首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
In order to determine ‘porosity‐free’ intrinsic ultrasonic compressional (Vp) and shear wave (Vs) velocities and Vp/Vs of an olivine gabbro from the Oman ophiolite, we developed a new experimental system using a piston‐cylinder type high‐pressure apparatus. The new system allowed us to measure velocities at pressures ranging from 0.20 to 1.00 GPa and at temperatures up to 300°C for Vp and 400°C for Vs. At room temperature, the Vp and Vp/Vs increase rapidly with pressure up to 0.40 GPa, while between 0.45 and 1.00 GPa the increase is more gradual. The change in increasing rate is attributed to closure of porosity at pressures above 0.45 GPa. Based on the linear regression of data obtained at higher pressures (0.45–1.00 GPa) and extrapolation to the lower pressures, combined with temperature derivatives of velocities of the sample measured at 1.00 GPa, we determined the intrinsic Vp and Vs of the sample as a function of pressure (P, in GPa) and temperature (T, in °C). The intrinsic velocities can be expressed as Vp (km/s) = 7.004 + 0.096 × P ? 0.00015 × T, and Vs (km/s) = 3.827 + 0.007 × P ? 0.00008 × T. We evaluated the intrinsic Vp and Vs of the olivine gabbro at oceanic crustal conditions and compared them with a velocity depth‐profile of the borehole seismic observatory WP‐2 area in the northwestern Pacific Basin. Although the intrinsic Vp (~7.0 km/s) and Vs (~3.8 km/s) for the olivine gabbro studied are comparable to those of seismic layer 3 in the WP‐2 area, the estimated vertical gradients of intrinsic velocities are significantly smaller than those reported from layer 3. These results suggest that velocity profiles of layer 3 in the WP‐2 area may reflect the presence of a minor porosity in lower oceanic crust, which closes with increasing depth and/or continuous changes in mineralogy of layer 3 rocks.  相似文献   

2.
The Nobeoka Thrust, an ancient megasplay fault in the Shimanto Belt, southwestern Japan, contains fault rocks from the seismogenic zone, providing an accessible analog of active megasplay faults in deep subduction settings. In this study, the paleostress along the Nobeoka Thrust was analyzed using multiple inversion techniques, including k‐means clustering of fault datasets acquired from drillcores that intersected the thrust. The six resultant stress orientation clusters can be divided into two general groups: stress solutions with north–south‐trending σ1 axes, and those with east–west‐trending σ1 axes. These groups are characterized by the temporal changes for the orientations of the σ1 and σ3 principal stress axes that involve alternation between horizontal and vertical. The findings are probably due to a change in stress state before and after earthquakes that occurred on the fault; similar changes have been observed in active tectonic settings, such as the 2011 Tohoku‐Oki earthquake (Japan).  相似文献   

3.
A rapid reduction in sediment porosity from 60 to 70 % at seafloor to less than 10 % at several kilometers depth can play an important role in deformation and seismicity in the shallow portion of subduction zones. We conducted deformation experiments on rocks from an ancient accretionary complex, the Shimanto Belt, across the Nobeoka Thrust to understand the deformation behaviors of rocks along plate boundary faults at seismogenic depth. Our experimental results for phyllites in the hanging wall and shale‐tuff mélanges in the footwall of the Nobeoka Thrust indicate that the Shimanto Belt rocks fail brittlely accompanied by a stress drop at effective pressures < 80 MPa, whereas they exhibit strain hardening at higher effective pressures. The transition from brittle to ductile behavior in the shale–tuff mélanges lies on the same trend in effective stress–porosity space as that for clay‐rich and tuffaceous sediments subducting into the modern Nankai subduction zone. Both the absolute yield strength and the effective pressure at the brittle–ductile transition for the phyllosilicate‐rich materials are much lower than for sandstones. These results suggest that as the clay‐rich or tuffaceous sediments subduct and their porosities are reduced, their deformation behavior gradually transitions from ductile to brittle and their yield strength increases. Our results also suggest that samples of the ancient Shimanto accretionary prism can serve as an analog for underthrust rocks at seismogenic depth in the modern Nankai Trough.  相似文献   

