首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diversity in landscapes at the Earth’s surface is the result, amongst other things, of the balance (or imbalance) between soil production and erosion. While erosion rates are well constrained, it is only recently that we have been able to quantify rates of soil production. Uranium-series isotopes have been useful to provide such estimates independently of erosion rates. In this study, new U-series isotope are presented data from weathering profiles developed over andesitic parent rock in Puerto Rico, and granitic bedrock in southeastern Australia. The site in Australia is located on a highland plateau, neighbouring a retreating escarpment where soil production rates between 10 and 50 mm/kyr have been determined. The results show that production rates are invariant in these two regions of Australia with values between 15 and 25 mm/kyr for the new site. Andesitic soils show much faster rates, about 200 mm/kyr. Overall, soil production rates determined with U-series isotopes range between 10 and 200 mm/kyr. This is comparable to erosion rates in soil-mantled landscapes, but faster than erosion in cratonic areas and slower than in alpine regions and cultivated areas. This suggests that soil-mantled landscapes maintain soil because they can: there is a balance between production and erosion. Similarly, thick weathering profiles develop in cratonic areas because, despite slow erosion rates, soil production is still significant. Bare landscapes in Alpine regions are probably the result of the inability of soil production to catch up with fast erosion rates, although this needs testing by U-series isotope studies of these regions. Finally, the range of production rates is up to several orders of magnitude lower than erosion rates in cultivated areas, demonstrating quantitatively the fast depletion of soil resources with common agricultural practices.  相似文献   

2.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

3.
Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 °C) and precipitation (>50 cm a?1), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent positions. The relative differences in depth between convergent and divergent landscape positions was greatest at the low and high elevation sites and is hypothesized to be a product of changes in physical erosion rates across the gradient. Quartz/Plagioclase (Q/P) ratios were used as a general proxy for bulk regolith chemical denudation. Q/P was generally higher in divergent landscape positions compared to the adjacent convergent hollows. Convergent landscape positions appear to be collecting solute-rich soil–waters from divergent positions thereby inhibiting chemical denudation. Clay mineral assemblage of the low elevation sites was dominated by smectite and partially dehydrated halloysite whereas vermiculite and kaolinite were predominant in the high elevation sites. The increased depth to paralithic contact, chemical denudation and mineral transformation are likely functions of greater water availability and increased primary productivity. Landscape position within a given ecosystem exerts strong control on chemical denudation as a result of the redistribution of water and solutes across the landscape surface. The combined data from this research demonstrates a strong interactive control of climate, landscape position and erosion on the development of soil and regolith.  相似文献   

4.
《Earth》2009,95(1-4):23-38
Erosion is a major threat to soil resources in Europe, and may impair their ability to deliver a range of ecosystem goods and services. This is reflected by the European Commission's Thematic Strategy for Soil Protection, which recommends an indicator-based approach for monitoring soil erosion. Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Therefore, accurate spatial data on both soil loss and soil genesis are required, especially in the light of predicted changes in climate patterns, notably frequency, seasonal distribution and intensity of precipitation. Rates of soil loss are reported that have been measured, modelled or inferred for most types of soil erosion in a variety of landscapes, by studies across the spectrum of the Earth sciences. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition. This paper reviews the concept of tolerable soil erosion and summarises current knowledge on rates of soil formation, which are then compared to rates of soil erosion by known erosion types, for assessment of soil erosion monitoring at the European scale.A modified definition of tolerable soil erosion is proposed as ‘any actual soil erosion rate at which a deterioration or loss of one or more soil functions does not occur,’ actual soil erosion being ‘the total amount of soil lost by all recognised erosion types.’ Even when including dust deposition in soil formation rates, the upper limit of tolerable soil erosion, as equal to soil formation, is ca. 1.4 t ha 1 yr 1 while the lower limit is ca. 0.3 t ha 1 yr 1, for conditions prevalent in Europe. Scope for spatio-temporal differentiation of tolerable soil erosion rates below this upper limit is suggested by considering (components of) relevant soil functions. Reported rates of actual soil erosion vary much more than those for soil formation. Actual soil erosion rates for tilled, arable land in Europe are, on average, 3 to 40 times greater than the upper limit of tolerable soil erosion, accepting substantial spatio-temporal variation. This paper comprehensively reviews tolerable and actual soil erosion in Europe and highlights the scientific areas where more research is needed for successful implementation of an effective European soil monitoring system.  相似文献   

