首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
氯离子和硫酸根离子是海水中重要的无机阴离子,在研究海洋生态变化、海洋循环作用过程与海洋全球气候变化等领域具有重要的指示意义。其测定方法较多,但缺少相应的测试方法。本文对测定海水中Cl-,SO42-的离子色谱方法进行了优化,选用IonPacAS14碳酸盐选择性离子色谱柱,以3.5 mmol/L Na2CO3+1 mmol/L NaHCO3为流动相,可消除海水样品中碳酸盐及其他阴离子的干扰。该方法对Cl-检出限为0.29 mg/L,线性相关系数r2=0.999 2,对SO42-检出限为0.42 mg/L,线性相关系数r2=0.997 9。样品的加标回收率在95%~102%,Cl-和SO42-的相对标准偏差分别为1.92%和4.18%。该方法简便、迅速、灵敏、准确度高,可满足批量海水样品中Cl-与SO42-的准确测试。  相似文献   

2.
在多通道量子亏损理论框架下,利用相对论多通道理论,分别在冻结实近似和考虑偶极极化下计算钪原子的Jπ=(3/2)-,(5/2)-的三个收敛于 3d4s(1D2)的自电离里德伯系列的能级.对3d4s(1D2)np2D3/2和3d4s(1  相似文献   

3.
Interaction potentials for LiCl(X1Σ+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets, which are used to determine the spectroscopic parameters (D0, De, Re, ωe, eχe, Be and αe. The potentials obtained at the basis sets, i.e., aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li, are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0×10-12 to 1.0×10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and their shapes are mainly dominated by the s-partial wave at very low impact energies. Only one shape resonance can be found in the total elastic cross sections over the present collision energy regime, which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves. Abundant resonances exist for the elastic partial-wave cross sections until l = 22 partial waves. The vibrational manifolds of the LiCl(X1Σ+) molecule, which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl, should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.  相似文献   

4.
球形棕囊藻(Phaeocystis globosa)赤潮是一种全球范围的生态灾害,而硝酸盐稳定同位素技术是研究海洋富营养化与赤潮暴发机制的前沿技术。为将该技术应用于球形棕囊藻赤潮暴发机制方面的研究,首先需了解其同化吸收硝酸盐的稳定同位素分馏特征。为此开展了球形棕囊藻室内培养实验,获取培养过程中氮、磷、硅等营养盐的浓度及硝酸盐氮、氧稳定同位素(δ15N-NO3-δ18O-NO3-)等参数的变化特征,计算球形棕囊藻同化吸收硝酸盐的稳定同位素分馏系数。结果显示,NO3-和PO43-浓度随培养时间均呈现先明显下降后稳定的特征,同时伴随直径2~3mm的囊体出现并生长至2~3cm。NH4+浓度先后两次出现升高,推测可能是受到有机氮矿化过程的补充所致。随NO3-浓度降低,δ15N和δ18O的值分别在第13天和第7天达到相对峰值。经计算,球形棕囊藻同化吸收硝酸盐过程δ15N和δ18O分馏系数分别为3.32‰±0.38‰和3.12‰±0.59‰,而前者的分馏系数呈逐渐降低的特点,原因可能是随球形棕囊藻生长,发生酶还原的NO3-较参与跨膜运输的NO3-比例逐渐升高。研究首次给出了球形棕囊藻同化吸收硝酸盐过程的氮、氧稳定同位素分馏系数及其变化特征,补充了海洋微藻同位素分馏数据库,为稳定同位素技术研究球形棕囊藻赤潮暴发的营养机制提供了重要的基础数据。  相似文献   

5.
溶解态无机氮(dissolved inorganic nitrogen, DIN)主要由亚硝酸盐-氮(NO-2-N)、硝酸盐-氮(NO-3-N)和铵氮(NH+4-N)组成,它们在海洋的生物地球化学循环过程中起重要作用。但人类活动向海洋输入了大量无机氮,导致一系列环境问题。为了更好地开展海洋氮循环研究和环境污染管理,需对海水中的DIN进行测定。在众多分析方法中,光谱法因其通用性好、适用范围广、所需设备简单,成为测定海水DIN的首选。本文总结了近10年来基于光谱法测定海水DIN的研究进展,包括紫外分光光度法测定NO-3-N、萘乙二胺分光光度法测定NO-2-N和NO-3-N、次溴酸盐氧化-分光光度法测定NH+4-N、靛酚蓝分光光度法测定NH+4-N、酸碱指示剂-分光光度法测定NH+4-N、荧光法和化学发光法测定DIN等,比较了各分析方法的特点,并展望了光谱法测定海水DIN的发展趋势。总的来说,在分析方法上,新试剂的使用以及一些新合成材料的出现,丰富了DIN的分析手段;在分析仪器上,以流动分析技术为基础的分析仪器在DIN的实验室及现场分析中得到了广泛应用。DIN的分析方法均朝着简单便捷、全自动化、分析速度快、精确度高、可适用范围广的方向发展。  相似文献   

