首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.IntroductionOvertheEastAsiaregion,themostprominentsurfacefeatureofthewintermonsoonisstrongnortheasterliesalongtheeastflankoftheSiberianhighandthecoastofEastAsia.At500hPathereisabroadtroughcenteredaboutatthelongitudesofJapan.Thedominantfea-tureat2O0hPaistheEastAsianjetwithitsmaximumlocatedatjustsoutheastofJapan.Thisktisassociatedwithintensebaroclinicity,largeverticalwindshearandstrongadvectionofcoldair(StaffmembersofAcademiaSinica,l957,LauandChang,1987;BoyleandChen,1987;Chenetal.,1991…  相似文献   

2.
通过对观测资料和大气再分析资料的诊断分析,研究了影响江西省夏季降水变率的物理机制。结果表明江西省夏季降水存在显著的年际变率。极端条件下,降水偏多的夏季可达降水偏少的夏季的降水量的三倍。中纬度地区的准静止波列和热带关键海区的海温异常是造成江西夏季降水异常的主要原因。当江西省夏季降水偏多时,欧亚大陆地区存在"正—负—正"的准正压Rossby波列结构,位于贝加尔湖的正活动中心能引导干冷空气南下,从而有利于江南地区的锋生和江西降水的增加。此外,当江西省夏季降水偏多时,前期冬季中东太平洋地区有El Ni1o事件的活动,并能通过大气桥在夏季印度洋地区形成正海温异常。通过"印度洋电容器"机制,印度洋的暖海温能激发向东传播的Kelvin波,引起菲律宾地区降水的减少。菲律宾地区抑制的降水能激发向北传播的EAP/PJ波列,使得西太平洋副热带高压西伸增强,从而有利于水汽向江南地区的输送,并造成江西夏季的降水增加。  相似文献   

3.
徐志清  范可 《大气科学》2012,36(5):879-888
印度洋热力状况是影响全球气候变化和亚洲季风变异的一个重要的因素,但以往研究更多关注热带印度洋海温的变化,对南印度洋中高纬地区海温变化关注不够,由此限制了我们对印度洋的全面认识.本文研究了年际尺度上整个印度洋海温异常主导模态的特征及其对我国东部地区夏季降水的可能影响过程,以期望为气候变异研究及预测提供理论依据.研究结果表明:全印度洋海温异常年际变率的主导模态特征是在南印度洋副热带地区海温异常呈现西南—东北反向变化的偶极子模态,西极子位于马达加斯加以东南洋面,东极子位于澳大利亚以西洋面;同时,热带印度洋海温异常与东极子一致.当西极子为正的海温异常,东极子、热带印度洋为负异常时定义为正的印度洋海温异常年际变率模态;反之,则为负的印度洋海温异常年际变率模态.从冬至春,印度洋海温异常年际变率模态具有较好的季节持续性;与我国长江中游地区夏季降水显著负相关,而与我国华南地区夏季降水显著正相关.其可能的影响过程为:对于正的冬、春季印度洋海温异常年际变率模态事件,印度洋地区异常纬向风的经向大气遥相关使得热带印度洋盛行西风异常,导致春、夏季海洋性大陆对流减弱,使夏季西太平洋副热带高压强度偏弱、位置偏东偏北,造成华南地区夏季降水增多,长江中游地区降水减少;反之亦然.同时,印度洋海温异常年际变率模态可通过改变印度洋和孟加拉湾向长江中游地区的水汽输送而影响其夏季降水.  相似文献   

4.
亚澳季风异常与ENSO准四年变化的联系分析   总被引:2,自引:0,他引:2  
分析了赤道地区纬向风的年际变化特征,以及亚澳季风与ENSO在各个位相的联系。结果表明:赤道纬向风变化与中东太平洋海温变化在准四年周期上是强烈耦合的;在El Eino期间东亚冬季风弱,夏季风强,而南亚夏季风弱,反之,在La Nina期间东亚冬季风强,夏季风弱,而南亚夏季风强;东亚地区的异常北风有利于西太平洋西风异常爆发,使得东太平洋海温升高,但只有随后在中东太平洋出现持续性西风异常,El Nino才能发展,其中来自太平洋中部的异常北风(并不是来自东亚大陆地区)和南太平洋中部的异常南风的辐合对中东太平洋出现持续性西风异常起重要的作用,尤其是澳大利亚东北部的季风异常的影响更为显。  相似文献   