5.
《Quaternary Research》2014,81(3):538-544
Measurements of 137Cs concentration in soils were made in a representative catchment to quantify erosion rates and identify the main factors involved in the erosion in the source region of the Yellow River in the Tibetan Plateau. In order to estimate erosion rates in terms of the main factors affecting soil loss, samples were collected taking into account the slope and vegetation cover along six selected transects within the Dari County catchment. The reference inventory for the area was established at a stable, well-preserved, site of small thickness (value of 2324 Bq·m 2). All the sampling sites had been eroded and 137Cs inventories varied widely in the topsoil (14.87–25.56 Bq·kg 1). The effective soil loss values were also highly variable (11.03–28.35 t·km 1·yr 1) in line with the vegetation cover change. The radiometric approach was useful in quantifying soil erosion rates and examining patterns of soil movement.  相似文献   

6.
《Quaternary Science Reviews》2003,22(2-4):225-244
The Thebes Section in unglaciated southwestern Illinois contains a well preserved ∼500 kyr loess–paleosol sequence with four loesses and three interglacial soils. Various magnetic, mineralogical, and elemental properties were analyzed and compared over the thickness of soil sola. These proxies for soil development intensity have the following trend: Yarmouth Geosol>Sangamon Geosol>modern soil. Quartz/plagioclase, Zr/Sr, and TiO2/Na2O ratios were most sensitive to weathering. Frequency dependent magnetic susceptibility and anhysteretic remanent magnetization, greatest in A horizons, also correspond well with soil development intensity. Neoformed mixed-layered kaolinite/expandables, suggestive of a warm/humid climate, were detected in the Sangamon and Yarmouth soil sola. Clay illuviation in soils was among the least sensitive indicators of soil development. Differences in properties among interglacial soils are interpreted to primarily reflect soil development duration, with climatic effects being secondary. Assuming logarithmic decreases in weathering rates, the observed weathering in the Sangamon Geosol is consistent with 50 kyr of interglacial weathering (Oxygen Isotope Stage 5) compared to 10 kyr for the modern soil (Oxygen Isotope Stage 1). We propose that the Yarmouth Geosol in the central Midwest formed over 180 kyr of interglacial weathering (including oxygen isotope stages 7, 9, and 11).  相似文献   

7.
The 9.5 km2 Illgraben catchment, located in the Rhône valley in the Central Alps of Switzerland, is one of the most active debris flow torrents in the Alps. In this paper we present sediment yield data collected in 2006 for segments where hillslopes and channels form a fully connected network and contrast these with sediment yields measured for disconnected hillslopes. The data reveal that sediment yields are 1–2 orders of magnitude larger in segments where hillslopes are connected with the channel network than on disconnected hillslopes. Support for this conclusion is provided by observations made on 1959, 1999 and 2004 aerial photographs that the vegetation cover in the disconnected segments is still intact, whereas denudation rates of several centimeters per year in the connected segments have inhibited the establishment of a stable vegetation cover. Furthermore, sediment supplied from hillslopes during the past 40 years has temporarily accumulated along the Illgraben channel, indicating that the channel aggraded over this period and has not yet recovered. An implication of this observation is that initiation of debris flows in the Illgraben catchment is limited more by the availability of intense rainfall than sediment. In contrast, on disconnected hillslopes, sediment flux does not appear to be driven by precipitation.The petrographic composition of the Illgraben fan deposits indicates two distinct sediment sources, one related to rockfall and the other to landslides and debris flows. The presence of clasts from both sources implies multiple processes of erosion, deposition, mixing and re-entrainment in the catchment before the material is exported to the Illgraben fan and to the Rhône River. In addition, delivery of large amounts of coarse-grained sediment to the Rhône causes a modification of the flow pattern from meandering or anastomosing upstream to braided downstream. Hence, the direct connectivity between hillslope and channelized processes in the Illgraben catchment causes not only rapid topographic modifications in the catchment, but also morphologic adjustment in the Rhône valley downstream.  相似文献   

