lifetime % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] 100 or % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] 104 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGObaaaaaa!3C6A!\[\overline h \]t where is a crossing time, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGObaaaaaa!3C6A!\[\overline h \], is a mean integration step After this integration time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] the mean cumulative relative changes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamyraaaaaaa!3D10!\[\overline {DE} \] of the integrals of the energy of the triple systems are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamyraaaaaaa!3D10!\[\overline {DE} \] = (0.9±0.1) × 10–4, and the mean cumulative relative changes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamitaaaaaaa!3D17!\[\overline {DL} \] of the area integrals are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamitaaaaaaa!3D17!\[\overline {DL} \] = (1.0±0.1) × 10–6; the mean values of the cumulative errors % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaamiraiaadkhaaaa!3D2C!\[{Dr}\], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamOvaaaaaaa!3D21!\[\overline {Dv} \] in defining the coordinates (r) and velocities (v) of the bodies (during the total integration time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \]) are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamOCaaaaaaa!3D3D!\[\overline {Dr} \] = 0.5 × 10–3 d, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamODaaaaaaa!3D41!\[\overline {Dv} \] = 0.5 × 10–2 v, where d is the unit of distance, and v is the unit of velocity; the mean local integration errors (of one integration step) are equal to r= 5 × 10–8 d, 6v = 5 × 10–7 v; (2) the process of accumulation of integration errors has a complicated character and correlates strongly with the process of dynamical evolution of the triple systems; (a) because of the strong gravitational interplays of the bodies, the process of the accumulation of the integration errors is very intensive; however, the triple systems with these interplays of the bodies have, as a rule, a small escape time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] t, and the cumulative calculation errors are small too; (b) in the stable triple systems the local integration errors are practically constant during the numerical study of their evolution, and the calculations can be carried out (if it is necessary) during the time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (2–3) × 103 without disturbing the periodical motions of the bodies; (3) thus, in the general three-body problem with different initial conditions, it is not necessary to carry out the computer simulations over long times, as most of the triple systems decay and do not have very long lifetimes; (4) the mean level of the cumulative errors Dr and Dv of the definitions of the coordinates and velocities of bodies in the different triple systems is practically equal.  相似文献   

2.
The method which is used to calculate the dynamical flattenings % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaamisaiabg2da9iaacIcacaWGdbGaeyOeI0YaaSaaaeaacaaIXaaa% baGaaGOmaaaacaGGOaGaamyqaiabgUcaRiaadkeacaGGPaGaaiykai% aac+cacaWGdbaaaa!4717!\[H = (C - \frac{1}{2}(A + B))/C\] of the Earth and Moon meets with difficulties when it applies to Mercury and Venus. In this paper, after the calculation of the dimensionless moment of inertiaC/MR 2 by solving the Emden equation, the effectiveness of the method deriving dynamical flattening from the observed value of the Mercury's obliquity is analysed based on the resonance rotation theory. Some suggestions are made for the future space explorations. Finally, the ranges of dynamical flattening and of the obliquity of Venus are calculated.  相似文献   

3.
A reversible dynamical system with two degrees-of-freedom is reduced to a second-order, Hamiltonian system under a change of independent variable. In certain circumstances, the reduced order system may be integrated following an orthogonal curvilinear transformation from Cartesian x,y to intrinsic orbital coordinates , . Solutions for the orbit position and true time variables are expressed by: % MathType!MTEF!2!1!+- % feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 % da9iaadAgacaGGOaGaeqOVdGNaaiilaiabeE7aOjaacMcacaGGSaGa % aeiiaiaadMhacqGH9aqpcaWGNbGaaiikaiabe67a4jaacYcacqaH3o % aAcaGGPaGaaiilaiaabccacaWGKbGaamiDaiabg2da9iabgglaXoaa % dmaabaWaaSaaaeaacaWGibWaa0baaKqaahaacqaH+oaEaeaacaqGYa % aaaOGaam4raiabgUcaRiaadIeadaqhaaqcbaCaaiabeE7aObqaaiaa % ikdaaaGccaWGfbaabaGaaGOmaiaacIcacaWGibGaey4kaSIaamyvai % aacMcaaaaacaGLBbGaayzxaaWaaWbaaSqabKqaGhaacaaIXaGaai4l % aiaaikdaaaGccaWGKbGaeqiXdqhaaa!6498! \[ x = f(\xi ,\eta ),{\rm{ }}y = g(\xi ,\eta ),{\rm{ }}dt = \pm \left[ {\frac{{_\xi ^{\rm{2}} {\ie} + _\eta ^2 }}{{2( + U)}}} \righ \]1446 1040 where U is the potential function, and z is the new independent variable. The functions f, g may be expressed by quadratures when the metric coefficients {\er},{\ie} are specified. Two second-order, partial differential equations specify {\er}, {\ie} and Hamiltonian {\tH}. Auxiliary conditions are needed because the solutions are underdetermined. For example, both sets of curvilinear coordinate lines are orbits when certain dynamical compatibility conditions between U and {\ie} (or {\er}) are satisfied. Alternatively, when orbits cross the parametric curves, the auxiliary condition {\er} = {\ie} specifies a conformal transformation, and the partial differential equation for {\tH} may be reduced to an ordinary differential equation for the orbit curve. In either case, integrability is guaranteed for Lionville dynamical systems. Specific applications are presented to illustrate direct solution for the orbit (e.g., two fixed centers) and inverse solution for the potential.  相似文献   

