首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The mismatch between the 100 and 400 k.y. components of Pleistocene climate and the relative power of those terms from the eccentricity of the Earth's orbit remains a challenge to the Milankovitch hypothesis. Coccolithophores have the potential to respond to parameters of orbital forcing other than insolation, and, as a critical component of the ocean carbon cycle, can act to modify the climate response. The first direct comparison of coccolith fraction Sr/Ca, alkenone abundance and automated coccolithophore counts, shows that CF Sr/Ca is largely driven by changing production of bloom species, with unusually high Sr/Ca ratios. The periods of high CF Sr/Ca and high bloom production mark periods of high global coccolithophore production, which correlate inversely with the low amplitude 100 and higher amplitude 400 k.y. eccentricity orbital frequency. ∼ 400 k.y. cycles of coccolithophore bloom production correspond to periods of enhanced carbonate accumulation in some parts of the ocean, deep ocean dissolution in others, positive shifts in global ocean δ13C, and acmes of Gephyrocapsa caribbeanica and Emiliania huxleyi. The link between production of coccolithophore blooms and eccentricity may be due to orbital control of silica leakage from the Southern Ocean, to the orbitally defined inverse correlation between insolation and growing season length and the asymptotic growth response to these parameters, or to changes in nutrient input from weathering. During the Pleistocene, the eccentricity induced coccolithophore acmes have no apparent influence on atmospheric carbon dioxide (pCO2) due to the shift towards small bloom coccolithophores, or to coupling with increased diatom productivity, or the ballast effect of the calcium carbonate rain, such that Pleistocene climate has no significant variance at the largest amplitude eccentricity forcing of 400 k.y. Coccolithophores and their influence on the carbon cycle may act as a filter between the incident orbital forcing and resultant climate.  相似文献   

2.
In order to mitigate the effect of torsion during earthquakes, most seismic codes of the world provide design guidelines for strength distribution based on the traditional perception that element stiffness and strength are independent parameters. Recent studies have pointed out that for an important class of widely used structural elements such as reinforced concrete flexural walls, stiffness is a strength‐dependent parameter. This implies that the lateral stiffness distribution in a wall‐type system cannot be defined prior to the assignment of elements' strength. Consequently, stiffness eccentricity cannot be computed readily and the current codified torsional provisions cannot be implemented in a straightforward manner. In this study, an alternate guideline for strength distribution among lateral force resisting elements is presented. To develop such a guideline, certain issues related to the dynamic behaviour of asymmetric wall‐type systems during a damaging earthquake were examined. It is shown that both stiffness and strength eccentricity are important parameters affecting the seismic response of asymmetric wall‐type systems. In particular, results indicate that torsional effects can be minimized by using a strength distribution that results in the location of the centre of strength CV and the centre of rigidity CR on the opposite sides of the centre of mass CM. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms.  相似文献   

4.
偏心结构扭转振动研究中几个基本参量的讨论   总被引:6,自引:4,他引:6  
本文根据工程振动实测观察及结构地震模拟实验中的模态测量结果指出,通常的确定性弹性分析方法中,直接由构件的几何尺寸确定其刚度并进而确定结构的自振特性,进行结构的弹性反应分析和设计,其结果只能代表结构处于完全理想弹性状态时对外界激励的一种理论估计。由此提出了比较切合实际的基于强度及屈服变形的构件刚度的确定方法,进而指出在偏心结构的扭转振动研究中,结构的刚度偏心实际上依赖于强度偏心,并不能随研究者的意愿随意调整。  相似文献   

