首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄淮海流域旱涝时空分布及组合特性   总被引:1,自引:0,他引:1  
以黄淮海流域及其周边地区204个气象站点1961-2010年逐日降水过程资料、国家1:25万DEM数据和1:20万土地利用数据为基础,在利用降水Z指数对黄淮海流域旱涝进行评价的基础上,采用下垫面数据对结果进行修正,并分析黄淮海流域旱涝面积的时间变化特征,对黄淮海地区的易旱区、易涝区进行了划分,进一步选取集对分析法划分了流域内季节间旱涝交替的易发区。结果表明:黄淮海流域内夏秋两季旱涝问题较为严重,且秋旱面积上升趋势较为明显;黄河和海河流域以干旱居多,淮河则是干旱和雨涝并存,季节间的旱涝交替多集中在淮河流域中上游地区。  相似文献   

2.
萧凌波 《古地理学报》2018,20(6):1113-1122
利用《清史·灾赈志》中的历史灾害信息,重建清代(公元1644—1911年)华北蝗灾、水灾和旱灾的逐年频次序列,并以核密度估计法刻画3种灾害的空间分布,在此基础上展开时空对比分析。结果表明,蝗灾频次体现出一定的阶段性,1640s—1690s与1800s—1850s为2个多发时段,空间上主要分布于冀鲁豫三省的平原地区及山西的汾河谷地。年际尺度上蝗灾与旱灾呈显著正相关,干旱对于蝗灾的触发作用较为明显,但极端干旱会在一定程度上抑制蝗灾的规模;水灾对于当年灾区的蝗情有显著抑制,但灾后由涝转旱的气候背景可能诱发大面积蝗灾。在空间上,蝗灾与水旱灾害多发区有良好的对应,但水旱灾害的不同影响机制以及蝗虫的迁飞特性,使得3种灾害的极端多发区并不重合。蝗灾最集中的区域呈新月状分布于河北省西部,可能是蝗虫从孳生地(海河水系下游近水荒滩)迁飞于此,在太行山脉的阻隔之下形成。上述结论有助于推进对历史时期蝗灾发生机制的科学认识,以及指导气候变化背景之下的蝗灾防治工作。  相似文献   

3.
Drought identification and drought severity characterization are crucial to understand water scarcity processes. Evolution of drought and wetness episodes in the upper Nen River (UNR) basin have been analyzed for the period of 1951–2012 using meteorological drought indices and for the period of 1898–2010 using hydrological drought indices. There were three meteorological indices: one based on precipitation [the Standardized Precipitation Index (SPI)] and the other two based on water balance with different formulations of potential evapotranspiration (PET) in the Standardized Precipitation Evapotranspiration Index (SPEI). Moreover, two hydrological indices, the Standardized Runoff Index and Standardized Streamflow Index, were also applied in the UNR basin. Based on the meteorological indices, the results showed that the main dry period of 1965–1980 and wet periods of 1951–1964 and 1981–2002 affected this cold region. It was also found that most areas of the UNR basin experienced near normal condition during the period of 1951–2012. As a whole, the UNR basin mainly had the drought episodes in the decades of 1910, 1920, 1970 and 2000 based on hydrological indices. Also, the severity of droughts decreased from the periods of 1898–1950 to 1951–2010, while the severity of floods increased oppositely during the same periods. A correlation analysis showed that hydrological system needs a time lag of one or more months to respond to meteorological conditions in this cold region. It was also found that although precipitation had a major role in explaining temporal variability of drought, the influence of PET was not negligible. However, the sole temperature driver of PET had an opposite effect in the UNR basin (i.e., misestimating the drought detection) and was inferior to the SPI, which suggests that the PET in the SPEI should be determined by using underlying physical principles. This finding is an important implication for the drought research in future.  相似文献   

4.
He  Jun  Yang  Xiao-Hua  Li  Jian-Qiang  Jin  Ju-Liang  Wei  Yi-Ming  Chen  Xiao-Juan 《Natural Hazards》2014,75(2):199-217

Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.