4.
The P- and S-wave receiver functions and dispersion curves of the fundamental Rayleigh wave are used to study the lithosphere within the Central Anatolian Plateau. The results for eight broadband seismic stations are presented. It is established that within the plateau, the crust with a thickness of about 35 km is underlain by the mantle lid with its bottom at a depth of about 60 km. The velocities of longitudinal (Vp) and shear (Vs) waves in this layer are at most 7.6 and 4.5 km/s, respectively, and the Vp/Vs ratio is close to 1.7 (i.e., by 6% lower than in the standard IASP91 and PREM models). Such a low velocity ratio is characteristic of rocks having high orthopyroxene content. Beneath the high-velocity mantle lid, the S-wave velocity decreases to 4.0–4.2 km/s and the Vp/Vs ratio is close to its standard value (1.8). At most stations, the P-wave receiver functions do not contain seismic phase P410s, which is formed at the global seismic boundary at a depth of 410 km. The seismic boundary at a depth of 410 km is related to the olivine-spinel phase transformation, and its absence can indicate the anomalously low olivine content and high basalt content. This anomaly is probably associated with the subduction of a large amount of oceanic crust during the closure of the Tethys. The results of the study overall indicate the high informativity of the used method.  相似文献   

5.
The Nobeoka Thrust of Southwest Japan is an on‐land example of an ancient megasplay fault that provides an excellent record of deformation and fluid flow at seismogenic depths. The present study reports: (i) temporal stress changes for the seismogenic period of the Nobeoka Thrust; and (ii) spatial heterogeneities in driving pressure ratios P* obtained from mineral veins around the Nobeoka Thrust fault zone. Many quartz veins that filled mode I cracks can be observed in the hanging wall and footwall of the thrust. Inversion for stress orientation suggests that normal faulting dominated in both the hanging wall and footwall, with similar stress axis orientations in both. The orientation of σ3 for the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust. The detected normal‐faulting‐type stress regimes likely resulted from post‐seismic stress buildup after megathrust earthquakes. The hanging wall of the Nobeoka Thrust has smaller P* values than the footwall. Two possible explanations are proposed for the observed spatial variations in the driving pore fluid pressure ratio, P*: spatial variations in pore fluid pressure Pf are directly responsible for P* variations, or P* variations are controlled by differences in mechanical properties between the hanging wall and footwall.  相似文献   

6.
Subduction zones can generally be classified into Mariana type and Chilean type depending on plate ages,plate thicknesses, subduction angles, back-arc deformation patterns, etc. The double seismic zones(DSZs) in subduction zones are mainly divided into type I and type II which, respectively, correspond to the Mariana type and Chilean type in most cases. Seismic anisotropy is an important parameter characterizing the geophysical features of the lithosphere, including the subduction zones,and can be described by the two parameters of delay time dt and fast wave polarization direction /. We totally collected 524 seismic anisotropy data records from 24 DSZs and analyzed the statistical correlations between seismic anisotropy and the related physical parameters of DSZs.Our statistical analysis demonstrated that the fast wave polarization directions are parallel to the trench strike with no more than 30° for most type I DSZs, while being nearlyperpendicular to the trench strike for type II DSZs. We also calculated roughly linear correlations that the delay time dt increases with dip angles but decreases with subduction rates. A linear equation was summarized to describe the strong correlation between DSZ's subduction angle aDSZ and seismic anisotropy in subduction zones. These results suggest that the anisotropic structure of the subducting lithosphere can be described as a possible equivalent crystal similar to the olivine crystal with three mutually orthogonal polarization axes, of which the longest and the second axes are nearly along the trench-perpendicular and trench-parallel directions, respectively.  相似文献   

7.
We analyze co-seismic displacement field of the 26 December 2004, giant Sumatra–Andaman earthquake derived from Global Position System observations,geological vertical measurement of coral head, and pivot line observed through remote sensing. Using the co-seismic displacement field and AK135 spherical layered Earth model, we invert co-seismic slip distribution along the seismic fault. We also search the best fault geometry model to fit the observed data. Assuming that the dip angle linearly increases in downward direction, the postfit residual variation of the inversed geometry model with dip angles linearly changing along fault strike are plotted. The geometry model with local minimum misfits is the one with dip angle linearly increasing along strike from 4.3oin top southernmost patch to 4.5oin top northernmost path and dip angle linearly increased. By using the fault shape and geodetic co-seismic data, we estimate the slip distribution on the curved fault. Our result shows that the earthquake ruptured *200-km width down to a depth of about 60 km.0.5–12.5 m of thrust slip is resolved with the largest slip centered around the central section of the rupture zone78N–108N in latitude. The estimated seismic moment is8.2 9 1022 N m, which is larger than estimation from the centroid moment magnitude(4.0 9 1022 N m), and smaller than estimation from normal-mode oscillation data modeling(1.0 9 1023 N m).  相似文献   