5.
Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months. This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer. The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years, while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer. The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer). The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere, which is proposed as a possible reason for southward displacement of the EAJS in June. The late spring-summer warm SST anomaly in the tropical eastern Pacific, however, may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.  相似文献   

6.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

7.
1.IntroductionSouthAsiaandEastAsiaareahugemonsoonsystem,inwhichtheEastAsianmonsoonisitssubmonsoonsystem.BecausetheEastAsiansu...  相似文献   

8.
Two types of three-dimensional circulation of the East Asian summer monsoon(EASM) act as the coupling wheels determining the seasonal rainfall anomalies in China during 1979–2015. The first coupling mode features the interaction between the Mongolian cyclone over North Asia and the South Asian high(SAH) anomalies over the Tibetan Plateau at 200 hPa. The second mode presents the coupling between the anomalous low-level western Pacific anticyclone and upperlevel SAH via the meridional flow over Southeast Asia. These two modes are responsible for the summer rainfall anomalies over China in 24 and 7 out of 37 years, respectively. However, the dominant SST anomalies in the tropical Pacific, the Indian Ocean, and the North Atlantic Ocean fail to account for the first coupling wheel's interannual variability, illustrating the challenges in forecasting summer rainfall over China.  相似文献   

9.
studying the relationship between SST in the tropical Indian Ocean (TIO), tropical western Pacific (TWP), and tropical eastern Pacific (TEP) and East Asian summer rainfall (EASR), using data provided by NOAA/OAR/ESRL PSD and the National Climate Center of China for the period 1979-2008, an index, SSTDI, was defined to describe the SST difference between the TIO and TWP. In comparison with the winter ENSO, the spring SST contrast between the TIO and TWP was found to be more significantly associated with summer rainfall in East Asia, especially along the EASR band and in Northeast China. This spring SST contrast can persist into summer, resulting in a more significant meridional teleconnection pattern of lower-tropospheric circulation anomalies over the western North Pacific and East Asia. These circulation anomalies are dynamically consistent with the summer rainfall anomaly along the EASR band. When the SSTDI is higher (lower) than normal, the EASR over the Yangtze River valley, Korea, and central and southern Japan is heavier (less) than normal. The present results suggest that this spring SST contrast can be used as a new and better predictor of EASR anomalies.  相似文献   

10.
Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean.This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.  相似文献   

11.
ModelStudyontheInterannualVariabilityofAsianWinterMonsoonandItsInfluenceJiLiren(纪立人),SunShuqing(孙淑清)InstituteofAtmosphericPhy...  相似文献   

12.
冬季赤道西太平洋环流状况与后期亚洲季风   总被引:4,自引:0,他引:4  
武炳义  黄荣辉 《大气科学》2001,25(5):609-626
基于月平均NCEP再分析资料(1958~1997年)以及中国336个台站月降水总量(195l~1994年),通过合成、相关以及统计显著性检验方法,研究了赤道西太平洋区域冬季环流状况与后期春夏季亚洲(东亚和南亚)季风环流变化的关系.研究结果表明,冬季赤道西太平洋环流状况对后期南亚季风和东亚季风以及我国夏季降水均有显著的滞后影响.冬季赤道西太平洋海域海平面气压偏高(低),对应反气旋(气旋)性环流异常,致使后期东亚和南亚夏季风均偏弱(强)以及我国长江流域夏季降水偏多(少),揭示了实施这种滞后影响的一般特征.  相似文献   

13.
利用1979—2019年Hadley中心的海表温度资料、GPCP的降水资料以及NCEP-DOE的再分析资料等,分析了北半球春季热带南大西洋海表温度异常与北半球夏季亚澳季风区降水异常的联系。研究表明,北半球春季热带南大西洋海表温度异常与随后夏季热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区的降水异常为显著负相关(正相关)关系。北半球春季热带南大西洋的海表温度正异常可以引起热带大西洋和热带太平洋间的异常垂直环流,其中异常上升支(下沉支)位于热带大西洋(热带中太平洋)。热带中太平洋的异常下沉气流和低层辐散气流引起热带中西太平洋低层的异常东风,后者有利于热带中东太平洋海表温度出现负异常。通过Bjerknes正反馈机制,热带中东太平洋海表温度异常从北半球春季到夏季得到发展。热带中东太平洋海表温度负异常激发的Rossby波使得北半球夏季热带西太平洋低层出现一对异常反气旋。此时,850 hPa上热带西太平洋到海洋性大陆地区为显著的异常东风,有利于热带西太平洋到南海(澳大利亚东侧海域到热带东印度洋)地区出现异常的水汽辐散(辐合),导致该地区降水减少(增加)。  相似文献   

