首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we link mineral inclusion data, trace element analyses, U-Pb age and Hf isotope composition obtained from distinct zircon domains of complex zircon to unravel the origin and multi-stage metamorphic evolution of amphibolites from the Sulu ultrahigh-pressure (UHP) terrane, eastern China. Zircon grains separated from amphibolites from the CCSD-MH drill hole (G12) and Niushan outcrop (G13) were subdivided into two main types based on cathodoluminescence (CL) and Laser Raman spectroscopy: big dusty zircons with inherited cores and UHP metamorphic rims and small clear zircons. Weakly zoned, grey-white luminescent inherited cores preserve mineral inclusions of Cpx + Pl + Ap ± Qtz indicative of a mafic igneous protolith. Dark grey luminescent overgrowth rims contain the coesite eclogite-facies mineral inclusion assemblage Coe + Grt + Omp + Phe + Ap, and formed at T = 732-839 °C and P = 3.0-4.0 GPa. In contrast, white luminescent small clear zircons preserve mineral inclusions formed during retrograde HP quartz eclogite to LP amphibolite-facies metamorphism (T = 612-698 °C and P = 0.70-1.05 GPa). Inherited zircons from both samples yield SHRIMP 206Pb/238U ages of 695-520 Ma with an upper intercept age of 800 ± 31 Ma. The UHP rims yield consistent Triassic ages around 236-225 and 239-225 Ma for G12 and G13 with weighted means of 229 ± 3 and 231 ± 3 Ma, respectively. Small clear zircons from both samples give 206Pb/238U ages around 219-210 Ma with a weighted mean of 214 ± 3 Ma, interpreted as the age of retrograde quartz eclogite-facies metamorphism. Matrix amphibole from both samples indicate Ar-Ar ages of 209 ± 0.7 and 207 ± 0.7 Ma, respectively, probably dating late amphibolite-facies retrogression. The data suggest subduction of Neoproterozoic mafic igneous rocks to UHP conditions in Middle Triassic (∼230 Ma) times and subsequent exhumation to an early HP (∼214 Ma) and a late LP stage (∼208 Ma) over a period of ∼16 and 6 Myr, respectively. Thus, early exhumation from a mantle depth of 120-100 km to about 60 km occurred at an average rate of 0.3 cm/y, while subsequent exhumation to a middle crustal level took place at approximately 0.54 cm/y. These exhumation rates are considerably slower than those obtained for UHP rocks in the Dora Maira and Kokchetav massifs (2-3 cm/y).Based on similar P-T estimates and trace element and Hf isotope compositions, Sulu amphibolites can be identified as retrograde UHP eclogites. The εHf(800) of +8 implies a significant input from the depleted mantle to the Sulu-Dabie terrane during the middle Neoproterozoic. Overgrown rims are characterized by a distinct trace element composition with low Lu/Hf and Th/U and significantly higher 176Hf/177Hf ratios than inherited cores, consistent with formation during/after garnet (re-)crystallization and fractionation of the Lu-Hf system during UHP metamorphism. The combined dataset suggests homogenization of the 176Hf/177Hf ratio within the metamorphic mineral assemblage and during protolith formation. Observed variations are explained by mixing of material from both domains during laser ablation, e.g., due to partial recrystallization of inherited cores.  相似文献   

2.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

3.
Several Gigantopithecus faunas associated with taxonomically undetermined hominoid fossils and/or stone artifacts are known from southern China. These faunas are particularly important for the study of the evolution of humans and other mammals in Asia. However, the geochronology of the Gigantopithecus faunas remains uncertain. In order to solve this problem, a program of geochronological studies of Gigantopithecus faunas in Guangxi Province was recently initiated. Chuifeng Cave is the first studied site, which yielded 92 Gigantopithecus blacki teeth associated with numerous other mammalian fossils. We carried out combined ESR/U-series dating of fossil teeth and sediment paleomagnetic studies. Our ESR results suggest that the lower layers at this cave can be dated to 1.92 ± 0.14 Ma and the upper layers can be dated to older than 1.38 ± 0.17 Ma. Correlation of the recognized magnetozones to the geomagnetic polarity timescale was achieved by combining magnetostratigraphic, biostratigraphic and ESR data. The combined chronologies establish an Olduvai subchron (1.945–1.778 Ma) for the lowermost Chuifeng Cave sediments. We also analyzed the enamel δ13C values of the Gigantopithecus faunas. Our results show that southern China was dominated by C3 plants during the early Pleistocene and that the Gigantopithecus faunas lived in a woodland-forest ecosystem.  相似文献   