8.
《Earth》2007,80(1-2):75-109
The soil's resistance to concentrated flow erosion is an important factor for predicting rill and (ephemeral) gully erosion rates. While it is often treated as a calibration parameter in process-based soil erosion models, global change studies require the estimation of erosion resistance from measurable soil properties. Several laboratory and field experiments have been conducted to determine the erosion resistance of various types of soils, but no attempts have been made hitherto to summarize all these data and to explore them for general trends. In this study, all available data on the resistance of topsoils to concentrated flow erosion in terms of channel erodibility (Kc) and critical shear stress (τcr) has been collected together with all soil and environmental properties reported in literature to affect the soil erosion resistance. Reported Kc values for cropland topsoils range between 0.002 10 3 s m 1 and 250 10 3 s m 1 (n = 470), whereas τcr values range between 0 and 15 Pa (n = 522). It is demonstrated that so far, the heterogeneity of measurement methods, the lack of standardized definitions and the shortcomings of the flow shear stress model hamper the comparability of soil erosion resistance values from different datasets. Nevertheless, combining Kc and τcr data from different datasets, a general soil erosion resistance ranking for different soil textures can be proposed. The compiled dataset also reveals that tillage practices clearly affect Kc (Kc for conventional tillage > Kc for reduced tillage > Kc for no tillage) but not τcr.It was concluded that Kc and τcr are not related to each other and that soil and macro-environmental properties affecting the foremost do not necessarily affect the latter as well and vise versa. Often Kc seems to be a more appropriate parameter than τcr to represent the differences in soil erosion resistance under various soil and environmental conditions (e.g. bulk density, moisture content, consolidation, tillage). The two parameters represent different quantities and are therefore both needed to characterize the soil's resistance to concentrated flow erosion.  相似文献   

9.
Denudation rates from cosmogenic 10Be measured in quartz from recent river sediment have previously been used in the Central Alps to argue that rock uplift occurs through isostatic response to erosion in the absence of ongoing convergence. We present new basin-averaged denudation rates from large rivers in the Eastern and Southern European Alps together with a detailed topographic analysis in order to infer the forces driving erosion. Denudation rates in the Eastern and Southern Alps of 170–1,400 mm ky−1 are within a similar range to those in the Central Alps for similar lithologies. However, these denudation rates vary considerably with lithology, and their variability generally increases with steeper landscapes, where correlations with topographic metrics also become poorer. Tertiary igneous rocks are associated with steep hillslopes and channels and low denudation rates, whereas pre-Alpine gneisses usually exhibit steep hillslopes and higher denudation rates. Molasse, flysch, and schists display lower mean basin slopes and channel gradients, and, despite their high erodibility, low erosion rates. Exceptionally low denudation rates are also measured in Permian rhyolite, which has high mean basin slopes. We invoke geomorphic inheritance as a major factor controlling erosion, such that large erosive glaciers in the late Quaternary cold periods were more effective in priming landscapes in the Central Alps for erosion than in the interior Eastern Alps. However, the difference in tectonic evolution of the Eastern and Central Alps potentially adds to differences in their geomorphic response; their deep structures differ significantly and, unlike the Central Alps, the Eastern Alps are affected by ongoing tectonic influx due to the slow motion and rotation of Adria. The result is a complex pattern of high mountain erosion in the Eastern Alps, which has evolved from one confined to the narrow belt of the Tauern Window in late Tertiary time to one affecting the entire underthrust basement, orogenic lid, and parts of the Southern Alps today.  相似文献   