  相似文献   

5.
基于文献记录的黑河流域历史时期旱涝特征分析   总被引:1,自引:0,他引:1  
唐霞  张志强 《冰川冻土》2017,39(3):490-497
流域的旱涝灾害特征及其变化规律是流域水资源演变研究的重要内容。利用历史文献资料重建了西北内陆河黑河流域公元0-1949年的旱涝灾害等级序列,结合滑动平均、小波变换处理等方法,探讨了流域历史时期旱涝等级的频数特征、旱涝变化的周期特征及其与气候冷暖和人类活动之间的关系。对公元1000年以后的旱涝灾害规律进行分析,结果表明:流域存在5个旱灾高发阶段(1230-1270年、1430-1530年、1640-1760年、1860-1890年、1900-1940年),3个涝灾高发期(1650-1690年、1730-1790年、1830-1910年),并呈现出旱涝灾害频发的态势;1000-1949年期间,流域旱涝灾害存在4个准周期变化,对比发现这与太阳黑子活动等环境变化周期有紧密的联系;1580年以前,气候冷暖是影响旱涝灾害发生的主要因子,但16世纪以后,旱涝灾害交替频发,很可能是人类活动加剧了该现象。所以,定量辨析自然因素和人类活动对流域旱涝灾害的影响将是未来研究的重点方向。  相似文献   

6.
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall \(\tau \) estimation method for copulas parameter estimation. The methods were employed to study joint severity–duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The \(Q_{75}\) index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma–GEV, LN2–exponential, and LN2–gamma were selected as the best paired drought severity–duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov–Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-\(\tau \) is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall \(\tau \) estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.  相似文献   

7.
 The Glafkos river basin extends southeast of Patras and is the city's main groundwater reservoir. In the last few years, a steady decline of the groundwater level has been observed in 19 wells due to overpumping and prolonged drought periods. The present paper assesses the adverse simultaneous effects of drought and overpumping on the groundwater regime. Analysis of the rainfall data of the last 60 years shows a decrease of precipitation during the last decade. Runoff measurements show a decrease in the outflow of the Glafkos river. The increased water pumping and the decrease of recharge during the last decades have resulted in depletion of the aquifers. Chemical analyses showed a constant reduction of the groundwater quality. Comparison of piezometric maps of two periods with a 19-year interval shows a clear decline of the general piezometry as a result of overpumping and drought. Received: 11 January 1995 · Accepted: 21 November 1995  相似文献   

8.
马富明  陈元芳  林元润 《水文》2006,26(1):87-88,54
在收集晋江流域石砻水文站近期最新年径流资料基础上,对该流域年径流统计特性,如自相关性、长持续性,趋势性及周期性等,利用一些较新方法进行了较为全面深入的分析,在此基础上建立了晋江流域年径流一步长期统计预测模型。结果表明,晋江流域年径流无明显的趋势性及长持续性。预测精度较高,平均相对误差可控制在20%以内,对2003特干旱年的预测效果良好。该研究对晋江流域防汛抗旱的决策有一定的参考价值。  相似文献   

9.
Meteorological droughts can affect large areas and may have serious environmental, social and economic impacts. These impacts depend on the severity, duration, and spatial extent of the precipitation deficit and the socioeconomic vulnerability of the affected regions. This paper examines the spatiotemporal variation of meteorological droughts in the Haihe River basin. Meteorological droughts events were diagnosed using daily meteorological data from 44 stations by calculating a comprehensive drought index (CI) for the period 1961–2011. Based on the daily CI values of each station over the past 50 years, the drought processes at each station were confirmed, and the severity, duration and frequency of each meteorological drought event were computed and analyzed. The results suggest the following conclusions: (1) the use of the CI index can effectively trace the development of drought and can also identify the duration and severity of each drought event; (2) the average drought duration was 57–85 days in each region of the Haihe River basin, and the region with the highest average values of drought duration and drought severity was Bohai Bay; (3) drought occurred more than 48 times over the study period, which is more than 0.95 times per year over the 50 years studied. The average frequencies of non-drought days, severe drought days and extreme drought days over the study period were 51.2, 3.2 and 0.4 %, respectively. Severe drought events mainly occurred in the south branch of the Hai River, and extreme drought events mainly occurred in the Shandong Peninsula and Bohai Bay; (4) the annual precipitation and potential evapotranspiration of the Haihe River basin show decreasing trends over the past 50 years. The frequency of severe drought and extreme drought events has increased in the past 20 years than during the period 1961–1990. The results of this study may serve as a reference point for decision regarding basin water resources management, ecological recovery and drought hazard vulnerability analysis.  相似文献   