4.
We report seven high precision U–Pb age determinations for mafic dykes from a number of major Precambrian swarms located in the Dharwar craton, south India. These new age results define two previously unrecognized widespread Paleoproterozoic dyking events at 2221–2209 and 2181–2177 Ma, and confirm a third at 2369–2365 Ma. Three parallel E–W trending mafic dykes from the petrographically and geochemically variable Bangalore dyke swarm, the most prominent swarm in the Dharwar craton, yield indistinguishable U–Pb baddeleyite ages of 2365.4 ± 1.0, 2365.9 ± 1.5 and 2368.6 ± 1.3 Ma, indicating rapid emplacement in less than five million years. A compilation of Paleoproterozoic U–Pb ages for mafic magmatic events worldwide indicates that the 2369–2365 Ma Bangalore dyke swarm represents a previously unrecognized pulse of mafic magmatism on Earth.  相似文献   

5.
New SHRIMP U–Pb zircon geochronology and fieldwork integrated with reappraisal of earlier mapping demonstrates that the so-called ‘southern region’ of the mainland Lewisian Gneiss Complex comprises a package of distinct tectono-stratigraphic units. From south to north these are the Rona (3135–2889 Ma), Ialltaig (c. 2000 Ma) and Gairloch (ca. 2200 Ma) terranes. These terranes were metamorphosed and deformed separately until ca. 1670 Ma by which time they had been juxtaposed and were integral with terranes to the north. The northern boundary of the Palaeoproterozoic Gairloch terrane is a shear zone, north of which is the Archaean Gruinard terrane with 2860–2800 Ma protoliths and ca. 2730 Ma granulite facies metamorphism. In contrast, south of the Gairloch terrane, the Archaean gneisses of the Rona terrane have older protolith ages, underwent an anatectic event at ca. 2950 Ma and show no evidence of 2730 Ma granulite facies metamorphism. In current structural interpretations the Gruinard terrane forms a structural klippe over the intervening Gairloch terrane. However, the Rona and Gruinard terranes cannot be equivalent on age grounds, and are interpreted as unrelated different entities. Contained within the southern margin of the Gairloch terrane is the Ialltaig terrane, shown here to comprise an exotic slice of granulite facies Palaeoproterozoic crust, rather than Archaean basement as previously thought. The ca. 1877 Ma granulite facies metamorphism of the Ialltaig terrane is the youngest event that is unique to a single terrane in the mainland Complex, making it an upper estimate for the timing of amalgamation with surrounding tectonic units. U–Pb titanite ages of 1670 ± 12 Ma and ca. 1660 Ma for low-strain zones at Diabaig are interpreted to be cooling through the titanite closure temperature after the amphibolite facies reworking of these southern terranes and the southern margin of the Gruinard Terrane. These new data have implications for the tectonic setting of the mainland in relation to the Outer Hebrides and in the wider evolution of the basement in the North Atlantic.  相似文献   

6.
U–Pb zircon geochronology of two Permo-Triassic granites (samples OT-52 and OT-272 with ages of 229 ± 8 Ma and 256 ± 2 Ma, respectively) in the Unazuki area, Hida Metamorphic Belt, southwest Japan, revealed the presence of Eoarchean to Paleoproterozoic inheritance. Inheritance is consistent with both samples showing low zircon saturation temperatures for their bulk compositions. In OT-52, dark in CL, low Th/U zircon domains have a mean 207Pb/206Pb age of 1940 ± 17 Ma, which is consistent with an age of 1937 ± 6 Ma for anatexis in the Precambrian Busan gneiss complex in Korea. Eoarchaean inherited zircons with 207Pb/206Pb ages from ca. 3750 to 3550 Ma are common in OT-272 but are few in OT-52, suggesting a source from rocks with affinities to those in the Anshan area in the northeast China part of the North China Craton. On the other hand, a Hida Metamorphic Belt metasedimentary gneiss into which the granites were intruded contains ca. 1840, 1130, 580, 360, 285 and 250 Ma zircons (Sano et al., 2000). These ages suggest that the Unazuki Mesozoic granites did not originate from proximal Hida Metamorphic Complex rocks, but instead from unrelated rocks obscured at depth. The predominance of Eoarchean to Paleoproterozoic age components, and the marked lack of 900–700 Ma components suggest that the source was the (extended?) fringe of the North China Craton, rather than from Yangtze Craton crust. The Mesozoic evolution of Japan and its linkages to northeast Asia are discussed in the context of these results.  相似文献   