6.
通过物理模型试验研究海底子母管线分别在规则波加流和不规则波加流作用下的水动力特性。基于Morison方程,采用"等效直径法"分析得到子母管线拖曳力系数CD,惯性力系数CM和升力系数CL(CD+,CL-)。试验分别考察了流速比Uc/Uw,母管与海床间隙比e/D及子母管间的相对缝隙G/D对海底子母管线水动力系数的影响。结果表明水动力系数随Uc/Uw的增大而减小;当e/D<0.5时,海床对子母管线受力的影响比较明显,CD,CMCL+均随e/D增大而减小,|CL-|随e/D增大而增大;对子母管间的相互影响也不可忽略,CD,CM和|CL-|均随G/D增大而减小,CL+值随G/D增大而增大。  相似文献   

7.
为获得反硝化脱氮效率较好的菌株,实验从海水螺旋藻培养体系中分离获得一株嗜碱兼性好氧反硝化菌, 通过观察细菌形态以及16S rRNA基因序列的同源性分析, 鉴定该菌株为海杆菌属, 命名为Marinobacter sp. B3。为明确该海杆菌的反硝化性能及氮转化途径, 研究开展了溶解氧(DO), 碳氮摩尔比(C/N), pH和温度等不同单因素对反硝化性能影响实验和氮平衡实验。单因素影响实验结果表明, 当硝酸钾(KNO3)作为唯一氮源, NO3--N的初始浓度为100 mg/L, 盐度32, 振荡速度为150 r/min (初始DO质量浓度是5.6 mg/L), C/N=10, pH=8.0±0.2, 温度为35 °C时, 可获得最大脱氮效果。氮平衡实验结果得出, 在好氧环境下, 有20.11%的NO3--N转化为胞内氮, 5.58 mg/L的NO3--N转化为其他形态(NO2--N、NO4+-N和有机氮), 74.72%转化为N2释放; 厌氧环境下, 有26.65%的NO3--N转化为胞内氮, 72.86%的NO3--N转化为气态产物释放。最终实验结果表明, Marinobactersp. B3在好氧和厌氧条件下, 48 h对NO3--N的去除率分别为99.89%和93.80%, 具有较好的反硝化脱氮能力, 且在好氧条件下NO3--N去除效率更高, 在海水工厂化循环水养殖尾水处理方面具有良好的应用前景。  相似文献   

8.
采用双自旋轨道耦合系数模型并结合完全能量矩阵的方法对Cs2NaMF6(M=Al, Ga):Cr3+ 体系中Cr3+ 离子的基态分裂和局域结构进行了研究.通过模拟光谱和EPR谱确定了Cr3+ 取代 M3+ 形成的两种占位结构的畸变角,发现用双自旋轨道耦合系数模型与单自旋轨道耦合系数模型计算出的畸变角Δθ存在较大的差异.这表  相似文献   

9.
何本茂  韦蔓新 《海洋科学》2012,36(2):96-102
根据北海湾1995~2004 年10a 间8 个航次的调查资料, 分析研究了该湾溶解无机氮的含量变化及其与环境因子的关系。结果表明: 该湾溶解无机氮(DIN)含量具有春夏季较高、秋冬季较低的变化特点, 突出了南流江迳流的重大贡献作用; 在DIN 中, 所有航次均具有NO3-含量较高、NH4+含量次之、NO2- 含量最低的分布特征, 而且除2004 年秋季外, NO3- 所占DIN 的比值均在63.38%以上, 已成为该湾DIN 的主要存在形式; 通过不同时期的对比分析, 得出该湾DIN 具有春秋季显著上升、冬夏季显著下降的变化规律, 增养殖排废起主导影响作用; 相关分析显示, DIN 与环境因子之间的相关性, 以与盐度出现的机率最多、显著性也最高, 与COD 的相关性次之, 与其余环境因子的相关性依次排列为pH>DO>Chl.a, 与3 种形态氮之间则以NO3- 和NO2- 最为密切, 7 个航次达到了显著正相关水平, 而与NH4+的显著正相关只出现在迳流影响较小的秋冬季节。  相似文献   

