首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Accessory monazites from 35 granitoid samples from the Western Carpathian basement have been analysed with the electron microprobe in an attempt to broadly constrain their formation ages, on the basis of their Th, U and Pb contents. The sample set includes representative granite types from the Tatric, Veporic and Gemeric tectonic units. In most cases Lower Carboniferous (Variscan) ages have been obtained. However, a much younger mid-Permian age has been recorded for the specialised S-type granites of the Gemeric Unit, and several small A- and S-type granite bodies in the Veporic Unit and the southern Tatric Unit. This distinct Permian plutonic activity in the southern part of the Western Carpathians is an important, although previously little considered geological feature. It appears to be not related to the Variscan orogeny and is interpreted here to reflect the onset of the Alpine orogenic cycle, with magma generation in response to continental rifting. The voluminous Carboniferous granitoid bodies in the Tatric and Veporic units comprise S- and I-type variants which document crustal anatexis accompanying the collapse of a compressional Variscan orogen sector. The Variscan magmas were most likely produced through the remelting of a subducted Precambrian volcanic arc-type crust which included both igneous and sedimentary reworked volcanic-arc material. Although the 2C errors of the applied dating method are quite large and typically ᆞ-20 Ma for single samples, it would appear from the data that the Variscan S-type granitoids (333-367 Ma) are systematically older than the Variscan I-type granitoids (308-345 Ma). This feature is interpreted in terms of a prograde temperature evolution in the deeper parts of the post-collisional Variscan crust. In accordance with recently published zircon ages, this study shows that the Western Carpathian basement must be viewed as a distinct "eastern" tectonomagmatic province in the Variscan collision zone, where the post-collisional crustal melting processes occurred ~20 Ma earlier than in the central sector (South Bohemian Batholith, Hohe Tauern Batholith).  相似文献   

2.
The Veporic basement and its Permian-Mesozoic cover experienced medium-pressure, collision-related metamorphism during the Cretaceous. Geothermobarometric calculations of Alpine mineral assemblages indicate peak conditions of 8–12 kbar and 550–600°C in the deepest-exposed basement, and up to 8 kbar and 450–500°C in the Permian metasediments. After having reached the metamorphic peak conditions (at around 110 Ma, 40Ar/39Ar on amphiboles), the thermally softened Veporic unit was exhumed probably due to the underplating of a buoyant Tatric-Fatric crust. Exhumation was triggered by extensional denudation of former upper-crustal thrust units, overlying the Veporic unit. Unroofing was accomplished due to orogenparallel, top-to-east extension along low-angle, ductile normal shear zones. The area collapsed and rapidly cooled at 90-80 Ma (40Ar/39Ar on micas). As revealed by the structural record, the doming and tectonic exhumation of the Veporic core occurred in an overall contractional regime and was followed by additional Late Cretaceous—Early Tertiary shortening events.  相似文献   

3.
《Geodinamica Acta》2003,16(1):21-38
The Tatric-Fatric-Veporic convergence zone of the Central Western Carpathians involved a basinal area that originated by Lower Jurassic rifting of Variscan continental crust. In mid-Cretaceous times shortening affected first the southern, Veporic margin of the basin, which was converted to the toe of the orogenic wedge prograding from the hinterland. A system of ductile basement/cover large-scale folds formed here by rotation of pre-existing, closely spaced, domino-type normal faults. However, the advancement of the wedge was likely accomplished by formation of a new thrust fault rooted in the ductile lower and/or middle crust. Afterwards, the basement of the lower plate Fatric basin was underthrust below the Veporic wedge; its sedimentary fill was detached and stacked to create the later Krížna decollement cover nappe. Underthrusting continued until the lower plate–Tatric margin collided with the orogenic wedge toe. Large basement slabs were peeled off this margin, shortened internally and thrust at moderate distances over the South Tatric ridge area. Pre-existing domino blocks were only slightly inverted here and passively transported above new thrust faults, which formed along weak crustal layers. It is inferred that the origin and geometry of large-scale, basement-involved structures generated in wide, intracontinental convergent zones is largely dependent on the lower versus upper plate position with distinctly different thermo-mechanical regimes operating during deformation.  相似文献   