7.
Tissue N contents and δ15N signatures in 175 epilithic mosses were investigated from urban to rural sites in Guiyang (SW China) to determine atmospheric N deposition. Moss N contents (0.85–2.97%) showed a significant decrease from the urban area (mean = 2.24 ± 0.32%, 0–5 km) to the rural area (mean = 1.27 ± 0.13%, 20–25 km), indicating that the level of N deposition decreased away from the urban environment, while slightly higher N contents re-occurred at sites beyond 30 km, suggesting higher N deposition in more remote rural areas. Moss δ15N ranged from −12.50‰ to −1.39‰ and showed a clear bimodal distribution (−12‰ to −6‰ and −5‰ to −2‰), suggesting that there are two main sources for N deposition in the Guiyang area. More negative δ15N (mean = −8.87 ± 1.65‰) of urban mosses mainly indicated NH3 released from excretory wastes and sewage, while the less negative δ15N (from −3.83 ± 0.82‰ to −2.48 ± 0.95‰) of rural mosses were mainly influenced by agricultural NH3. With more negative values in the urban area than in the rural area, the pattern of moss δ15N variation in Guiyang was found to be opposite to cities where N deposition is dominated by NOx–N. Therefore, NHx–N is the dominant N form deposited in the Guiyang area, which is supported by higher NHx–N than NOx–N in local atmospheric deposition. From the data showing that moss is responding to NHx–N/NOx–N in deposition it can be further demonstrated that the variation of moss δ15N from the Guiyang urban to rural area was more likely controlled by the ratio of urban-NHx/agriculture-NHx than the ratio of NHx–N/NOx–N. The results of this study have extended knowledge of atmospheric N sources in city areas, showing that urban sewage discharge could be important in cities co-generic to Guiyang.  相似文献   

8.
Paleoproterozoic Xuwujia gabbronorites in the northern margin of the North China craton occur as dykes, sills and small plutons intruded into khondalite (aluminous paragneisses, sedimentary protoliths deposited at ca. 2.0–1.95 Ga), and as numerous entrained bodies and fragments of variable scales in the Liangcheng granitoids (ca. 1.93–1.89 Ga). These gabbronoritic dykes are present at all locations where ca. 1.93–1.92 Ga ultra-high-temperature metamorphism is recorded in the khondalite. A gabbronorite sample from the Hongmiaozi dyke gives zircon 207Pb/206Pb mean ages of 1954 ± 6 Ma (core domains) and 1925 ± 8 Ma (rim domains). These ages, as well as previously reported ages, constrain the age of mafic magmatism to be at ca. 1.96–1.92 Ga (∼1.93 Ga). One sample from the Xigou gabbro intruded by the Liangcheng granitoids gives a zircon 207Pb/206Pb mean age of 1857 ± 4 Ma, which is interpreted as the age of a metamorphic overprint. The Xuwujia gabbronorites comprise mainly gabbronorite compositions, as well as some norite, olivine gabbronorite, monzonorite, quartz gabbronorite, and quartz monzonorite. Chemically, they are tholeiitic and can be divided into two groups: a high-Mg group (6.2–22.9 wt.% MgO) and a relatively low-Mg group (2.2–5.7 wt.% MgO). The high-Mg group shows negative Eu-anomalies (Eu/Eu* = 0.53–0.72), slight light rare earth element enrichment (La/YbN = 0.56–1.53), and small negative anomalies in high field-strength elements. The ?Nd (t = 1.93 Ga) values vary from +0.3 to +2.4. The low-Mg group shows varied Eu-anomalies (Eu/Eu* = 0.48–1.05), and is enriched in light rare earth elements (La/YbN = 1.51–11.98). The majority shows negative anomalies in high field-strength elements (e.g., Th, Nb, Zr, and Ti). Initial ?Nd (at 1.93 Ga) values for low-Mg gabbronorites vary from −5.0 to 0. The Xuwujia gabbronorites possibly experienced assimilation of crust, and fractional crystallization of initially olivine and hypersthene (the high-Mg group), and then olivine, clinopyroxene, and plagioclase (the low-Mg group). The slightly younger Liangcheng granitoids consist of garnet-bearing granite, granodiorite and quartz-rich granitic compositions. They are intermediate to felsic calc-alkaline rocks, thought to be derived from surrounding metasedimentary crust. Xigou gabbro could represent early cumulates. The granitoids have relatively high-Mg numbers (up to 54), and show some chemical affinities with the gabbronorites, which could have resulted from incorporation of gabbronoritic melts. The occurrence and chemical variations of the Xuwujia gabbronorites and Liangcheng granitoids can be interpreted to have resulted from crust–mantle interaction, with mingling and partial mixing of mantle (gabbronoritic) and crustal (granitic) melts. The Xuwujia gabbronorites originated from a mantle region with high potential temperatures (∼1550 °C), possibly associated with a plume or more likely a ridge-subduction-related mantle upwelling event. They could have had extremely high primary intrusion temperatures (up to 1400 °C). Emplacement of these magmas was likely responsible for the extensive crustal anatexis (Liangcheng granitoids) and the local ultra-high-temperature metamorphism. These sequences may have followed ca. 1.95 Ga continent–continent (arc?) juxtaposition and were themselves followed by significant regional uplift and exhumation in the northern margin of the North China craton.  相似文献   