10.
Glaciers erode bedrock but are also efficient conveyors of debris supplied during a cycle of glaciation by processes other than basal erosion. In this dual capacity as both an eroding and a transporting agent lies the ambiguity of ‘glacial erosion’ as a geomorphic process, with implications for methods of measuring the removal of rock mass by glaciers in the geological past, and for interpreting what exactly the consequences have been on topography and elevation change. A global review of ~400 Quaternary glacial denudation rates estimated from five different measurement techniques provides values ranging between 10?4 and 10 mm yr?1. We investigate the causes of such wide variability by examining the respective influences of environmental setting and methodological bias. A reference frame chosen for assessing these issues is the Massif du Carlit (Pyrenees, France), where a quantified mass balance of the well preserved glacial, periglacial and paraglacial deposits was made possible by detailed geomorphological mapping and terrestrial cosmogenic nuclide dating of extant erosional and depositional landform sequences. Resulting age brackets helped to define three main episodes of ice-cap growth and decline, each characterized by a volume of debris and a mappable source area. Erosion rates were expressed in two ways: (i) as spatially averaged denudation rates (D) during the successive stages of glacial advance to the line of maximum ice extent (MIE), post-MIE ice recession, and Lateglacial cirque readvance, respectively; and (ii) as cirque-wall recession rates (R) where moraine facies criteria indicated a supraglacial provenance of debris. Results indicate low erosion (D  0.05 mm yr?1) during the ice advance phase, probably because of thin or passive ice covering the low-gradient subglacial topography that occurs just above the late Pleistocene equilibrium line altitude (2.2–2.4 km). Erosion rates peaked (D  0.6 mm yr?1 and R  2.4–4.5 mm yr?1) during the main transition to ice-free conditions, when deglacial debuttressing promoted the rapid response of freshly exposed slope systems to new equilibrium conditions in the steep crest zone. Lateglacial D- and R-values declined to 0.2–0.3 mm yr?1, with indications of spatially variable R controlled by lithology. In this environment glaciers overall behaved more as conveyors of debris supplied by supraglacial rock exposures in the mountain crest zone than as powerful modifiers of subglacial topography. This explains the widespread preservation of deep, in situ preglacial weathering profiles on relict Cenozoic land surfaces in the deglacierized part of the Eastern Pyrenees. When plotted on the global data set analyzed and discussed in the review, the East Pyrenean erosion rates stand out as being amongst the lowest on record.  相似文献   

11.
Quantifying long-term rates of chemical weathering and physical erosion is important for understanding the long-term evolution of soils, landscapes, and Earth's climate. Here we describe how long-term chemical weathering rates can be measured for actively eroding landscapes using cosmogenic nuclides together with a geochemical mass balance of weathered soil and parent rock. We tested this approach in the Rio Icacos watershed, Puerto Rico, where independent studies have estimated weathering rates over both short and long timescales. Results from the cosmogenic/mass balance method are consistent with three independent sets of weathering rate estimates, thus confirming that this approach yields realistic measurements of long-term weathering rates. This approach can separately quantify weathering rates from saprolite and from overlying soil as components of the total. At Rio Icacos, nearly 50% of Si weathering occurs as rock is converted to saprolite; in contrast, nearly 100% of Al weathering occurs in the soil. Physical erosion rates are measured as part of our mass balance approach, making it particularly useful for studying interrelationships between chemical weathering and physical erosion. Our data show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. One can normalize for variations in physical erosion rates using the “chemical depletion fraction,” which measures the fraction of total denudation that is accounted for by chemical weathering. This measure of chemical weathering intensity increases with increasing average temperature and precipitation in data from climatically diverse granitic sites, including tropical Rio Icacos and six temperate sites in the Sierra Nevada, California. Hence, across a wide range of climate regimes, analysis of chemical depletion fractions appears to effectively account for site-to-site differences in physical erosion rates, which would otherwise obscure climatic effects on chemical weathering rates. Our results show that by quantifying rates of physical erosion and chemical weathering together, our mass balance approach can be used to determine the relative importance of climatic and nonclimatic factors in regulating long-term chemical weathering rates.  相似文献   

12.
The interactions of organic matter and minerals contribute to the capacity of soils to store C. Such interactions may be controlled by the processes that determine the availability of organic matter and minerals, and their physical contacts. One of these processes is bioturbation, and earthworms are the best known organisms that physically mix soils. Earthworms are not native species to areas previously glaciated, and the introduction of earthworms to these regions has been associated with often dramatic changes in soil structure and geochemical cycles. The authors are studying C mineral interaction along an approximately 200 m long earthworm invasion transect in a hardwood forest in northern Minnesota. This transect extends from the soils where earthworms are absent to soils that have been invaded by earthworms for nearly 30–40 years. Pre-invaded soils have an approximately 5 cm thick litter layer, thin (~5 cm) A horizon, silt rich E horizon, and clay-rich Bt horizons. The A and E horizons formed from aeolian deposits, while the clay-rich Bt horizons probably developed from underlying glacial till. With the advent of earthworm invasion, the litter layer disappears and the A horizons thicken at the expense of the O and E horizons. In addition, organic C contents in the A horizons significantly increase with the arrival of earthworms. Simultaneously, measured mineral specific surface areas suggest that minerals’ capacities to complex the organic matter appear to be greater in soils with active earthworm populations. Based on the data from two end member soils along the transect, mineral specific surface areas in the A and E horizons are larger in the earthworm invaded soil than in the pre-invasion soil. Additionally, within < 5 a of earthworm invasions, A horizon materials are turned from single grain to a strong medium granular structure. While A horizon organic matter content and organic C-mineral complexation increase after earthworm invasion, they are also more vigorously mixed. This growing data set, when ultimately combined with ongoing measurements of (1) the population dynamics of earthworms along the invasion transect, (2) C-mineral association (via surface adsorption and physical collusion in mineral aggregates) and (3) dissolved organic C will show how and how much soil capacity to store C is affected by burrowing organisms, which are often the keystone species of given ecosystems.  相似文献   