4.
A general velocity-height relation for both antimatter and ordinary matter meteor is derived. This relation can be expressed as % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaeyOeI0YaaSaaaeaacaWGdbaabaGaamOqaiabew8a1naaBaaa% leaacqGHEisPaeqaaaaakmaacmaabaGaaGymaiabgkHiTiaabwgaca% qG4bGaaeiCamaadmaabaGaeyOeI0YaaSaaaeaacaWGcbaabaGaamyy% aaaacaqGLbGaaeiEaiaabchacaqGOaGaaeylaiaadggacaWG6bGaai% ykaaGaay5waiaaw2faaaGaay5Eaiaaw2haaiaacYcaaaa!64FD!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right] - \frac{C}{{B\upsilon _\infty }}\left\{ {1 - {\text{exp}}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right]} \right\},\]where z is the velocity of the meteoroid at height z, its velocity before entrance into the Earth's atmosphere, is the scale-height, and C parameter proportional to the atom-antiatom annihilation cross- section, which is experimentally unknown. The parameter B (B = DA0/m) is the well known parameter for koinomatter (ordinary matter) meteors, D is the drag factor, 0 is the air density at sea level, A is the cross sectional area of the meteoroid and m its mass.When the annihilation cross-section is zero — in the case of ordinary meteors — the parameter C is also zero and the above derived equation becomes % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHfpqDdaWgaaWcbaGaamOEaaqabaaakeaacqaHfpqDdaWgaaWcbaGa% eyOhIukabeaaaaGccqGH9aqpcaqGLbGaaeiEaiaabchacaqGGaWaam% WaaeaacqGHsisldaWcaaqaaiaadkeaaeaacaWGHbaaaiaabwgacaqG% 4bGaaeiCaiaabIcacaqGTaGaamyyaiaadQhacaGGPaaacaGLBbGaay% zxaaGaaiilaaaa!4CF5!\[\frac{{\upsilon _z }}{{\upsilon _\infty }} = {\text{exp }}\left[ { - \frac{B}{a}{\text{exp( - }}az)} \right],\]which is the well known velocity-height relation for koinomatter meteors.In the case in which the Universe contains antimatter in compact solid structure, the velocity-height relation can be found useful.Work performed mainly at the Nuclear Physics Laboratory of the National University of Athens, Greece.  相似文献   

5.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

6.
A two degree-of-freedom, conservative system is reduced to a single degree-of-freedom, kinematic system with Hamiltonian integral under the change of independent variable: $$dt = \zeta dt (\zeta = \upsilon _x - \upsilon _y )$$ where ζ is the curl (or vorticity) of the velocity field with cartesian inertial componentsu(x, y, t) andv(x, y, t). In the autonomous case whenu t=v t=0, orbits are globally represented by the level curves of an autonomous Hamiltonian functionH(x,y) satisfying a second-order quasilinear partial differential equation (Szebehely's Equation): $$2(H + U)\left( {H_{xx} H_y^2 - 2H_{xy} H_x H_y + H_{yy} H_x^2 } \right) + (H_x U_x + H_y U_y )\left( {H_x^2 + H_y^2 } \right) = 0$$ whereU(x, y) is the autonomous potential function. An inversion of dependent and independent variables reduces this equation to a second-order, ordinary differential equation for a function specifying the orbital curve. The true time variable is recovered by evaluating a quadrature. Fundamental differences exist between this approach and Hamilton-Jacobi theory.  相似文献   