10.
The Tarim River lies in the inland area of Northwest China, which has a semiarid or arid climate. Because of relatively scarce precipitation in this area, the main water resource is runoff from a mountainous drainage basin. It is very important to ascertain variations of regular hydrologic and meteorological time series data. Through the use of monthly precipitation and hydrologic data in the three headstream mountain areas of the Tarim River over the past 50 years, this work analyzes the variation of a drought–flood index and annual runoff volume, along with spatio-temporal structures of the index related to runoff at multiple time scales, via non-parametric testing and a wavelet transform method. Wavelet transform can clearly demonstrate many characteristics of the time series, including trend, shift, and major periods. Based on the analysis, the following conclusions can be drawn: (1) the drought–flood indices showed increasing trends for the Aksu and Yarkand rivers, and rose non-significantly for Hotan River. The indices of the three headstreams changed remarkably (p < 0.05) in 1986. The curves of wavelet variance show that significant periods of the indices are 4 and 8 years for Aksu and Hotan rivers, and 8 and 10 years for Yarkand River; (2) runoff of the Aksu and Hotan rivers had significant periods of 6 and 8 years, plus 3 and 9 years for Hotan River; (3) there was significant correlation between the drought–flood indices and annual runoff volume in the three headstreams. The results provide important information toward achieving predictability of flood and drought in Northwest China.  相似文献   

11.
淮河流域近500年洪旱事件演变特征分析   总被引:1,自引:0,他引:1  
为了认识淮河流域过去500年洪旱事件发生规律并鉴别当前的洪旱情势,收集并对比分析了流域实测降雨资料、重建历史雨季降雨资料、历史旱涝等级资料、历史洪旱文献记录和历史调查洪水资料等多源洪旱灾害数据。以重建历史雨季降雨资料和历史旱涝等级资料为主要依据,通过滑动平均、频率计算、小波分析和突变检验等方法,分析流域过去500年洪水干旱时空分布特征和演变规律。结果表明,17世纪淮河流域洪旱灾害最严重,但20世纪极端洪旱事件发生频次最多。淮河流域洪旱事件存在40年左右的稳定长周期,主周期从18世纪的15~20年逐渐减少到19世纪的5年周期,近20年来出现2~3年的主周期,洪旱灾害事件呈增加趋势,流域社会经济发展面临着严峻的洪旱灾害威胁。  相似文献   

12.
区域气象干旱评估分析模式   总被引:1,自引:0,他引:1  
为应对全球范围内日益严重的干旱问题,对区域气象干旱相对完整的评估分析模式开展了探讨。提出了从区域气象干旱识别到干旱特征值计算,再到干旱特征多变量分析的3个分析评估步骤。并以渭河流域为例,对研究区域进行了矩形干旱评估单元划分,选取了RDI(Reconnaissance Drought Index)为评估指标对区域内各单元各时段的干旱状态进行了识别,结果与历史记载的干旱年份吻合较好。分别采用了分布拟合、相关系数和Copula函数等统计学方法对区域干旱的干旱特征值(干旱历时、干旱面积、干旱强度和干旱频率)进行了特征分析,得出了一系列的单变量、双变量及多变量特征分析对比结果。通过对各类分布函数的计算和绘图,得到了渭河流域干旱事件发生的条件概率和重现期,形成了一套相对完整的区域干旱评估分析模式。  相似文献   

13.
中国旱涝灾害的分形结构   总被引:15,自引:1,他引:15  
基于分形理论在中国旱涝灾害研究方面所存在的问题,首先系统地分析了中国华北区、西北区等不同区域和松花江、长江等不同流域旱涝灾害的分形结构,其次以唐山市为例系统分析了同一地点不同等级旱涝灾害分维的时序变化及其关系,进而探讨了以分维为中介参数在旱涝灾害与其影响因素之间建立定量化经验关系的可能。研究结果表明,中国旱涝灾害具有客观的分形结构,分维是表征中国旱涝灾害发生特征的良好参数;在此基础上,系统地计算出了中国旱涝灾害的分维值、分析了唐山市不同等级旱涝灾害分维的时序变化关系,并建立了辽河、长江等流域水系空间维数与流域洪涝分维之间的定量关系式DF=3.6179DR-4.0242(式中DR为流域水系空间维数,DF为流域洪涝分维)。  相似文献   