5.
Variations in the ratio of18O/16O as measured in shells of marine calcareous microfossils are primarily dominated by changes in global ice volume; hence these variations provide a set of global time lines in deep-sea sediments. It is likely that the timing of major changes in oxygen isotope values is strongly influenced, if not controlled, by variations in the geometry of the Earth's orbit. Since the variation of orbital parameters can be accurately calculated, the opportunity exists for transforming this orbital chronology into a geological chronology.Through careful correlation of oxygen isotope records in a set of deep-sea cores from the sub-Antarctic, South Atlantic and equatorial Pacific, we have assembled a composite isotopic section spanning the last 750,000 years with an average sedimentation rate of 2.3 cm/1000 years. A new chronology for this time period was developed by adjusting the ages of the oxygen isotope stage boundaries in this composite section so as to extend the consistent phase relationships that exist between variations in oxygen isotope ratios and changes in obliquity and precession during the last 300,000 years to the entire 750,000-year record. Previously identified difficulties in phase locking precession with the filtered isotopic signal between 365,000 and 465,000 years B.P. have been resolved with the recognition that precessional variations have an average period of 19,000 years and not 23,000 years during this interval. Since this new age model yields the best match between variations in obliquity and precession and their corresponding frequency components in the oxygen isotope record, we believe that it presents the most accurate chronology yet developed for deep-sea sediments.With this new age model providing the time control, power spectral analyses of South Atlantic and sub-Antarctic chemical and biotic indices show that there is a strong tendency for variance to be concentrated at frequencies corresponding to periods of ~ 100,000, 41,000 and 23,000 years.  相似文献   

6.
In order to carry out parametric analysis of eccentric structure–soil interaction system, an analytical model based on branch mode decoupling method is presented in this paper. The solution of system equations is implemented in the frequency domain by assuming that the superstructure maintains classic normal modes. The transfer functions of translational and torsional response are derived later. The influence of eccentricity ratio, torsional to translational frequency ratio, height-to-base ratio and foundation flexibility on the curve and peak value of transfer functions and torsionally coupled degree are analyzed and discussed systematically. Results of analysis indicate that the flexibility of foundation soil can weaken the torsional response of superstructure substantially, and the natural frequencies of interaction system reduce as the flexibility of foundation soil increase. The influence of eccentricity ratio on the peak values of transfer functions varies with the torsional to translational frequency ratio, which can be summarized as the decrease of translational component and the increase of torsional component. The translational displacement of SSI system is larger than that of fixed-base condition, while the deformation amplitude is notably reduced. The torsional response decreases as well. As the height-to-base ratio increase, the varying tendency of response is further enhanced. The torsionally coupled degree of eccentric structure is remarkably affected by the torsional to translational frequency ratio, which is significantly reduced under soft soil condition.  相似文献   

7.
研究了非对称结构扭转振动多重调谐质量阻尼器(MTMD)控制的最优位置。本文采用的MTMD具有相同的刚度、阻尼,但质量不同。基于导出的设置MTMD时非对称结构扭转角位移传递函数,建立了扭转角位移动力放大系数解析式。MTMD最优参数的评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化。MTMD的有效性评价准则定义为:非对称结构最大扭转角位移动力放大系数的最小值的最小化与未设置MTMD时非对称结构最大扭转角位移动力放大系数的比值。基于定义的评价准则,研究了非对称结构的标准化偏心系数(NER)和扭转对侧向频率比(TTFR)对不同位置MTMD最优参数和有效性的影响。  相似文献   

8.
摩擦摆基础隔震上部偏心结构地震反应影响因素分析   总被引:1,自引:0,他引:1  
对上部结构存在偏心的摩擦摆基础隔震结构进行了水平双向地震作用下的地震反应分析,研究了上部结构偏心距和抗扭刚度对结构地震反应的影响。分析表明:上部结构偏心距对上部结构和隔震层的位移反应和加速度反应均有较大影响,即使在上部结构偏心距较小时,其对结构地震反应仍有一定程度的影响;上部结构的抗扭刚度对上部结构的加速度反应影响较小,而对上部结构的位移反应影响较大;上部结构的抗扭刚度对隔震层的加速度反应和位移反应影响较小。因而,对于上部结构存在偏心的摩擦摆基础隔震结构,应减小上部结构偏心距并增大其抗扭刚度以减小摩擦摆基础隔震结构的扭转反应。  相似文献   