4.
《Journal of Structural Geology》2001,23(6-7):1031-1042
The Eastern Highlands shear zone in Cape Breton Island is a crustal scale thrust. It is characterized by an amphibolite-facies deformation zone ∼5 km wide formed deep in the crust that is overprinted by a greenschist-facies mylonite zone ∼1 km wide that formed at a more shallow level. Hornblende 40Ar/39Ar plateau ages on the hanging wall decrease towards the centre of the shear zone. In the older zone (over 7.8 km from the centre), the ages are between ∼565 and ∼545 Ma; in the younger zone (within 4.5 km of the centre), they are between ∼425 and ∼415 Ma; and in the transitional zone in between, they decrease abruptly from ∼545 to ∼425 Ma. Pressures of crystallization of plutons in the hanging wall, based on the Al-in-hornblende barometer and corresponding to depth of emplacement, increase towards the centre of the shear zone and indicate a differential uplift of up to ∼28 km associated with movement along the shear zone. The age pattern is interpreted to have resulted from the differential uplift. The pressure data show that rocks exposed in the younger zone were buried deep in the crust and did not cool through the hornblende Ar blocking temperature (∼500°C) until differential uplift occurred. The 40Ar/39Ar ages in the zone (∼425–415 Ma) thus date shear zone movement or the last stage of it. In contrast, rocks in the older zone were more shallowly buried before differential uplift and cooled through the blocking temperature soon after the emplacement of ∼565–555 Ma plutons in the area, long before shear zone movement. The transitional zone corresponds to the Ar partial retention zone before differential uplift. The 40Ar/39Ar age pattern thus reflects a Neoproterozoic to Silurian cooling profile that was exposed as a result of differential uplift related to movement along the shear zone. A similar K–Ar age pattern has been reported for the Alpine fault in New Zealand. It is suggested that such isotopic age patterns can be used to help constrain the ages, kinematics, displacements and depth of penetration of shear zones.  相似文献   

5.
I conducted new vorticity and deformation temperatures studies to test competing models of the exhumation of the mid-crustal rocks exposed in the Dolpo region (West Nepal). My results indicate that the Main Central Thrust is located ∼5 km structurally below the previous mapped locations. Deformation temperature increasing up structural section from ∼450 °C to ∼650 °C and overlap with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at “close” to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88–1) pervasively distributed through the lower portion of the GHS. My results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectonometamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.  相似文献   

6.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   

7.
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) – Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48–40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40–30 Ma in the Tso Morari dome (northern section of the transect) and by 30–20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene.High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10 km) between 20 and 6 Ma, while its southern front reached this depth at 10–5 Ma.  相似文献   