8.
张帆  韩晓明  郝美仙  李娟 《中国地震》2017,33(1):141-153
2016年5月22日17时08分,辽宁朝阳县发生M4.6地震。本文利用P波初动、TDMT、CAP等方法研究该地震的震源机制解,利用CAP、PTD、sPn-Pn等方法测定震源深度。结果表明,3种方法计算震源机制解所得结果一致,CAP、PTD、sPn-Pn等方法测定的深度结果接近。利用双差定位法对2009~2016年发生在震源区域的地震重新定位,结合模拟退火算法和高斯牛顿算法拟合得到小地震分布的走向和倾角。根据震源机制解、震源深度、小地震分布特征和震源区域的构造特征等判断,发震构造断裂走向为NEE,倾角接近垂直,主压应力方向为NNW向,震源机制为正断类型,并带有较小的左旋分量。  相似文献   

9.
In the work under consideration, on the basis of data analysis on the velocities of quasi-longitudinal Vp and quasi-transverse Vs waves—measured for rock samples at high pressures and temperatures, and analogous velocities, calculated on the basis of the grain orientation distribution function, reconstructed from the neutron-diffraction textural experiment—the indicative inconsistencies between the experimental and model characteristics were inferred. The theoretical analysis of the wave field patterns of the propagation of longitudinal and transverse elastic waves in the anisotropic media is carried out. It is established that, in the general case, in the anisotropic inhomogeneous media the velocities of Vp and Vs propagation, measured experimentally and obtained from the modeling, cannot coincide due to the existence of the physical coupling between the vibrations of two types: transverse and longitudinal vibrations.  相似文献   

10.
The North Anatolian fault zone that ruptured during the mainshock of theM 7.4 Kocaeli (Izmit) earthquake of 17 August 1999 has beenmonitored using S wave splitting, in order to test a hypothesisproposed by Tadokoro et al. (1999). This idea is based on the observationof the M 7.2 1995 Hyogo-ken Nanbu (Kobe) earthquake, Japan.After the Hyogo-ken Nanbu earthquake, a temporal change was detectedin the direction of faster shear wave polarization in 2–3 years after the mainshock (Tadokoro, 1999). Four seismic stations were installed within andnear the fault zone at Kizanlik where the fault offset was 1.5 m, about80 km to the east of the epicenter of the Kocaeli earthquake. Theobservation period was from August 30 to October 27, 1999. Preliminaryresult shows that the average directions of faster shear wave polarization attwo stations were roughly parallel to the fault strike. We expect that thedirection of faster shear wave polarization will change to the same directionas the regional tectonic stress reflecting fault healing process. We havealready carried out a repeated aftershock observation at the same site in2000 for monitoring the fault healing process.  相似文献   

11.
Abstract In northern Kazakhstan the WNW striking Kokchetav megamélange includes different crustal sequences with high‐pressure/ultrahigh‐pressure (HP/UHP) remnants of their 540–520 Ma subduction metamorphism. Two domains separated by the north‐east trending Chaglinka fault are distinguished. The western domain exhibits NE–SW structures within a single Kumdy–Kol megaunit of diamond‐bearing UHP metasediments and high‐temperature (HT) eclogites. The eastern domain consists of the composite Kulet megaunit with the Kulet UHP unit (coesite‐bearing metasediments, whiteschists and eclogites), the Enbek–Berlyk medium‐pressure (MP) unit (kyanite‐bearing, high‐alumina rocks with interleaved coronitic metagabbro), and ortho‐ and paragneisses with eclogites and amphibolites included. All eclogites in the eastern domain are of the relatively low temperature (LT) type. Sillimanite is common and appears after kyanite in the sheared MP unit. A regional and moderately ESE plunging linear fabric coincides with the fold‐axis of the foliation poles from the eastern domain. Whether this also reflects a regional top to the WNW transport, as inferred from the dextral strike‐slip on steeply to SSW dipping foliation, needs further study. Top to the WNW shear is shown by weakly inclined low pressure (LP) cordierite rocks that flank the eastern domain in the south. Some new 39Ar/40Ar mica cooling ages (519, 521 Ma) from the Kulet UHP micaschists reflect the same early stage evolutionary event as was previously shown for the Kumdy–Kol UHP rocks (515, 517 Ma) in the west. Similar 39Ar/40Ar ages (500, 517 Ma) are recorded by micas and amphibole that outline a top to NNW shear fabric in the non‐subducted Proterozoic basement, north of the megamélange. A 447 Ma overprint of the MP sequences is considered to reflect the strike‐slip deformation with sillimanite and the reworking of an early kyanite‐bearing tectonite. Biotites from the LP cordierite rocks yielded approximately 400 Ma 39Ar/40Ar ages. In case they reflect the WNW shear deformation, the latter is considered to be associated with a regional granite magmatism (420–460 Ma) extending south of the eastern domain. In their present different structural domains the Kulet and Kumdy–Kol UHP units display a similar early stage event. Subsequent LP deformation, which is likely to be associated with regional granite magmatism (420–460 Ma), is assumed to have obliterated any common or uniform early exhumation structure for the whole megamélange. The north‐east structured Kumdy–Kol domain is assumed to have preserved the most information about the early stage exhumation. This domain is at an angle to the regional WNW strike of the megamélange.  相似文献   