14.
Northeast China as an important agricultural zone for commercial and economic crop in China suffered from increased drought risk that seriously threatened agricultural production and food security in recent decades. Based on precipitation datasets from 71 stations from 1960 to 2009 and on the reliable statistical methods of the Mann–Kendall test, Sen’s slope and the Standardized Precipitation Index, we analyzed the temporal and spatial variation of drought occurrence during the crop-growing season (from May to September) and summer (from June to August). The results showed that regional mean precipitation during the crop-growing season and summer over the last 40 years has decreased at the rate of ?1.72 and ?1.12 mm/year, respectively. According to timescale analysis of abrupt changes, there were two distinct time series (1965–1983 and 1996–2009) with decreasing precipitation trends at a 95 % confidence level. A comparison between the two time series of these two periods demonstrated that more frequent and more severe drought occurred during 1996–2009. Furthermore, drought risk in recent decades has become even more serious both in severity and in extent. Especially in the crop-growing season of 2001 and summer of 2007, over 25 % (2.0 × 105 km2) of study area experienced severe drought (serious and extreme droughts). Our results highlight the urgent need for the development of effective drought adaptations for cropland over northeast China.  相似文献   

15.
本文建立了一种干旱背景下坳陷湖盆全新的沉积充填模式,即"洪水—河漫湖"沉积模式。在干旱背景下,物源区的河流主要表现为季节性的洪水,大多数河流都消失在荒漠中,河水主要以地表蒸发、植被生态消耗、地下渗流、河流终端湖以及河漫湖等形式排泄,坳陷湖盆内并未形成统一大面积的汇水中心和湖相沉积。这种背景条件下,湖盆的沉积充填特征明显不同于经典的坳陷湖盆和浅水湖盆沉积。下白垩统泉头组四段沉积时期,松辽盆地具有气候干旱、地势平坦、生物单调贫乏等特征,盆地南部存在5大沉积体系及7条主要的水系。除在盆地西部古龙凹陷地区河流汇水形成小范围浅水湖泊外,在盆地南部主要为"洪水—河漫湖"的河流相沉积。坳陷湖盆"洪水—河漫湖"沉积具有以下特点:①全盆地没有统一的汇水中心,因而缺乏大面积分布的湖相和三角洲沉积;②河流表现为季节性的洪水,部分河流由于地形变缓,并未进入汇水中心,而是消失在荒漠中,河流相为盆地沉积充填的主要类型;③湖盆具有多物源、多漫湖、满盆含砂的沉积特点;④河漫湖与河流在空间分布上存在3种关系,即河流终止于河漫湖、河流穿过河漫湖、河流绕过河漫湖等。坳陷湖盆"洪水—河漫湖"是一种中—新生代陆相坳陷湖盆沉积充填的新模式,具有重要的理论和实践意义。  相似文献   

16.
受全球气候变化影响,澜沧江-湄公河流域气象水文干旱发生了较大变化,预测未来流域干旱的时空变化与传播特征是应对气候变化、开展澜湄水资源合作的基础。利用SWAT模型通过气陆耦合方式模拟了澜沧江-湄公河流域历史(1960—2005年)和未来时期(2022—2050年,2051—2080年)的水文过程,采用标准化降水指数和标准化径流指数预估并分析了流域未来气象水文干旱时空变化趋势。结果表明:①澜沧江-湄公河流域未来降水呈增长趋势,气象干旱将有所缓解,但降水年内分配不均与流域蒸发的增加,将导致水文干旱更为严峻,干旱从气象到水文的传播过程加剧;②水文干旱具有明显的空间异质性,允景洪和清盛站的水文干旱最为严重,琅勃拉邦、穆达汉和巴色站次之,万象站最弱;③未来流域水文干旱事件发生频次略有减少,但其中重旱、特旱事件占比增加,极端干旱将趋多趋强,且空间变化更加显著。  相似文献   