8.
Suture zones often archive complex geologic histories underscored by episodes of varying style of deformation associated with intercontinental collision. In the Lopukangri area of south-central Tibet (29°54′N, 84°24′E) field relationships between tectonic units juxtaposed by the India–Asia suture are well exposed, including Indian passive margin rocks (Tethyan Sedimentary Sequence), forearc deposits (Xigaze Group), magmatic arc rocks (Gangdese batholith and Linzizong Formation) and syncollision deposits (Eocene–Miocene conglomerates). To better understand the structural history of this area, we integrated geologic mapping with biotite 40Ar/39Ar thermochronology and zircon U–Pb geochronology. The first-order structure is a system of north-directed thrusts which are part of the Great Counter thrust (GCT) that places Indian passive margin rocks and forearc deposits on top of magmatic arc rocks and syn-tectonic conglomerates. We infer the south-directed Late Oligocene Gangdese Thrust (GT) exists at unexposed structural levels based on field mapping, cross sections, and regional correlations as it has been documented immediately to the east. A granite in the footwall has a U–Pb zircon age of 38.4 ± 0.4 Ma, interpreted to be the age of emplacement of the granite, and a younger 40Ar/39Ar biotite age of 19.7 ± 0.1 Ma. As the granite sample is situated immediately below a nonconformity with low grade greenschist facies rocks, we interpret the younger age to reflect Miocene resetting of the biotite Ar system. Syn-tectonic deposits in the Lopukangri area consist of three conglomerate units with a total thickness of ∼1.5 km. The lower two units consist of cobble gravel pebble conglomerates rich in volcanic and plutonic clasts, transitioning to conglomerates with only sedimentary clasts in the upper unit. We correlate the syncollision deposits to the Eocene–Oligocene Qiuwu Formation based on field relationships, stratigraphy and petrology. Petrology and clast composition suggest the lower two units of the Qiuwu Formation had a northern provenance (Lhasa block and magmatic arc) and the upper unit had a southern provenance (Tethyan Sedimentary Sequence). Our observations are consistent with paleocurrent data from other studies which suggest a predominant south-directed paleoflow for this formation. We propose a model in which: (1) granites intrude at 38.4 ± 0.4 Ma; (2) are exhumed by erosion; (3) and buried due to regional subsidence and initial deposition of a conglomerate unit; (4) exposed by the GT at ∼27–24 Ma to provide detritus; (5) buried a second time by hanging wall-derived sedimentary deposits and the GCT, then (6) exposed from a depth of ∼12–10 km by a blind thrust at ∼19 Ma. An alternate model describes: (1) intrusion of the granites at 38.4 ± 0.4 Ma, followed by (2) exhumation of the granites via normal faulting to provide detritus; (3) then burial by the GCT at ∼24 Ma, followed by (4) exhumation via regional erosional denudation at ∼19 Ma. Exposure of the GT west of Xigaze has not been confirmed. We suggest that shallower structural levels of the India-Asia suture zone are exposed to the west of the study area, compared to the east, where the GT has been previously documented. The GCT in the area is short-lived, as it is cut and offset by a Middle Miocene ∼N-striking W-dipping oblique normal fault system.  相似文献   

9.
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).  相似文献   

10.
The Anita Peridotite is a ~20 km long by 1 km wide exhumed fragment of spinel facies sub‐arc lithospheric mantle that is enclosed entirely within the ≤4 km wide ductile Anita Shear Zone, and bounded by quartzofeldspathic lower crustal gneisses in Fiordland, south‐western New Zealand. Deformation textures, grain growth calculations and thermodynamic modelling results indicate the mylonitic peridotite fabric formed during rapid cooling, and therefore likely during extrusion. However, insights into the exhumation process are gained through examination of aluminous garnet‐bearing meta‐sedimentary gneisses also enclosed within the shear zone. P–T calculations indicate that prior to mylonitization the gneisses enclosing the peridotite equilibrated at 675–746 °C in the sillimanite stability field (stage I), before being buried to near the base of thickened arc crust (stage II; ~686 ± 26 °C and 10.7 ± 0.8 kbar). From this point on, the peridotite unit and the quartzofeldspathic rocks share a deformation history involving extensive recrystallization (stage III) within the Anita Shear Zone. Coupled exhumation of these portions of lower crust and upper mantle occurred during regional thinning of over‐thickened lithosphere at c. 104 Ma (U–Pb zircon). Our favoured model for the exhumation process involves heterogeneous transpressive deformation within the translithospheric Anita Shear Zone, which provided a conduit for ductile extrusion through the crust.  相似文献   

11.
The structure of the Chilean Frontal Cordillera, located over the Central Andes flat-slab subduction segment (27°–28.5°S), is characterized by a thick-skinned deformation, affecting both the pre-rift basement and the Mesozoic and Cenozoic infill of the NNE-SSW Lautaro and Lagunillas Basins, which were developed during the Pangea-Gondwana break-up. The compressive deformation show a complex interaction between Mesozoic rift structures and thrust systems, affecting a suite of Permo-Triassic (258–245 Ma) granitic blocks. We used a combination of geological mapping, new structural data, balanced and restored cross sections and geochronological data to investigate the geometry and kinematics of the Andean thick-skinned thrust systems of the region. The thrust systems include double-vergent thick-skinned thrust faults, basement-cored anticlines and minor thin-skinned thrusts and folds. The presence of Triassic and Jurassic syn-rift successions along the hanging wall and footwall of the basement thrust faults are keys to suggest that the current structural framework of the region should be associated with the shortening of previous Mesozoic half grabens. Based on this interpretation, we propose a deformation mechanism characterized by the tectonic inversion of rift-related faults and the propagation of basement ramps that fold and cut both, the early normal faults and the basement highs. New U–Pb ages obtained from synorogenic deposits (Quebrada Seca and Doña Ana formations) indicate at least three important compressive pulses. A first pulse at ∼80 Ma (Late Cretaceous), a second pulse related to the K-T phase of Andean deformation and, finally, a third pulse that occurred during the lower Miocene.  相似文献   