7.
Conditions are found which are satisfied by the coefficients of the expression being a second integral of the motion of an autonomous dynamical system with two degrees of freedom. The coefficientsA, B. , ,E are differentiable functions of the cartesian position coordinatesx, y. The velocity components are denoted by . It is shown that must be constant andB must be of the formB =f(x+y) +g(x-y) wheref, g are arbitrary.Given andB one can always find the remaining coefficientsA, E and also the corresponding potential and second integral. Depending on the specifica case at hand a certain number of arbitrary constants (or arbitrary functions) enter into the potential and the second integral. To each potential (which may be of the separable or nonseparable type in the coordinatesx andy)there corresponds one integral of the above form.  相似文献   

8.
9.
We study some simple periodic orbits and their bifurcations in the Hamiltonian . We give the forms of the orbits, the characteristics of the main families, and some existence diagrams and stability diagrams. The existence diagram of the family 1a contains regions that are stable (S), simply unstable (U), doubly unstable (DU) and complex unstable (). In the regionsS andU there are lines of equal rotation numberm/n. Along these lines we have bifurcations of families of periodic orbits of multiplicityn. When these lines reach the boundary of the complex unstable region, they are tangent to it. Inside the region there are linesm/n, along which the orbits 1a, describedn-times, are doubly unstable; however, along these lines there are no bifurcations ofn-ple periodic orbits. The families bifurcating from 1a exist only in certain regions of the parameter space (, ). The limiting lines of these regions join at particular points representing collisions of bifurcations. These collisions of bifurcations produce a nonuniqueness of the various families of periodic orbits. The complicated structure of the various bifurcations can be understood by constructing appropriate stability diagrams.  相似文献   

10.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   

11.
Szebehely's partial differential equation for the force functionU=U(x,y) which gives rise to a given family of planar orbitsf(x,y)=Constant is generalized to account for velocity-dependent potentials V*=V*(x,y, ). The new partial differential equation is quasi-linear and of the first order. An example is given and a comparison is made of the two equations.  相似文献   

12.
This paper continues the mathematical study of spin/orbit coupling which was begun in earlier articles by the second author. The equation studied is whereP andT are periodic int and the angle . No specific form forP andT is assumed but only the conditions necessary to analyze the system near resonance or a ground state. The behavior of an averaged system of these equations is shown to be reflected qualitatively in the actual equations by rigorous mathematical methods.This research was partially supported by NSF Grant MCS 79-01080.  相似文献   

13.
The mean values % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdacqaHapaCaaWaa8qCaeaacaGG% OaacbaGaa8NKbiabgkHiTiaadYgacaGGPaGaa8hiaiGacogacaGGVb% Gaai4Caiaa-bcacaWGRbGaa8NKbiaa-bcacaWGKbGaamiBaaWcbaGa% aGimaaqaaiaaikdacqaHapaCa0Gaey4kIipakiaa-bcacaqGHbGaae% OBaiaabsgacaWFGaWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWbaa% daWdXbqaaiaacIcacaWFsgGaeyOeI0IaamiBaiaacMcacaWFGaGaci% 4CaiaacMgacaGGUbGaa8hiaiaadUgacaWFsgGaa8hiaiaadsgacaWG% SbaaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aaaa!6BC2!\[\frac{1}{{2\pi }}\int\limits_0^{2\pi } {(f - l) \cos kf dl} {\rm{and}} \frac{1}{{2\pi }}\int\limits_0^{2\pi } {(f - l) \sin kf dl}\] (where f and l are respectively the true anomaly and the mean anomaly in the elliptic motion and k is an integer) are given in closed form.  相似文献   

14.
For a given family of orbits f(x,y) = c * which can be traced by a material point of unit in an inertial frame it is known that all potentials V(x,y) giving rise to this family satisfy a homogeneous, linear in V(x,y), second order partial differential equation (Bozis,1984). The present paper offers an analogous equation in a synodic system Oxy, rotating with angular velocity . The new equation, which relates the synodic potential function (x,y), = –V(x, y) + % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaaaa!3780!\[\tfrac{1}{2}\]2(x 2 + y 2) to the given family f(x,y) = c *, is again of the second order in (x,y) but nonlinear.As an application, some simple compatible pairs of functions (x,y) and f(x, y) are found, for appropriate values of , by adequately determining coefficients both in and f.  相似文献   