9.
含激电效应的CSAMT一维正演研究   总被引:3,自引:2,他引:1       下载免费PDF全文
地电体对频率域电磁波激发源的响应为电磁感应和激电效应的综合响应.传统CSAMT法进行数据正反演时认为大地介质电阻率是与频率无关的实数,而实际上因为激电效应,地下可极化体的电阻率是一个与频率相关的复数.为推进二者总体响应研究,并扩展激电法的应用范围,同时提高电磁法勘探的精度,本文基于Dias模型,以复电阻率代替不考虑地电体极化效应的直流电阻率,对CSAMT场源一维层状模型进行了正演模拟,为提取CSAMT信号中所含激电信息提供理论基础.结果表明,考虑激电参数后,视电阻率及相位响应曲线出现明显异常(包括远场、过渡场、近场);极化前后振幅比值异常峰值、相位差值异常峰值可直观体现激电异常;异常峰值与极化层层厚、埋深以及电阻率变化有连续的对应关系.认为从频率域电磁法信号中提取激电信息有乐观的前景.  相似文献   

10.
柴达木盆地东部三湖地区四系米兰柯维奇旋回分析   总被引:2,自引:4,他引:2       下载免费PDF全文
自然伽马曲线包含丰富的地质信息,能够很好地反映由气候变化引起的地层旋回.本文采用频谱分析对柴达木盆地三湖地区第四系自然伽马测井曲线进行了系统分析.作为频谱分析方法之一的快速傅里叶变换能够将自然伽马曲线从时间(深度)域转换为频率域,然后分析每一个峰值频率的波长及其相互之间的比率关系,寻找那些波长比率与米兰柯维奇周期比率相同或相似的频率,从而捕获高频旋回信息.研究结果表明第四系地层中很好地保存了高频的米兰柯维奇旋回,这样的沉积旋回主要由地球轨道的周期性变化而导致的古气候变化引起的.偏心率周期引起的地层旋回厚度变化范围在92.00~115.00 m之间,黄赤交角引起的地层旋回厚度变化范围在24.55~63.43 m之间,岁差引起的地层旋回厚度变化范围在16.8~26.35 m之间.黄赤交角和岁差是影响该区米兰柯维奇旋回的主要因素,其中岁差的影响最大,而偏心率的影响最小.  相似文献   

11.
Based on an asymmetric multistorey frame building model, this paper investigates the influence of a building's higher vibration modes on its inelastic torsional response and evaluates the adequacy of the provisions of current seismic building codes and the modal analysis procedure in accounting for increased ductility demand in frames situated at or near the stiff edge of such buildings. It is concluded that the influence of higher vibration modes on the response of the upper-storey columns of stiff-edge frames increases significantly with the building's fundamental uncoupled lateral period and the magnitude of the stiffness eccentricity. The application of the equivalent static torsional provisions of certain building codes may lead to non-conservative estimates of the peak ductility demand, particularly for structures with large stiffness eccentricity. In these cases, the critical elements are vulnerable to excessive additional ductility demand and, hence, may be subject to significantly more severe structural damage than in corresponding symmetric buildings. It is found that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed using linear elastic modal analysis theory. Particular caution is required when applying this method to the design of stiff-edge frame elements in highly asymmetric structures.  相似文献   

12.
A comprehensive approach is developed to estimate relevant design quantities—lateral deformations and axial forces—in isolation systems composed of lead–rubber bearings. The approach, applicable to symmetric and asymmetric‐plan systems, includes the effects of bidirectional excitation, rocking, and torsion; and is the culmination of previous work on this topic. The approach is based on nonlinear response history analysis of an isolated block using an advanced bearing model that incorporates the interaction between axial force and lateral response of the bearing, known as axial‐load effects. The rocking response of the system and peak axial forces are shown to depend on the isolation period, the normalized strength—or yield strength normalized by peak ground velocity, the ratios of rocking frequency about each horizontal axis to vertical frequency, and the normalized stiffness eccentricity. In an attempt to develop results widely applicable to asymmetric‐plan systems, eccentricity is introduced by varying the stiffnesses and strengths of individual bearings in an idealized, rectangular plan. This idealized system approach is shown to have limited success; when applied to actual asymmetric‐plan systems the design equations to estimate response are accurate for lateral deformations but err by up to 25% for axial forces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Plan asymmetric buildings are very susceptible to earthquake induced damage due to lateral torsional coupling, and the corners of these systems suffer heavy damage during earthquakes. Therefore, it is important to investigate the seismic behavior of an asymmetric plan building with MR dampers. In this study, the effectiveness of MR damper-based control systems has been investigated for seismic hazard mitigation of a plan asymmetric building. Furthermore, the infl uence of the building parameters and damper command voltage on the control performance is examined through parametric study. The building parameters chosen are eccentricity ratio and frequency ratio. The results show that the MR damper-based control systems are effective for plan asymmetric systems.  相似文献   