12.
This study uses zircon and apatite fission‐track (FT) analyses to reveal the exhumation history of the granitoid samples collected from the Lesser Hinggan Mountains, northeast China. A southeast to northwest transect across the Lesser Hinggan Mountains yielded zircon FT ages between 89.8 ± 5.7 and 100.4 ± 8.6 Ma, and apatite FT ages between 50.6 ± 13.8 and 74.3 ± 4.5 Ma with mean track lengths between 11.7 ± 2.0 and 12.8 ± 1.7 µm. FT results and modelling identify three stages in sample cooling history spanning the late Mesozoic and Cenozoic eras. Stage one records rapid cooling from the closure temperature of zircon FT to the high temperature part of the apatite FT partial annealing zone (∼210–110 °C) during ca. 95 to 65 Ma. Stage two records a period of relative slow cooling (∼110–60 °C) taking place between ca. 65 and 20 Ma, suggesting that the granitoids had been exhumed to the depth of ∼1−2 km. Final stage cooling (60–20 °C) occurred since the Miocene at an accelerated rate bringing the sampled rocks to the Earth's surface. The maximum exhumation is more than 5 km under a steady‐state geothermal gradient of 35 °C/km. Integrated with the tectonic setting, this exhumation is possibly led by the Pacific Plate subduction combined with intracontinental orogeny associated with asthenospheric upwelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Western Uganda is a key region for understanding the development of the western branch of the East African rift system and its interaction with pre-existing cratonic lithosphere. It is also the site of the topographically anomalous Rwenzori Mountains, which attain altitudes of >5000 m within the rift. New structural and geochronological data indicate that western Uganda south and east of the Rwenzori Mountains consists of a WSW to ENE trending fold and thrust belt emplaced by thick-skinned tectonics that thrust several slices of Proterozoic and Archaean units onto the craton from the south. The presence of Archaean units within the thrust stack is supported by new Laser-ICP-MS U–Pb age determinations (2637–2584 Ma) on zircons from the Rwenzori foothills. Repetition of the Paleoproterozoic units is confirmed by mapping the internal stratigraphy where a basal quartzite can be used as marker layer, and discrete thrust units show distinct metamorphic grades. The thrust belt is partially unconformably covered by a Neoproterozoic nappe correlated with the Kibaran orogenic belt. Even though conglomerates mark the bottom of the Kibaran unit, intensive brittle fault zones and pseudotachylites disprove an autochthonous position. The composition of volcanics in the Toro-Ankole field of western Uganda can be explained by the persistence of a cratonic lithosphere root beneath the northwardly thrusted Archaean and Palaeoproterozoic rocks of westernmost Uganda. Volcanic geochemistry indicates thinning of the lithosphere from >140 km beneath Toro-Ankole to ca. 80 km beneath the Virunga volcanic field about 150 km to the south. We conclude that the western branch of the East African rift system was initiated in an area of thinner lithosphere with Palaeoproterozoic cover in the Virunga area and has propagated northwards where it now abuts against thick cratonic lithosphere covered by a thrust belt consisting of gneisses, metasediments and metavolcanics of Neoarchaean to Proterozoic age.  相似文献   