9.
We report 39Ar-40Ar ages of whole rock (WR) and plagioclase and pyroxene mineral separates of nakhlites MIL 03346 and Y-000593, and of WR samples of nakhlites NWA 998 and Nakhla. All age spectra are complex and indicate variable degrees of 39Ar recoil and variable amounts of trapped 40Ar in the samples. Thus, we examine possible Ar-Ar ages in several ways. From consideration of both limited plateau ages and isochron ages, we prefer Ar-Ar ages of NWA 998 = 1334 ± 11 Ma, MIL 03346 = 1368 ± 83 Ma (mesostasis) and 1334 ± 54 Ma (pyroxene), Y-000593 = 1367 ± 7 Ma, and Nakhla = 1357 ± 11 Ma, (2σ errors). For NWA 998 and MIL 03346 the Ar-Ar ages are within uncertainties of preliminary Rb-Sr isochron ages reported in the literature. These Ar-Ar ages for Y-000593 and Nakhla are several Ma older than Sm-Nd ages reported in the literature. We conclude that the major factor in producing Ar-Ar ages slightly too old is the presence of small amounts of trapped martian or terrestrial 40Ar on weathered grain surfaces that was degassed along with the first several percent of 39Ar. A total K-40Ar isochron for WR and mineral data from five nakhlites analyzed by us, plus Lafayette data in the literature, gives an isochron age of 1325 ± 18 Ma (2σ). We emphasize the precision of this isochron over the value of the isochron age. Our Ar-Ar data are consistent with a common formation age for nakhlites. The cosmic-ray exposure (CRE) age for NWA 998 of ∼12 Ma is also similar to CRE ages for other nakhlites.  相似文献   

10.
Chronology of Neoproterozoic volcanosedimentary successions remains controversial for many regions of the Arabian–Nubian Shield, including the Dokhan Volcanics of NE Egypt. New U–Pb zircon SHRIMP ages have been obtained for 10 silica-rich ignimbrites and two subvolcanic dacitic bodies, mapped as Dokhan Volcanics, from the North Eastern Desert of Egypt. Crystallization ages range between 592 ± 5 and 630 ± 6 Ma (Early Ediacaran). Apparently, the late consolidation of the Arabian–Nubian Shield was accompanied by the evolution of isolated volcanic centres and basin systems which developed during a period of approx. 40 Ma, independently in space and time and probably under changing tectonic regimes. The obtained age data together with other previously published reliable ages for Dokhan Volcanics suggest two main pulses of volcanic activity: 630–623 Ma and 618–592 Ma. Five samples contain inherited zircons, with ages of 669, 715–746, 847 and 1530 Ma, supporting models that North Eastern Desert crust is mainly juvenile Neoproterozoic crust.  相似文献   