13.
This study seeks to quantify the rate and timing of regolith generation in the Critical Zone at the Susquehanna Shale Hills Critical Zone Observatory (SSHO). Meteoric 10Be depth profiles were determined using measurements from 30 hillslope soil and bedrock core samples in an effort to constrain 10Be inventories. The SSHO is located in the temperate climate zone of central Pennsylvania and comprises a first-order watershed developed entirely on a Fe-rich, organic-poor, Silurian-aged shale. Two major perturbations to the landscape have occurred at SSHO in the geologically recent past, including significant and sustained periglacial activity until after the retreat of the Laurentide ice sheet (~21 ka) and deforestation during early colonial land-use. Bulk soil samples (n = 16) were collected at three locations along a planar hillslope on the southern ridge of the catchment, representing the ridge top, mid-slope and valley floor. Rock chip samples (n = 14) were also collected from a 24 m deep core drilled into the northern ridge top. All meteoric 10Be concentration profiles show a declining trend with depth, with most of the 10Be retained in the uppermost decimeters of the soil. Meteoric 10Be inventories are higher at the mid-slope and valley floor sample sites, at 3.71 ± 0.02 × 1010 at/cm2 and 3.69 ± 0.02 × 1010 at/cm2, than at the ridge top site (1.90 ± 0.01 × 1010 at/cm2). The 10Be inventory at the convex ridge top site implies a minimum residence time of ~10.6 ka, or if erosion is steady, an erosion rate of 19.4 ± 0.2 m/My.  相似文献   

14.
The Sr–Nd–Hf isotopic compositions of both saprolites and parent rocks of a profile of intensively weathered Neogene basalt in Hainan, South China are reported in this paper to investigate changes of isotopic systematics with high masses. The results indicate that all these isotopic systematics show significant changes in saprolites compared to those in corresponding parent rocks. The 87Sr/86Sr system was more seriously affected by weathering processes than other isotope systems, with εSr drifts 30 to 70 away from those of the parent rocks. In the upper profile (> 2.2 m), the Sr isotopes of the saprolites show an upward increasing trend with εSr changing from ~ 50 at 2.2 m to ~ 70 at 0.5 m, accompanying a upward increasing of Sr concentrations, from ~ 10 μg/g to ~ 25 μg/g. As nearly all the Sr of the parent rock has been removed during intensive weathering in this profile, the upward increasing of Sr concentrations in the upper profile suggests import of extraneous Sr. Rainwater in this region, which enriches in Sr (up to 139 μg/L) from seawater, may be the important extraneous source. Thus, the Sr isotopes of the saprolites in the upper profile may be mainly influenced by import of extraneous materials, and the Sr isotopic characteristics may not be retained. In contrast, the εNd and εHf of the saprolites drift only 0–2.6 and 0–3.7 away from the parent rocks, respectively. The negative drifts of the εNd and εHf are coupled with Nd and Hf losses in the saprolites; i.e., larger proportions of Nd and Hf loss correspond to lower εNd and εHf. Compared with the relative high Nd and Hf concentrations of the saprolites, the contributions of extraneous Nd and Hf both from wet and dry deposits of aeolian input are negligible. Thus, the εNd and εHf changes in the profile are mainly resulted from consecutive removal of the Nd and Hf. Calculation indicates that the 143Nd/144Nd and 176Hf/177Hf ratios in saprolites are all significantly lower than their initial values in the parent rock. Simply removing part of the Nd and Hf by incongruent decomposing some of the minerals may not account for this. Fractionation should be happen, which 143Nd and 176Hf may be preferentially removed from the profile relative to 144Nd and 177Hf during intensive chemical weathering, resulting in lower 143Nd/144Nd and 176Hf/177Hf ratios in saprolites relative to the parent rock, even though details for this process is not known. A positive correlation is observed between the εNd and εHf of the saprolites. Interestingly, the saprolites with a net loss of Nd and Hf in the upper profile show good positive correlation, and the regression line parallels the terrestrial array. By contrast, saprolites with a net gain of Nd and Hf in the lower profile generally show higher εHf values at a given εNd value, and the regression line between these εNd and εHf appears to parallel the seawater array. This supports the hypothesis that the contribution of continental Hf from chemical weathering release is the key to the obliquity of the seawater array away from the terrestrial array of the global εNd and εHf correlation. Our results also indicate that caution is needed when using εSr, εNd, and εHf to trace provenances for sediments and soils.  相似文献   