14.
High-pressure conditions of 11–13 kbar/500–540 °C during maximum burial were derived for garnet amphibolite in the Tapo Ultramafic Massif in the Eastern Cordillera of Peru using a PT pseudosection approach. A Sm–Nd mineral-whole rock isochron at 465 ± 24 Ma dates fluid influx at peak temperatures of ∼600 °C and the peak of high pressure metamorphism in a rodingite of this ultramafic complex. The Tapo Ultramafic Complex is interpreted as a relic of oceanic crust which was subducted and exhumed in a collision zone along a suture. It was buried under a metamorphic geotherm of 12–13 °C/km during collision of the Paracas microcontinent with an Ordovician arc in the Peruvian Eastern Cordillera. The Ordovician arc is represented by the western Marañon Complex. Here, low PT conditions at 2.4–2.6 kbar, 300–330 °C were estimated for a phyllite–greenschist assemblage representing a contrasting metamorphic geotherm of 32–40 °C/km characteristic for a magmatic arc environment.  相似文献   

15.
Thermal indicators record exhumation of sedimentary units from depths in excess of 6 km over most of the Outer Carpathian fold and thrust belt in Poland. Apatite fission track data, showing cooling ages ranging between 32.1 ± 4.8 and 7.0 ± 0.8 Ma, indicate that exhumation was partially coeval with shortening. However, new thermochronometric information obtained as part of this study allowed us to unravel a previously undetected, post-thrusting exhumation stage. The integration of new field data and structural analysis with low-T thermochronometry suggests that termination of thrusting – at ca. 11 Ma in the area of the present study – was followed by gravity disequilibria within the orogenic wedge. The related extension and denudation phenomena appear to have played a primary role in the recent (< 10 Ma) tectonic evolution of the Western Outer Carpathians, exerting a major control on exhumation processes in this key area of the Alpine–Carpathian mountain system.  相似文献   

16.
Intracontinental foreland basins with fold-and-thrust belts on the southern periphery of the Tianshan orogenic belt in China resulted from still-active contractional deformation ultimately cased by the India–Asia collision. To quantify the amounts of shortening distance and the rates of deformation, and to decipher the architectural framework, we mapped the stratigraphy and structure of four anticlines in the Kuqa and Baicheng foreland thrust belts in the central southern Tianshan. In the Baicheng foreland thrust belts, Lower Cretaceous Baxigai and Bashijiqike Formations located in the core of the Kumugeliemu anticline are overlain by the Paleocene to Eocene Kumugeliemu Formation, above which are conformable Oligocene through Pleistocene sediments. A disharmonic transition from parallel to unconformable bedding at the boundary of the Miocene Kangcun and Pliocene Kuqa Formations suggests a change from pre-detachment folded strata to beds deposited on top of a growing anticline. Most of the anticlines have steep limbs (70–90°) and are box to isoclinal folds, suggestive of detachment folding or faulted detachment folding (faults that transect a fold core or limb). Shortening estimates calculated from the cross-sections by the Excess area method indicate that the total shortening for the Kelasu, Kuchetawu, Kezile and Yaken sections are 6.3 km, 6.4 km, 5.8 km and 0.6 km, respectively, and the respective depths of the detachment zones are (2.3 km and 6.9 km), 2.3 km, 2.5 km and 3.4 km. Time estimates derived from a paleomagnetic study indicate that the transition to syn-folding strata occurred at ∼6.5 Ma at the Kuchetawu section along the Kuqa river. In addition, according to our field observations and previous sedimentary rate studies, the initial time of folding of the Yaken anticline was at 0.15–0.21 Ma. Therefore, the average shortening rate that began at ∼6 Ma was ∼2 mm/a for the Kelasu, Kuchetawu and Kezile sections. At 0.15–0.21 Ma, the average shortening rate increased to 3–4 mm/a in the Yaken section. Combined with the recent GPS data, the shortening rate in the central southern Tianshan area increased to 4.7 ± 1.5 mm/a at present. We suggest that there was a linear increase in shortening rate in the southern Tianshan foreland basin, which also indicates that the far field stress increased considerably from the late Miocene to Present in response to the India–Asia collision.  相似文献   