11.
This study presents a new high-precision 40Ar/39Ar age for the Devonian hot-spring system at Rhynie. Hydrothermal K-feldspar sampled from two veins that represent feeder conduits and a hydrothermally altered andesite wall rock, date the hydrothermal activity, the fossilised biota, and syn - K-feldspar gold mineralization at 403.9 ± 2.1 Ma (2σ). Oxygen isotope data for the parent fluid (−4‰ to 2‰) show that the K-feldspar was precipitated from a dominantly meteoric fluid, which mixed with magmatic fluids from a degassing magma chamber.The 40Ar/39Ar age (403.9 ± 2.1 Ma [2σ]) when recalculated (407.1 ± 2.2 Ma [2σ]) with respect to the astronomically tuned age for Fish Canyon sanidine (28.201 ± 0.023 Ma [1σ]), also provides a robust marker for the polygonalis-emsiensis Spore Assemblage Biozone within the Pragian-?earliest Emsian. Furthermore, the age identifies the Devonian pull-apart volcano-sedimentary basins of the British and Irish Caledonides (and their root zones), as specific targets for future gold exploration.  相似文献   

12.
Rb-Sr and U-Pb isotopic data for granulite facies rocks, forming textural relics with respect to eclogite facies metamorphism in the Western Gneiss Region (WGR) of Norway, highlight the importance of textures and mineral reaction kinetics for the interpretation of geochronological data. Studied rocks from Bårdsholmen, southern WGR, were subjected to granulite facies metamorphism at 955 ± 3 Ma (U-Pb, zircon). Later on, they experienced a subduction-related, kinetically stranded eclogitization (T > 650 °C at ∼20 kbar) at 404 ± 2 Ma (Rb-Sr multimineral internal isochron data), followed by exhumation through amphibolite facies conditions. Full conversion of granulite to eclogite was restricted to zones of fluid infiltration and deformation. Despite the fact that metamorphic temperatures vastly exceeded the commonly assumed ‘closure temperature’ for Rb-Sr in submillimeter-sized biotite for several Ma during eclogite facies overprint, Sr-isotopic signatures of relic biotite have not been fully reset. Large biotite crystals nearly record their Sveconorwegian (Grenvillian) crystallization age. Sr signatures of other granulite facies phases (feldspar, pyroxenes, amphibole) remained unchanged, with the exception of apatite. The results imply that isotopic signatures much closer correspond to the P, T conditions of formation recorded by a dated phase and its paragenesis, than to a temperature history. In texturally well-equilibrated high-grade rocks which experienced no mineral reactions and remained devoid of free fluids during exhumation, like granulites or eclogites, isotopic resetting during cooling is either kinetically locked, or restricted to sluggish intermineral diffusion which demonstrably does not lead to full isotopic homogenization. In texturally unequilibrated rocks, textural relics are likely to represent isotopic relics. It is shown that for both high-grade rocks and for rocks with textural disequilibria, geologically meaningful isotopic ages based on isochron methods can only be derived from sub-assemblages in isotopic equilibrium, which have to be defined by analysis of all rock-forming minerals. Conventional two-point ‘mica ages’ for such rocks are a priori geochronologically uninterpretable, and valid multimineral isochron ages a priori do not record cooling but instead date recrystallization-inducing processes like fluid-rock interaction.  相似文献   

13.
The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by ~ 10 Ma. Sediments of the Sedom Formation, dated here between 5.0 ± 0.5 Ma and 6.2− 2.1inf Ma, yielded extremely low 10Be concentrations and 26Al is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.3− 0.8+ 0.9 Ma. Burial ages of fluvial sediments within caves (3.4 ± 0.2 Ma and 3.6 ± 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian–African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today.  相似文献   