14.
不对称大底板多塔楼隔震结构的地震响应分析   总被引:1,自引:0,他引:1  
党育  杜永峰 《地震学刊》2012,(4):452-458
针对不对称大底板多塔楼隔震结构体系,通过建立地震响应的动力分析简化模型,推导出不对称大底板多塔楼隔震结构体系地震作用下的运动方程。对一实际的不对称大底板多塔楼隔震结构进行地震响应仿真分析,探讨塔楼质量偏心率和塔楼质量比对结构周期比、位移比和层剪力比的影响。结果显示,不对称大底板多塔楼隔震结构扭转角主要由隔震层产生;与不隔震结构相比,不对称大底板多塔楼隔震体系的扭转角减小,可取得较好的减震效果;塔楼与底板的位置分布和质量分布会影响体系的扭转效应和减震效果,应尽量使塔楼的质心与底板质心重合,塔楼质量分布均匀,以减小结构的扭转效应,提高减震效果。  相似文献   

15.
In this paper a probabilistic approach has been adopted to study both the effects of uncertainty in earthquake frequency content and the correlation between earthquake frequency content and ground motion intensity on the response of a single-storey torsionally coupled elastic structure. The earthquake ground motion has been assumed to be a Gaussian, zero mean, stationary random process which is fully characterized by a power spectrum. The ground acceleration power spectrum is idealized as a probabilistic normalized power spectrum computed from actual earthquake records. The advantage of such an idealization is that it enables the effect of the natural frequency as a controlling structural parameter in torsional coupling to be assessed. Comparisons of the dynamic amplifications of eccentricity with those obtained from modern codes of practice and conventional response spectrum analyses have been made. The results of this study have shown that the variation in the frequency content has a significant effect on the response of low frequency structures, while the correlation between the frequency content and the intensity of seismic ground motion is insignificant for the wide range of structures considered. The structure natural frequency has been shown to be an important controlling parameter in the torsionally coupled response of structures subject to seismic loading. The frequency dependence of the dynamic amplification of eccentricity was found not to be reflected in the response spectrum analysis and the torsional provisions of modern building codes.  相似文献   

16.
Ground level vapour (GLV) samples were collected at Roorkee, Uttarakhand, India using two methods: liquid condensation (LC) at 0 °C and cryogenic trap (CT) at ?78 °C for the period 2009–2011. The study reveals that there is a considerable fluctuation in stable isotopic composition of GLV throughout the year. The study area receives complex moisture source during different seasons, which is evident from the moisture flux received during different seasons. The isotopic composition of the GLV in both methods shows depleted nature during rainout process. CT method shows exact isotopic signature of GLV because of maximum trapping of air moisture and its condensation, whereas LC method shows depleted or enriched character because of the prevalence of kinetic and diffusive fractionation. The d value shows that LC method acts as magnifier of the CT method and clearly shows seasonal effect than the clustered CT method. Hence, to decipher the original isotopic signature of GLV, isotopic composition of GLVLC can be converted to GLVCT by deriving an empirical relationship with changing season and locations. Meteorological parameters show varied behaviour with GLVCT and LC because of moisture sources in all seasons. The GLVCT and LC method shows significant correlation with meteorological parameters when the region is dominated by single moisture source. The GLVLC method magnifies the correlation with meteorological parameters when the region is influenced by more than one source. The study shows that the GLVLC methods can be used in place of GLVCT when the objective is to understand the influence of different moisture sources on GLV. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The differences between the increase in building response due to accidental eccentricity predicted by code-specified static and dynamic analyses are studied for symmetric and unsymmetric single and multistorey buildings. The increase in response computed from static analysis of the building is obtained by applying the equivalent static forces at distance ea, equal to the storey accidental eccentricity, from the centre of mass at each floor. Alternatively, this increase in response is computed by dynamic analysis of the building with the centre of mass of each floor shifted through a distance ea from its nominal position. A parametric study is performed on single-storey systems in order to evaluate the differences in response predicted by both analysis procedures. It is shown that these results are essentially the same as the ones obtained for a special class of multistorey systems. Upper and lower bounds for the differences in response computed from static and dynamic analyses are obtained for general multistorey systems. These differences in response depend primarily on the ratio of the fundamental torsional and lateral frequencies of the building. They are larger for small values of the frequency ratio and decrease to zero as the frequency ratio becomes large. Further, these discrepancies are in many cases of the same order as the code-intended increase in response due to accidental eccentricity. This implies that the code-specified static and dynamic analyses to account for accidental torsion should be modified to be mutually consistent.  相似文献   