15.
Low-temperature thermochronological data from two profiles across central Madagascar give apatite fission track and apatite (U–Th)/He ages ranging between 258 Ma and 176 Ma and from 239 Ma to 48 Ma, respectively. Thermal models derived from these data, as well as modelling of basement denudation and the sedimentary record, indicate that first order topography of central Madagascar developed mainly due to flexural uplift during Mesozoic times. This was in response to successive erosion and depositional loading associated with the sedimentation in the Morondava and Majunga basins, both of which are now exposed along the western margin of Madagascar. Our data suggest that the eastern margin of the island had a similar denudation history and was probably at a similar topographic level before the late Cretaceous break-up of Madagascar and the India/Seychelles block. Cretaceous normal faulting, without major amounts of denudation, led to the development of the present east coast topography defined by a tectonically juvenile escarpment. In the centre of the island Cenozoic tectonics and volcanism has had a minor and localised influence on the landscape of central Madagascar.  相似文献   

16.
We conducted a modified Bureau Commun Reference (BCR) sequential extraction on a basaltic soil (phono-tephrite) from Mt. Meru in Northern Tanzania in order to determine the relative contribution of water soluble, carbonate and exchangeable, oxide and organic fractions to the bulk composition of the soil. Elemental compositions were determined by ICP-MS and corrected for loss on ignition. Relatively immobile elements, such as Zr, Hf and Al, are enriched by 10–30% compared to the unweathered protolith, consistent with soil formation being accompanied by mass loss due to chemical weathering. However, superimposed on this mass loss appears to be enrichment of elements such as Fe, Ca and Mg, especially towards the surface. In some cases, the bulk concentrations of these elements at the surface exceed that of the protolith. These data suggest that the surface of the Meru soil columns may have experienced “re-fertilization” by the deposition of volcanic ash. From the carbonate and exchangeable extraction, we found evidence of clay rich horizons which may sequester as much as 5% of the bulk K. The concentration of calcium carbonate appears to decrease with depth, but the largest incorporation of Sr and Ba into carbonates occurs below 114 cm. Fe and Mn oxides scavenge more than 10–20% of total Ti, V, Co, Cu, Zr and Pb below 114 cm. The organic fraction sequestered significant fractions of total Al, Cu, REE’s and Pb throughout the soil column.  相似文献   

17.
Understanding the evolution of geochemical and geomorphic systems requires measurements of long-term rates of physical erosion and chemical weathering. Erosion and weathering rates have traditionally been estimated from measurements of sediment and solute fluxes in streams. However, modern sediment and solute fluxes are often decoupled from long-term rates of erosion and weathering, due to storage or re-mobilization of sediment and solutes upstream from the sampling point. Recently, cosmogenic nuclides such as 10Be and 26Al have become important new tools for measuring long-term rates of physical erosion and chemical weathering. Cosmogenic nuclides can be used to infer the total denudation flux (the sum of the rates of physical erosion and chemical weathering) in actively eroding terrain. Here we review recent work showing how this total denudation flux can be partitioned into its physical and chemical components, using the enrichment of insoluble tracers (such as Zr) in regolith relative to parent rock. By combining cosmogenic nuclide measurements with the bulk elemental composition of rock and soil, geochemists can measure rates of physical erosion and chemical weathering over 1000- to 10,000-year time scales.  相似文献   