14.
The Epupa Metamorphic Complex constitutes the southwestern margin of the Congo Craton and is exposed in a hilly to mountainous terrain of northwestern Namibia, bordering the Kunene River and extending into southern Angola. It consists predominantly of granitoid gneisses which are migmatized over large areas. This migmatization locally led to anatexis and produced crustal-melt granites such as the Otjitanda Granite. We have undertaken reconnaissance geochemical studies and single zircon U–Pb SHRIMP and Pb–Pb evaporation dating of rocks of the Epupa Complex. The granitoid gneisses, migmatites and anatectic melts are similar in composition and constitute a suite of metaluminous to peraluminous, calc-alkaline granitoids, predominantly with volcanic arc geochemical signatures. The zircon protolith ages for the orthogneisses range from 1861 ± 3 to 1758 ± 3 Ma. Anatexis in the migmatitic Epupa gneisses was dated from a melt patch at 1762 ± 4 Ma, and the anatectic Otjitanda Granite has a zircon age of 1757 ± 4 Ma. Migmatization and anatexis therefore occurred almost immediately after granitoid emplacement and date a widespread high-temperature Palaeoproterozoic event at ∼1760 Ma which has not been recorded elswhere in northern Namibia. The Nd isotopic systematics of all dated samples are surprisingly similar and suggest formation of the protolith from a source region that probably separated from the depleted mantle about 2.4–2.0 Ga ago. A major Archaean component in the source area is unlikely.  相似文献   

15.
An in situ U–Pb SIMS (IN-SIMS) method to date micro-baddeleyite crystals as small as 3 μm is presented with results from three samples that span a variety of ages and geologic settings. The method complements ID-TIMS geochronology by extending the range of dateable crystals to sizes smaller than can be recovered by physical separation. X-ray mapping and BSE imaging are used to locate target grains in thin section, followed by SIMS analysis on a CAMECA ims 1270, using the field aperture in the transfer column to screen out ions from host phases. Internal age precisions for the method are anticipated to range from 0.1% for Precambrian rocks to 3–7% for Phanerozoic rocks. Results establish a 2689 ± 5 Ma age for mafic dikes in the Wyoming craton, USA, a 1540 ± 30 Ma age for a subaerial lava flow from the Thelon Basin of northern Canada, and a 457 ± 34 Ma age for mafic dikes in the platform sequence of southeastern Siberia. The method is ideal for relatively non-destructive dating of small samples such as extraterrestrial rocks and precious terrestrial samples.  相似文献   

16.
Moldavites (Central European tektites) are genetically related to the impact event that produced the ∼24-km diameter Ries crater in Germany, representing one of the youngest large impact structures on Earth. Although several geochronological studies have been completed, there is still no agreement among 40Ar-39Ar ages on both moldavites and glasses from Ries suevites. Even recently published data yielded within-sample mean ages with a nominal spread of more than 0.6 Ma (14.24-14.88 Ma). This age spread, which significantly exceeds current internal errors, must be in part ascribed to geological and/or analytical causes.This study reports the results of a detailed geochronological investigation of moldavites from the Cheb area (Czech Republic), which have never been dated before, and, for comparison, of two samples from type localities, one in southern Bohemia and the other in western Moravia. We used 40Ar-39Ar laser step-heating and total fusion techniques in conjunction with microscale petrographic and chemical characterization. In addition, with the purpose of ascertaining the influence of the dating standards on the age of the Ries impact and making data from this study and literature consistent with the now widely used Fish Canyon sanidine (FCs) standard, we performed a direct calibration of multi-grain splits of the Fish Canyon biotite (FCT-3) with FCs. The intercalibration factors (), determined for eight stack positions in one of the three performed irradiations, were indistinguishable within errors and gave an arithmetic mean and a standard deviation of 1.0086 ± 0.0031 (±2σ), in agreement with previous works suggesting that biotite from the Fish Canyon Tuff is somewhat older (∼0.8%) than the coexisting sanidine.Laser total fusion analysis of milligram to sub-milligram splits of five tektite samples from the Cheb area yielded mostly concordant intrasample 40Ar-39Ar ages, and within-sample weighted mean ages of 14.66 ± 0.08-14.75 ± 0.12 Ma (±2σ internal errors, ages relative to FCs) that overlap within errors. These ages match those obtained for samples from western Moravia (14.66 ± 0.08 Ma) and southern Bohemia (14.68 ± 0.11 Ma), supporting the genetic link between Cheb Basin tektites and moldavites, and, consequently, between Cheb Basin tektites and the Ries impact. In contrast to samples from the Cheb area and Moravia, 40Ar-39Ar ages from total fusion experiments on the Bohemian specimen ranged widely from ∼14.6 to ∼17.0 Ma. Older apparent ages, however, were systematically obtained from fragments characterized by visible surface alteration. Laser step-heating experiments, although displaying slightly disturbed age profiles, were in line with total fusion analyses and yielded well-defined plateau ages of 14.64 ± 0.11-14.71 ± 0.11 Ma (±2σ internal errors, ages relative to FCs).A thorough comparison of our and previous 40Ar-39Ar ages on both moldavites and Ries suevite glasses, recalculated relative to the 40Ar/40K ratio recently determined for FCs using intercalibration factors available in or derivable from the literature, reveals some inconsistencies which may be ascribed to either geological or analytical causes. Based on our data, decay constants in current use in geochronology, and ages calculated relative to FCs, we infer that the age of moldavites is 14.68 ± 0.11 Ma (±2σ, neglecting uncertainties in the 40K decay constants).  相似文献   