17.
Petrological and geochronological investigations were carried out on metamorphic rocks of the Veporic unit (Inner Western Carpathians) in northern Hungary. K/Ar and Ar/Ar data on micas and amphibole show only Alpine ages (mostly in the range of 87-95 Ma) in this basement unit. Thermobarometric calculations yield lower amphibolite facies peak conditions (ca. 550냴 °C and 9ǃ kbar) for the Eoalpine metamorphic event. Complex evolution of gneissic rocks is reflected by the presence of discontinuously zoned garnets, the cores of which may represent relics of a pre-Alpine (presumably Variscan) thermal event. Zircon fission track (FT) data in the narrow range of 75-77.5 Ma indicate that this portion of the Veporic unit was emplaced to shallow crustal levels already during the Senonian time. The relative minor difference between zircon FT and K/Ar or Ar/Ar ages suggests very rapid cooling during the Late Cretaceous, most probably related to the extensional unroofing of the Veporic core complex. The obtained cooling ages do not support previous models of Tertiary uplift and exhumation of the Veporic unit along the Hurbanovo-Diósjeni Line.  相似文献   

18.
Lawsonite eclogite and garnet blueschist occur as metre-scale blocks within serpentinite mélange in the southern New England Orogen (SNEO) in eastern Australia. These high-P fragments are the products of early Palaeozoic subduction of the palaeo-Pacific plate beneath East Gondwana. Lu–Hf, Sm–Nd, and U–Pb geochronological data from Port Macquarie show that eclogite mineral assemblages formed between c. 500 and 470 Ma ago and became mixed together within a serpentinite-filled subduction channel. Age data and P–T modelling indicate lawsonite eclogite formed at ~2.7 GPa and 590°C at c. 490 Ma, whereas peak garnet in blueschist formed at ~2.0 GPa and 550°C at c. 470 Ma. The post-peak evolution of lawsonite eclogite was associated with the preservation of pristine lawsonite-bearing assemblages and the formation of glaucophane. By contrast, the garnet blueschist was derived from a precursor garnet–omphacite assemblage. The geochronological data from these different aged high-P assemblages indicate the high-P rocks were formed during subduction on the margin of cratonic Australia during the Cambro-Ordovician. The rocks however now reside in the Devonian–Carboniferous southern SNEO, which forms the youngest and most outboard of the eastern Gondwanan Australian orogenic belts. Geodynamic modelling suggests that over the time-scales that subduction products accumulated, the high-P rocks migrated large distances (~>1,000 km) during slab retreat. Consequently, high-P rocks that are trapped in subduction channels may also migrate large distances prior to exhumation, potentially becoming incorporated into younger orogenic belts whose evolution is not directly related to the formation of the exhumed high-P rocks.  相似文献   

19.
Miocene sedimentary successions of the Ñirihuau and Collón Cura formations east of the El Maitén Belt constitute a partial record of the Andean exhumation, defining a synorogenic infill of the Ñirihuau Basin in the foothills of the North Patagonian fold and thrust belt. Gravimetric and seismic data allow recognizing the internal arrangement and geometry of these depocenters that host both units, separating a synextensional section previous to the Andean development at these latitudes, from a series of syncontractional units above. A series of progressive unconformities in the upper terms shows the synorogenic character of these units corresponding to the different pulses of deformation that occurred during the middle Miocene. New U–Pb ages constrain these pulses to the ∼13.5–12.9 Ma interval and allow reconstructing the tectonic history of this region based on the detrital zircon source populations. The U–Pb maximum ages of sedimentation give to the Ñirihuau Formation in particular a younger age than previously assumed. Additionally, synsedimentary deformation in strata of the upper exposures of the Collón Cura Formation associated with contractional structures and U–Pb ages allow identifying a younger paleoseismogenic pulse in ∼11.3 Ma. Thus, based on these data and a compilation of previous datasets, a tectonic evolution is proposed characterized by a contractional episode that migrated eastwardly since ∼19 to 15 Ma producing the Gastre broken foreland and then retracted to the eastern North Patagonian Precordillera, where out-of-sequence thrusts cannibalized the wedge top zone in the El Maitén belt at ∼13.5–11.3 Ma.  相似文献   

20.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号