15.
Stabiliity is applied to characterize type of motion in which the moving body is confined to certain limited regions and in this sense we may say that the motion of the body in question is stable. This method has been used in the past chiefly in connection with the classical restricted problem of three bodies.In this paper we consider a dynamical system defined by the Lagrangian
  相似文献   

16.
A well-known simple model of spin/orbit coupling leads to the equation periodic int and the angle . A mathematical study of this equation is carried out emphasizing the near-resonance behavior and the mechanism of resonance capture; the results are complementary to the author's previous global study showing how to locate the active responances. It is shown that the capture process is to a surprizing degree independent of the functional form off, making some of the detailed hypotheses of previous studies unnecessary.  相似文献   

17.
The McGehee's study of the triple collision of the 3-body problem is here applied for the stability of an equilibrium. Let us consider the homogeneous Lagrangian: $$L = \frac{{\dot x^2 + \dot y^2 }}{2} + U(x,y)$$ whereU is polynomial, with degreek. We establish a necessary and sufficient condition onU for the stability of \(\omega (x = y = \dot x = \dot y = 0)\) .  相似文献   

18.
In this article, we review the construction of Hamiltonian perturbation theories with emphasis on Hori's theory and its extension to the case of dynamical systems with several degrees of freedom and one resonant critical angle. The essential modification is the comparison of the series terms according to the degree of homogeneity in both % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacq% aH1oqzaSqabaaaaa!3699!\[\sqrt \varepsilon \]and a parameter which measures the distance from the exact resonance, instead of just % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaOaaaeaacq% aH1oqzaSqabaaaaa!3699!\[\sqrt \varepsilon \].  相似文献   

19.
To emphasize the rotational effects of a simple friction between colliding bodies in a keplerian field we investigate numerically the evolution of the rotational energies in a three dimensional system of spherical particles interacting through inelastic collisions in a deterministic model. All the particles are made of the same material but they possibly have different sizes. Each collision reduces the relative surface velocity and there are exchanges between orbital energy and rotational energy. Our results are compared with some previous papers and our aim is to supply other probabilists models with simple basic references about mean dynamical properties.The rotational energy of the colliding bodies tends to reach an equilibrium state that depends only on the rate of energy loss in the collision process. Internal rotations prevent the complete flattening of the system. With this model, light and small particles spin faster than the massive and big ones. We observe an excess of prograde rotations on counterclockwise orbits. The ratio of rotational and orbital energies is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa% aaleaacaWGYbaabeaakiaac+cacaWGfbWaaSbaaSqaaiaadUgaaeqa% aOGaeyisISRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaa% aaaa!3F83!\[E_r /E_k \approx 10^{ - 3} \] while the ratio of corresponding mean angular velocities is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaaWaaeaacq% aHjpWDaiaawMYicaGLQmcacaGGVaWaaaWaaeaacqGHPoWvaiaawMYi% caGLQmcacqGHijYUcaaIYaaaaa!4008!\[\left\langle \omega \right\rangle /\left\langle \Omega \right\rangle \approx 2\] These values depends strongly on the dimensional scale of the model.  相似文献   

20.
The author's previous studies concerning the Ideal Resonance Problem are enlarged upon in this article. The one-degree-of-freedom Hamiltonian system investigated here has the form $$\begin{array}{*{20}c} { - F = B(x) + 2\mu ^2 A(x)\sin ^2 y + \mu ^2 f(x,y),} \\ {\dot x = - F_y ,\dot y = F_x .} \\ \end{array}$$ The canonically conjugate variablesx andy are respectively the momentum and the coordinate, andμ 2 is a small positive constant parameter. The perturbationf is o (A) and is represented by a Fourier series iny. The vanishing of ?B/?xB (1) atx=x 0 characterizes the resonant nature of the problem. With a suitable choice of variables, it is shown how a formal solution to this perturbed form of the Ideal Resonance Problem can be constructed, using the method of ‘parallel’ perturbations. Explicit formulae forx andy are obtained, as functions of time, which include the complete first-order contributions from the perturbing functionf. The solution is restricted to the region of deep resonance, but those motions in the neighbourhood of the separatrix are excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号