17.
Mineralogical, geochemical and zircon U–Pb dating studies were carried out to identify the sources of arsenic in the shallow aquifers of Datong Basin in northern China. A sediment sample from 18 m depth containing 10.3 mg/kg arsenic showed a Zircon U–Pb concordant age of 2528 ± 20 to 271 ± 4 Ma that can be divided into two groups (2528 ± 20 to 1628 ± 21 Ma and 327 ± 4 to 271 ± 4 Ma) and is comparable to that of the sedimentary rocks of Taiyuan (upper Carboniferous) and Shanxi Formation (lower Permian) outcropping to the west of Datong Basin. In contrast, a sediment sample from 22.5 m depth containing 5.7 mg/kg arsenic displayed a Zircon U–Pb concordant age ranging from 2561 ± 21 to 1824 ± 26 Ma that is comparable to that of the Hengshan Complex (Ne-Archaean Precambrian) outcropping to the east of .  相似文献   

18.
Palaeomagnetic and geochronological studies on mafic rocks in the Lake Ladoga region in South Russian Karelia provide a new, reliably dated Mesoproterozoic key paleopole for the East European Craton (Baltica). U–Pb dating on baddeleyite gives a crystallisation age of 1452 ± 12 Ma for one of the studied dolerite dykes. A mean palaeomagnetic pole for the Mesoproterozoic dolerite dykes, Valaam sill and Salmi basalts yields a paleopole at 15.2°N, 177.1°E, A95 = 5.5°. Positive baked contact test for the dolerite dykes and positive reversal test for the Salmi basalts and for the dykes confirm the primary nature of the magnetisation. Comparison of this Baltica palaeopole with coeval paleomagnetic data for Laurentia and Siberia provides a revised palaeoposition of these cratons. The results verify that the East European Craton, Laurentia and Siberia were part of the supercontinent Columbia from the Late Palaeoproterozoic to the Middle Neoproterozoic.  相似文献   