17.
为有效应对日益严重的流域干旱问题,有必要开展面向干旱全过程的黄河流域干旱应对系统研究。基于干旱演变过程设计了干旱指数,通过天气预报模型、回归分析等进行干旱、需水与径流预报;设置多年调节水库旱限水位,实现水资源年际补偿;识别洪水和泥沙分期特征,采用分期汛限水位增加洪水资源利用量;建立了梯级水库群协同优化调度模型,调配抗旱水源。算例结果显示:黄河流域干旱应对系统能够平衡年际间的干旱损失以避免重度破坏,与实际情况相比,在重旱的2014年增加抗旱水源22.40亿m^3。建立的干旱应对系统已应用于黄河流域抗旱实践,提升了流域应对干旱的水资源调控能力。  相似文献   

18.
Pei  Wei  Tian  Cuizhu  Fu  Qiang  Ren  Yongtai  Li  Tianxiao 《Natural Hazards》2022,110(3):1599-1620

The risk analysis of flood and drought disasters and the study of their influencing factors enhance our understanding of the temporal and spatial variation law of disasters and help identify the main factors affecting disasters. This paper uses the provincial administrative region of China as the research area. The proportion of the disaster area represents the degree of the disaster. The statistical distribution of the proportions was optimized from 10 alternative distributions based on a KS test, and the disaster risk was analyzed. Thirty-five indicators were selected from nature, agriculture and the social economy as alternative factors. The main factors affecting flood and drought disasters were selected by Pearson, Spearman and Kendall correlation coefficient test. The results demonstrated that the distribution of floods and drought is right-skewed, and the gamma distribution is the best statistical distribution for fitting disasters. In terms of time, the risk of flood and drought disasters in all regions showed a downward trend. Economic development and the enhancement of the ability to resist disasters were the main reasons for the change in disasters. Spatially, the areas with high drought risk were mainly distributed in Northeast and North China, and the areas with high flood risk were mainly distributed in the south, especially in Hubei, Hunan, Jiangxi and Anhui. The distribution of floods and drought disasters was consistent with the distribution characteristics of precipitation and water resources in China. Among the natural factors, precipitation was the main factor causing changes in floods and drought disasters. Among the agricultural and socioeconomic factors, the indicators reflecting the disaster resistance ability and regional economic development level were closely related to flood and drought disasters. The research results have reference significance for disaster classification, disaster formation mechanisms and flood and drought resistance.

  相似文献   

19.
为准确评价水文干旱,客观合理地构建干旱指数。以汾河上游的月径流为研究对象,首先从逻辑斯特、正态、对数正态、威布尔分布中选择出最优分布,利用最优分布计算标准径流干旱指数(Standardized Streamflow Drought Index, SSDI);其次依据标准正态曲线特点对水文干旱事件进行等级划分;最后将标准径流干旱指数与径流Z指数和距平指数进行分析比较,并根据汾河上游实际干旱情况验证标准径流指数的适用性。结果表明:对数正态分布对汾河上游月径流的拟合程度最佳,根据该分布计算得到的指数以及干旱等级与汾河上游历史记载的旱涝情况基本相符;汾河上游不同干旱等级出现频率相对于时间尺度的变化具有稳定性。  相似文献   

20.
近300a来塔里木河流域旱涝灾害特征分析   总被引:3,自引:1,他引:2  
干旱与洪涝是极端水文事件中最具有代表性的水文事件,在气候变化的影响下旱涝灾害事件越来越引起人们的关注. 采用传统的气象干旱指标-标准化降水指数SPI和小波分析法、反距离加权法以及线性回归分析,研究了近300 a来塔里木河流域旱涝灾害分布特征及关键影响因素. 结果表明:近300 a来塔里木河流域旱涝灾害呈增加的趋势,且洪涝事件较干旱事件明显. 其中,喀什、阿克苏等地的发生频率最高,并表现为群发性;近60 a塔里木河流域自西向东旱涝灾害事件呈交替现象. 小波分析结果表明,塔里木河流域旱涝灾害呈现15 a的周期性,由此推断未来5~10 a研究区湿润化面积仍有扩大的可能. 大气环流指数与多尺度下的SPI指相关性检验表明,PNA对秋季和冬季的SPI值的影响较为显著;旱涝灾害对农牧业的影响较为严重,其中,洪涝灾害的影响大于干旱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号