18.
The large 100-kyr cycles evident in most late-Pleistocene (0–0.6 Ma) paleoclimatic records still lack a satisfactory explanation. Previous studies of the nature of the transition from the early Pleistocene (1.2–1.8 Ma) 41-kyr-dominated climate regime to the 100-kyr world have been based almost exclusively on benthic foraminiferal oxygen isotopic (δ18O) data. It is generally accepted that the late Pleistocene 100-kyr cycles represent a newly evolved sensitivity to eccentricity/precession, superimposed on an earlier, and largely constant, response to obliquity and precession forcing. However, orbitally-resolved Pleistocene sea surface temperature (SST) records from a variety of oceanic regions paint a rather different picture of the global climate transition across the mid-Pleistocene transition (MPT, 0.6–1.2 Ma). Reanalysis of these SST records shows that: (1) an early onset of strong 100-kyr-like cycles in two low-frequency bands (~ 120–145 kyr and ~ 60–80 kyr), derived from the bundling of two/three obliquity cycles into grand cycles (obliquity subharmonics), occurred in tropical SST records during the early Pleistocene, (2) these two early Pleistocene periods converge into the late-Pleistocene 100-kyr period in tropical SST records, (3) the dominance of 100-kyr SST power in the late Pleistocene coincides with a dramatic decline in the 41-kyr SST power, and (4) the correlation of timing of glacial terminations with eccentricity/precession variation could well extend back into the early Pleistocene. We demonstrate that most of these features also occur in δ18O records, but in a much more subtle manner. These features could be explained in two plausible ways: a shift in climate sensitivity from obliquity to eccentricity/precession (a modified version of the conventional view) or an increasingly nonlinear response to orbital obliquity across the MPT. However, our examination of the development of ~100-kyr cycles favors an obliquity bundling mechanism to form late Pleistocene 100-kyr cycles. We therefore suggest that the late Pleistocene 100-kyr climatic cycles are likely a nonlinear response to orbital obliquity, although the timing of late Pleistocene 100-kyr climatic cycles and their early forms appears to be paced by eccentricity/precession.  相似文献   

19.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

20.
Lateral–torsional coupling in asymmetric‐plan buildings leads to correlated translations and rotations of the building plan, which generate uneven distributions of deformation demand among resisting planes. The deformation demand of a resisting plane depends on the relative magnitude of the plan translation and rotation and on the correlation between the two signals. Thus, small rotations highly correlated with building translation may lead to significantly different deformations of the resisting planes at the building edges. Consequently, the use of supplemental dampers is intended not only to reduce the magnitude of the plan translation and rotation, but also the correlation between these motions. For the sake of simplicity, linear viscous dampers are used in this investigation, which properly located in plan lead to a minimum response of the geometric center, thus achieving the same mean‐square value of the displacements at the building edges. Mathematically, this condition may be understood as creating zero correlation between the translations and rotation at the geometric center of the plan, which represents an uncoupling in the mean‐square sense. Results show that the optimal damper location depends on the static eccentricity and frequency ratio of the bare structure, the total amount of supplemental damping considered, and the frequency content of the excitation. Through a final 6‐story model example, the torsional balance concept is demonstrated to work on multistory buildings subjected to bidirectional ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号