19.
This study is a comprehensive, stable isotope survey of the marine carbonate-dominated, upper Paleo- to lower Neoproterozoic stratigraphy of Jixian County, China. Carbonate-associated sulfate (CAS) was extracted and measured for δ34SCAS using the same samples analyzed for δ13Ccarbonate. This integrated proxy approach is a step towards a more comprehensive picture of secular variation in the composition of Proterozoic seawater. We specifically sampled marine carbonate intervals from the lower section of the Chuanlinggou Formation, Changcheng Group (ca. 1700 Ma) to the top of the Jingeryu Formation, Qingbaikou Group (ca. 800 Ma). δ13Ccarbonate values are mostly negative in the upper Paleoproterozoic Changcheng Group, with an ascending trend from −3‰ to 0‰. We observed variation of approximately 0 ± 1‰ in the Mesoproterozoic Jixian Group, and positive values of +2 ± 2‰ characterize the lower Neoproterozoic Qingbaikou Group. Stratigraphic variations in δ34SCAS are more remarkable in their ranges and magnitudes, including conspicuously high values exceeding +30‰ in the three intervals at ca. 1700 Ma, 1300-1100 Ma, and 1000-900 Ma. In the Changcheng Group, δ34SCAS values are typically higher than +25‰, with only a few values of less than +15‰. In contrast, most of the data spanning from the Mesoproterozoic Tieling Formation of the Jixian Group to the lower Neoproterozoic Jingeryu Formation of the Qingbaikou Group are highly variable between +10‰ and +25‰, with some values exceeding +25‰.In the late Paleoproterozoic (1700-1600 Ma), a >10‰ decrease in δ34SCAS and ∼3‰ increase in δ13Ccarbonate are coincident with, and likely related to, the breakup of Columbia, a supercontinent that predated Rodinia. Carbon and sulfur isotope data from the Mesoproterozoic, when global tectonic activity was comparatively weaker, fall mostly in the ranges of +15 ± 10‰ and 0 ± 1‰, respectively, but fluctuations of >20‰ for δ34SCAS and >3‰ for the δ13Ccarbonate at ca. 1450-1400 Ma may reflect subduction and large-scale magmatic activity in island arcs marking the end of Columbia breakup. From the late Mesoproterozoic (ca. 1300-1100 Ma) to the early Neoproterozoic (ca. 800 Ma), the δ13C and δ34S of seawater increased gradually with increasing variability. Most impressive areδ34SCAS values that exceed +30‰ in two intervals at ca. 1300-1100 Ma and ca. 1000-900 Ma, which may reflect the assembly and early breakup of Rodinia. Although gaps in the record remain, and studies of even higher resolution are warranted, our results suggest that changes in paleoceanographic conditions linked to global tectonics strongly influenced the biogeochemical cycles of C and S. Furthermore, periods of the Proterozoic previously noted for their isotopic invariability show clear isotopic expressions of this tectonic activity.  相似文献   

20.
The southern Jiangxi Province is a major part of the Nanling W–Sn metallogenic province of southern China, where all W–Sn ore deposits are temporally and spatially related to Mesozoic granitic intrusions. The Tianmenshan–Hongtaoling orefield is a recently explored territory endowed by several styles of W–Sn mineralization. The orefield comprises three composite granitic plutons: Tianmenshan, Hongtaoling and Zhangtiantang associated with several tens of W–Sn-polymetallic ore deposits (Maoping, Baxiannao, Niuling, Zhangdou, Yaolanzhai and others) along their contacts. In this study, four new SHRIMP zircon U–Pb ages were determined for three composite granitic plutons, and 33 molybdenite samples from five W–Sn deposits were analysed by ICP-MS Re–Os isotopic method. SHRIMP zircon U–Pb ages for both medium to coarse-gained biotite granite and porphyritic biotite monzogranite from the Tianmenshan composite pluton are 157.2 ± 2.2 Ma and 151.8 ± 2.9 Ma, respectively. Molybdenite Re–Os isochron ages for the related Baxiannao fracture-controlled tungsten deposits are 157.9 ± 1.5 Ma. Maoping greisens-type tungsten deposits were emplaced at 155.3 ± 2.8 Ma and the Maoping wolframite–quartz veins at 150.2 ± 2.8 Ma, respectively. The SHRIMP U–Pb age of zircons from the Hongtaoling biotite granite is 151.4 ± 3.1 Ma whereas the molybdenite Re–Os isochron ages of the genetically related Niuling endocontact tungsten quartz veins and Zhangdou exocontact tungsten quartz veins are 154.9 ± 4.1 to 154.6 ± 9.7 Ma and 149.1 ± 7.1 Ma, respectively. The SHRIMP zircon U–Pb age of the Zhangtiantang fine-grained muscovite granite is 156.9 ± 1.7 Ma, whereas the molybdenite Re–Os isochron age for the related Yaolanzhai greisens-type tungsten deposit is 155.8 ± 2.8 Ma. These new age data, combined with those available from the literature, indicate that the ages of W–Sn ores and related granites are Late Jurassic with a peak at 150 to 160 Ma, which corresponds to the widespread Mesozoic metallogenic event in southern China. Molybdenites from this group of tungsten deposits have quite low Re contents (29.1 to 2608 ppb), suggesting continental crustal provenance of the ore metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号