12.
The moment tensor solution, source time function and spatial-temporal rupture process of the MS6.4 earthquake, which occurred in Ning’er, Yunnan Province, are obtained by inverting the broadband waveform data of 20 global stations. The inverted result shows that the scalar seismic moment is 5.51×1018 Nm, which corresponds to a moment magnitude of MW 6.4. The correspondent best double couple solution results in two nodal planes of strike 152°/dip 54°/rake 166°, and strike 250°/dip 79°/ rake 37°, respectively...  相似文献   

13.
2017年9月4日河北临城发生M_L4.4地震,这是邢台地区自2003年以来发生的唯一一次M_L4以上地震。震后大量余震沿条带分布,揭示了一条前人未发现的隐伏断层(根据其经过的地点称之为齐家庄-东双井断裂)。为研究该隐伏断层的几何形状和滑动性质,首先基于河北数字地震台网资料对地震序列进行精定位,利用精定位地震数据拟合发震断层面,计算断层面的走向和倾角,并给出其标准差。然后搜集震中附近历史地震的震源机制解,利用网格搜索法反演区域构造应力场参数,根据构造应力场和断层面的几何形状确定齐家庄-东双井断裂的滑动性质。结果表明,临城M_L4.4地震的发震断层为一条近EW向的隐伏断层,产状为走向约92°,倾角约85°,滑动角约-12°,滑动角标准差约8°,为倾向南的高倾角左旋走滑型断层,延伸深度约10km。区域应力场在齐家庄-东双井断裂上产生的相对剪应力和正应力分别为0.650和0.691,此次地震不是在最大剪应力的断层方位发生,表明该断裂不是现今应力场作用下产生的,而是在复杂的历史地质活动中遗留的,该断裂在现今应力场作用下积累了一定的应力而导致了M_L4.4地震的发生。齐家庄-东双井断裂及其性质的发现为该地区的地质构造和地震孕育环境分析提供了基础。  相似文献   

14.
The InterPACIFIC project was aimed at assessing the reliability, resolution, and variability of geophysical methods in estimating the shear-wave velocity profile for seismic ground response analyses. Three different subsoil conditions, which can be broadly defined as soft-soil, stiff-soil, and hard-rock, were investigated. At each site, several participants performed and interpreted invasive measurements of shear wave velocity (Vs) and compression wave velocity (Vp) in the same boreholes. Additionally, participants in the project analysed a common surface-wave dataset using their preferred strategies for processing and inversion to obtain Vs profiles. The most significant difference between the invasive borehole methods and non-invasive surface wave methods is related to resolution of thin layers and abrupt contrasts, which is inherently better for invasive methods. However, similar variability is observed in the estimated invasive and non-invasive Vs profiles, underscoring the need to account for such uncertainty in site response studies. VS,30 estimates are comparable between invasive and non-invasive methods, confirming that the higher resolution provided by invasive methods is quite irrelevant for computing this parameter.  相似文献   