14.
东亚夏季风强弱年大气环流和热源异常对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
根据黄刚等定义的东亚夏季风指数, 对强、弱东亚夏季风年大气环流、大气热源和外强迫源SST的差异进行分析, 结果表明:强 (弱) 东亚夏季风年前期冬季到夏季, 太平洋SSTA为La Ni?a (El Ni?o) 型分布, 西太平洋暖池SST暖 (冷), 使得暖池附近对流活动较强 (较弱)。与此同时, 南亚大陆从印度半岛、青藏高原南部、中南半岛至华南大气异常加热 (变冷), 并且海陆热力对比加强 (减弱), 有利于出现强 (弱) 的东亚夏季风。此外, 由于暖池附近对流活动强 (弱), 该地区上升气流较强 (弱), Walker环流增强 (减弱), 当强 (弱) 的东亚夏季风向北推进时, 副热带西风急流北撤位置偏北 (南), 副热带高压位置也偏北 (南), 7月至8月华北 (江淮流域) 位于副热带西风急流南侧, 降水偏多, 江淮流域 (华北) 降水偏少。并给出与东亚夏季风年际变异有关的大气环流和SST异常的物理图像。  相似文献   

15.
杨辉  陈隽  孙淑清 《大气科学》2005,29(3):396-408
利用海气耦合和大气气候模式研究东亚冬季风异常对夏季环流的影响, 结果表明, 东亚冬季风异常对于后期环流及海洋状态异常都起了很大的作用.一般情况下, 强的冬季风与后期弱的东亚夏季风和较强的南海季风相对应.与强(弱)冬季风异常相关的风应力的改变可以使热带太平洋海温从冬季至夏季呈现La Nina (El Nio)型异常分布.试验得到的由冬季风异常所产生的海洋及夏季环流的变化与实况是相当接近的.在异常的冬季风偏北风分量强迫下, 西太平洋上形成的偏差气旋环流在夏季已不存在, 这时东亚夏季风反而增强.而冬季赤道西风分量所产生的影响, 则在西太平洋上形成显著的偏差气旋环流, 使东亚副热带夏季风减弱, 南海夏季风加强.对于东亚大气环流而言, 与强弱冬季风对应的热带海洋海温异常强迫下, 不仅是冬季, 后期春季和夏季环流的特征都能得到很好的模拟.但是从分区看, 西太平洋暖池区的海温异常比东太平洋更为重要.单纯的热带中东太平洋的海温异常对东亚大气环流的影响主要表现在冬季, 对后期的影响并不十分清楚.整个热带海洋的异常型分布(不论是El Nio还是La Nia)型, 对冬夏季风的影响是重要的, 而单纯的某个地区的海温异常都比它的整体影响要小.从试验结果看, 海温在大尺度冬夏季环流的隔季相关中起了十分重要的作用.  相似文献   

16.
The time series of the sea surface temperature(SST) anomaly,covering the eastern (western) equatorial Pacific,central Indian Ocean,Arabian Sea.Bay of Bengal and South China Sea(SCS),have been analyzed by using wavelet transform.Results show that there exists same interdeeadal variability of SST in the tropical Pacific and tropical Indian Ocean,and also show that the last decadal abrupt change occurred in the 1970s.On the interannual time scale,there is a similar interannual variability among the equatorial central Indian Ocean and the adjacent three sea basins(Arabian Sea.Bay of Bengal and South China Sea).but the SST interannual changes of the Indian Ocean lagged 4-5 months behind that of the equatorial central-east Pacific.Meanwhile,the interannual variability and long-range change between SST anomaly and Indian summer monsoon rainfall in recent decades have been explained and analyzed.It indicates that there existed a wet(dry) period in India when the tropical SST was lower(higher)than normal,but there was a lag of phase between them.  相似文献   