18.
Activity and stability phases as well as geomorphic processes within the Critical Zone are well known. Erosion and deposition of sediments represent activity; soils represent geomorphic stability phases. Data are presented from a 4 m deep sediment section that was dated by luminescence techniques. Upslope erosion and resulting sedimentation started in the late Pleistocene around 18 ka until 12 ka. Conditions at the study site then changed, which led to the formation of a well-developed soil. Radiocarbon dating of the organic matter yielded ages between 8552 and 8995 cal. BP. From roughly 6.2 to 5.4 ka another activity phase accompanied by according sediment deposition buried the soil and a new soil, a Cambisol, was formed at the surface. The buried soil is a strongly developed Luvisol. The black colors in the upper part of the buried soil are not the result of pedogenic accumulation of normal organic matter within an A-horizon. Nuclear magnetic resonance spectroscopy clearly documents the high amount of aromatic components (charcoal), which is responsible for the dark color. This indicates severe burning events at the site and the smaller charcoal dust (black carbon) was transported to deeper parts of the profile during the process of clay translocation.  相似文献   

19.
Located in the uplands of the Valley and Ridge physiographic province of Pennsylvania, the Susquehanna/Shale Hills Critical Zone Observatory (SSHO) is a tectonically quiescent, first-order catchment developed on shales of the Silurian Rose Hill Formation. We used soil cores augered at the highest point of the watershed and along a subsurface water flowline on a planar hillslope to investigate mineral transformations and physical/chemical weathering fluxes. About 25 m of bedrock was also drilled to estimate parent composition. Depletion of carbonate at tens of meters of depth in bedrock may delineate a deep carbonate-weathering front. Overlying this, extending from ∼6 m below the bedrock-soil interface up into the soil, is the feldspar dissolution front. In the soils, depletion profiles for K, Mg, Si, Fe, and Al relative to the bedrock define the illite and chlorite reaction fronts. When combined with a cosmogenic nuclide-derived erosion rate on watershed sediments, these depletion profiles are consistent with dissolution rates that are several orders of magnitudes slower for chlorite (1-5 × 10−17 mol m−2 s−1) and illite (2-9 × 10−17 mol m−2 s−1) than observed in the laboratory. Mineral reactions result in formation of vermiculite, hydroxy-interlayered vermiculite, and minor kaolinite. During weathering, exchangeable divalent cations are replaced by Al as soil pH decreases.The losses of Mg and K in the soils occur largely as solute fluxes; in contrast, losses of Al and Fe are mostly as downslope transport of fine particles. Physical erosion of bulk soils also occurs: results from a steady-state model demonstrate that physical erosion accounts for about half of the total denudation at the ridgetop and midslope positions. Chemical weathering losses of Mg, Na, and K are higher in the upslope positions likely because of the higher degree of chemical undersaturation in porewaters. Chemical weathering slows down in the valley floor and Al and Si even show net accumulation. The simplest model for the hillslope that is consistent with all observations is a steady-state, clay weathering-limited system where soil production rates decrease with increasing soil thickness.  相似文献   

20.
Mylonite textures in granodiorite boulders are responsible for higher rates of surface denudation of host rocks and the progressive development of unusual rock weathering features, termed weathering posts. These textures are characterized by smaller grain sizes, higher biotite content, and a higher biotite axial ratio in host rocks relative to weathering posts. Elemental concentrations do not show a significant difference between weathering posts and the host rocks in which they are found, and this reflects the absence of a weathering residue on the rock surfaces. Chemical weathering loosens the bonds between mineral grains through the expansion of biotite, and the loosened grains fall off or are blown off the boulder surface and continue their chemical alteration in the surrounding soil. The height of weathering posts on late Quaternary moraines increases at a linear rate of ~ 1.45 ± 0.45 cm (1000 yr)? 1 until post heights reach the diameter of host rocks. Such a rate of boulder denudation, if unrecognized, would generate significant errors (> 20%) in cosmogenic exposure ages for Pleistocene moraines. Given the paucity of boulders with diameters that significantly exceed 1.5 m, the maximum age of utility of weathering posts as a numeric age indicator is ~ 100 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号