15.
The Chi‐Chi earthquake (MW = 7.6) took place in central western Taiwan in 1999. The earthquake caused reactivation of the Chelungpu Fault and resulted in 100‐km‐long surface ruptures. The fault strikes mostly north–south to NNE–SSW; however, the northern tip of the southern segment of the surface ruptures rotates clockwise to define an east–west trend, then jumps to a shorter NNW‐trending rupture. The largest vertical displacement is recorded in the Shihkang area of the Shihkang–Shangchi Fault Zone, where vertical slips are up to 8–10 m. The Shihkang–Shangchi Fault Zone displays a complex fault pattern as a linkage damage zone between two fault segments with the greatest concentration of faults and fractures. Our new interpretation, based on recent published geometric, kinematic, and geophysical studies on the Chi‐Chi earthquake fault, suggests that the Shihkang–Shangchi Fault Zone is not a simple termination zone, but may be an ‘overstep zone’ or a ‘transfer zone’. Slip analysis along the surface ruptures indicates that they are composed of three fault segments and the amount of slip partly depends on the intersection angle between slip direction and fault strike. Our numerical modeling for the area indicates that Coulomb stress changes are mainly concentrated on tips and bends of the surface ruptures. Slip patterns indicate that the fault propagates toward the northeast. Therefore, this study suggests high potential for future earthquake activity along the unruptured Shangchi segment. Hence, future geohazard studies should focus on the Shangchi segment to evaluate potential earthquakes, determine recurrence intervals, and reduce future earthquake hazards.  相似文献   

16.
Although it is believed that natural fracture sets predominantly have near‐vertical orientation, oblique stresses and some other mechanisms may tilt fractures away from the vertical. Here, we examine an effective medium produced by a single system of obliquely dipping rotationally invariant fractures embedded in a transversely isotropic with a vertical symmetry axis (VTI) background rock. This model is monoclinic with a vertical symmetry plane that coincides with the dip plane of the fractures. Multicomponent seismic data acquired over such a medium possess several distinct features that make it possible to estimate the fracture orientation. For example, the vertically propagating fast shear wave (and the fast converted PS‐wave) is typically polarized in the direction of the fracture strike. The normal‐moveout (NMO) ellipses of horizontal reflection events are co‐orientated with the dip and strike directions of the fractures, which provides an independent estimate of the fracture azimuth. However, the polarization vector of the slow shear wave at vertical incidence does not lie in the horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip. Also, for oblique fractures the shear‐wave splitting coefficient at vertical incidence becomes dependent on fracture infill (saturation). A complete medium‐characterization procedure includes estimating the fracture compliances and orientation (dip and azimuth), as well as the Thomsen parameters of the VTI background. We demonstrate that both the fracture and background parameters can be obtained from multicomponent wide‐azimuth data using the vertical velocities and NMO ellipses of PP‐waves and two split SS‐waves (or the traveltimes of PS‐waves) reflected from horizontal interfaces. Numerical tests corroborate the accuracy and stability of the inversion algorithm based on the exact expressions for the vertical and NMO velocities.  相似文献   

17.
The Linglong granitoid complex (LGC) is composed of four major plutonic units that intruded and cooled in the Middle Jurassic (170-155 Ma). Gravity-anomaly modeling indicates that the LGC is a sheet-like laccolith, less than 10 km thick, that dips shallowly below the surface toward the Tancheng-Lujiang (Tan-Lu) fault, a major lithospheric structure in Eastern China. Measurements of foliation in the field and measurements of planar and linear magnetic fabrics from the study of anisotropy of magnetic susceptibility in the LGC indicate that foliation is dominantly shallowly dipping and magnetic lineation is mainly parallel to the dip direction of the laccolith toward the Tan-Lu fault zone. The trend of lineations is consistent with flow of magma up the thrust to reach shallower levels. The magma of the LGC probably originated by crustal melting within the Tan-Lu fault zone and the emplacement of magma occurred along a shallowly-dipping thrust that drained the Tan-Lu fault zone, the mechanism of which is mainly dike-fed model.  相似文献   

18.
活动断层几何形状的确定为评估一个地区的地震危险性提供重要的理论依据,邢台老震区内构造背景复杂,前人对邢台地震的发震构造展开大量研究,取得丰富成果。通过震源机制节面聚类得到邢台地震发震断层的走向、倾角及其标准差,综合前人研究结果求取发震断层面的平均解;结合区域地壳应力张量,估计该断层的滑动方向及其误差,分析该区域的地震活动危险性。结果表明:邢台地震发震断层的走向为32.45°,倾角为79.44°,滑动角-153.96°,标准差为4.55°。该断层为走向NNE、倾向NWW的高倾角走滑型断层,而非正断性质的新河断裂。区域地壳应力场在断层面上产生的相对剪应力为0.83,相对正应力为0.59。该断层不是最大剪应力的断层面形状,但剪应力强度仍较大,表明该断层在地震能量积累和释放过程中仍起到必不可少的作用。  相似文献   

19.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

20.
Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs) is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号