17.
利用ECHAM5全球大气环流模式研究了印度洋海温异常年际变率模态从冬至夏的演变对我国东部地区夏季降水影响的机制。观测资料研究表明:对于正的印度洋海温异常年际变率模态,春、夏季热带印度洋和澳大利亚以西洋面(东极子)均为水汽的异常源区,向马达加斯加以东南洋面(西极子)及印度洋邻近大陆提供水汽。夏季,印度洋地区南极涛动、马斯克林高压加强;而印度季风低压和南亚高压均减弱,对应于印度夏季风减弱。夏季印度洋地区正压性的纬向风异常经向遥相关使热带印度洋地区出现西风异常,导致海洋性大陆地区对流活动减弱,而菲律宾海地区对流活动加强,进而导致西太平洋副热带高压偏弱、位置偏东北。对于负的印度洋海温异常年际变率模态,则反之。模式结果基本支持了已有的观测资料诊断结果。  相似文献   

18.
2012年海洋和大气环流异常及其对中国气候的影响   总被引:3,自引:1,他引:2  
文章主要对2011/2012年冬季至2012年秋季的海洋和大气环流异常进行分析,并讨论这些异常特征对中国气温和降水的主要影响。分析表明:2012年3月拉尼娜事件结束,赤道中东太平洋在7—8月出现明显暖水波动,之后进入正常状态。暖水波动使9—10月西太副高偏强偏西控制长江以南大部,造成该地温高雨少:8—9月,热带印度洋呈显著的偶极子正位相模态,在热带东太平洋激发出异常反气旋,其西北侧西南气流有利于暖湿气流影响中国华西南部出现明显秋雨。2012年南海夏季风爆发偏早1候,结束偏晚2候,强度偏弱;东亚夏季风为1951年以来第四强,使得东亚夏季风雨带位置偏北,中国北方大部夏季降水偏多。受海温和大气环流异常等的共同影响,我国出现了冬冷、春夏热、秋冷和夏季降水"北多南少"的气候特征。  相似文献   

19.
山东夏季降水与热带海气相互作用区域特性的相关分析   总被引:12,自引:0,他引:12  
采用一种能够反映热带海气相互作用区域特性的指数,分析了热带5个洋区(西太平洋、中太平洋、东太平洋、大西洋、印度洋)的海气相互作用指数与山东夏季(6~8月)降水的相互联系。结果表明,只有热带印度洋的海气相互作用的第1模态与山东夏季降水存在的显著相关。热带印度洋海温偏高时山东夏季降水偏少,反之偏多。热带西印度洋区域1000hPa风向赤道区域异常辐合,并伴随出现正海表温度异常的年份,山东夏季降水往往偏少  相似文献   

20.
With the twentieth century analysis data (1901–2002) for atmospheric circulation, precipitation, Palmer drought severity index, and sea surface temperature (SST), we show that the Asian-Pacific Oscillation (APO) during boreal summer is a major mode of the earth climate variation linking to global atmospheric circulation and hydroclimate anomalies, especially the Northern Hemisphere (NH) summer land monsoon. Associated with a positive APO phase are the warm troposphere over the Eurasian land and the relatively cool troposphere over the North Pacific, the North Atlantic, and the Indian Ocean. Such an amplified land–ocean thermal contrast between the Eurasian land and its adjacent oceans signifies a stronger than normal NH summer monsoon, with the strengthened southerly or southwesterly monsoon prevailing over tropical Africa, South Asia, and East Asia. A positive APO implies an enhanced summer monsoon rainfall over all major NH land monsoon regions: West Africa, South Asia, East Asia, and Mexico. Thus, APO is a sensible measure of the NH land monsoon rainfall intensity. Meanwhile, reduced precipitation appears over the arid and semiarid regions of northern Africa, the Middle East, and West Asia, manifesting the monsoon-desert coupling. On the other hand, surrounded by the cool troposphere over the North Pacific and North Atlantic, the extratropical North America has weakened low-level continental low and upper-level ridge, hence a deficient summer rainfall. Corresponding to a high APO index, the African and South Asian monsoon regions are wet and cool, the East Asian monsoon region is wet and hot, and the extratropical North America is dry and hot. Wet and dry climates correspond to wet and dry soil conditions, respectively. The APO is also associated with significant variations of SST in the entire Pacific and the extratropical North Atlantic during boreal summer, which resembles the Interdecadal Pacific Oscillation in SST. Of note is that the Pacific SST anomalies are not present throughout the year, rather, mainly occur in late spring, peak at late summer, and are nearly absent during boreal winter. The season-dependent APO–SST relationship and the origin of the APO remain elusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号