10.
唐小锋  牛铭理  周晓国  刘世林 《海洋学报》2010,32(10):6940-6947
对电子和离子同时采用速度聚焦电场收集的阈值光电子-光离子符合成像谱仪能够有效提高电子的收集效率和能量分辨率.利用该符合成像谱仪,开展了Xe/Ar/Ne 惰性混合气体及NO 分子的阈值光电子谱、阈值光电子-光离子符合质谱和质量选择的符合光谱等实验研究,精确测量了NO 分子的电离势,并且获得了NO+离子振动态分辨的X1Σ+,c3Π和B1Π态光谱.还进一步研究了NO+ 相似文献   

11.
We here study the scouring processes that evolve around a submarine pipeline placed on a weakly cohesive seabed. We first analyze some laboratory tests carried out by Vijaya Kumar et al. [21], Xu et al. [25] and Zhou et al. [28] that focused on the scouring around a horizontal cylinder lying on a cohesive bed, subject to waves and currents. The specific purpose is that of finding a new formula for the prediction of the equilibrium scour depth under submarine pipelines. After a theoretical analysis of the main parameters, the sought formula has been found to be a function of: (i) the hydrodynamic forces acting on the cylinder (through the Keulegan–Carpenter parameter KC), (ii) the clay content of the soil Cc, and (iii) the burial depth e0/D. In the presence of small amounts of clay (Cc< 5 %), the scour depth depends directly on KC (as confirmed by many literature works for pipelines lying on sandy soils, e.g. [18]) and inversely on Cc (as already seen for bridge abutments on cohesive soils, e.g. [1]), the best-fit law being characterized by a coefficient of determination R2 = 0.62. If some burial depth is accounted for, this being a novelty of the present work, a more general formulation can be used, valid in the presence of weakly-cohesive soils and with burial depths of the pipe smaller than 0.5 (R2 = 0.79). For large clay-content ranges (2% < Cc < 75 %), the scour depth depends directly on both KC and Cc, this giving R2 = 0.79 (no burial depth) and 0.91 (some burial depth). However, this finding is at odds with the main literature, because, for large amounts of clay, it is fundamental to consider the liquidity index LI, which accounts for some important clay properties, like the plasticity. We argue that the absence of LI is balanced by the direct dependence of the scour depth on Cc. Notwithstanding the small number of available data, a formula for the prediction of the scour depth under pipelines lying on cohesive soils is fundamental for several engineering applications. The present contribution represents the first attempt to build such a formula, when the pipeline is subject to the wave-current forcing and the seabed is characterized by a relatively small clay content.  相似文献   

12.
A laboratory investigation of wave forces induced by a regular train of waves on a large pipeline resting on the bed and at various clearances from the bed is presented. From considerations of dimensional analysis horizontal and vertical components of wave forces acting on the pipeline are expressed as force coefficients which are shown to be functions mainly of H/2a, gT2/2a, d/a and e/2a. A simple unseparated flow model based on potential flow theory and Morison's equation is presented for evaluating the maximum forces on the pipeline. The experimental results are com3ared with the theoretical results and data from existing literature. Based on the experimental results, hydrodynamic coefficients CM and CL have been evaluated  相似文献   

13.
When a subsea pipeline is laid on an uneven seabed, certain sections may have an initial elevation with respect to the far-field seabed, eo, and thus potentially affecting the on-bottom stability of the pipeline. This paper focuses on quantifying the effects of the upstream dimensionless seabed shear stress, θ, and Reynolds number, Re, on: (1) the maximum dimensionless seabed shear stress beneath the pipe, θmax, to be compared to the critical shear stress in order to determine whether scour would occur and progress towards an equilibrium state; and, (2) the dimensionless equilibrium scour depth beneath the pipe, Seq/D. Using a 2-D Reynolds averaged Navier-Stokes (RANS) approach along with the k-ω Shear Stress Transport (SST) turbulence model, a parametric study involving 243 computational fluid dynamics (CFD) simulations was conducted. The simulation results were used to develop a closed-form equation for the prediction of θmax. Subsequently, experimental measurements of Seq/D have been compiled from published literature, to develop a new closed-form equation for the prediction of Seq/D with a high correlation to the experimental data. In summary, we present two closed-form equations for the prediction of θmax and Seq/D for pipelines with an initial eo/D, which are applicable for both clear-water and live-bed conditions. The effects of θ and Re have been included, albeit Re having a small influence as compared to the other parameters.  相似文献   

14.
Submarine pipelines are the primary component of an offshore oil transportation system. Under operating conditions, a pipeline is subjected to high temperatures and pressures to improve oil mobility. As a result, additional stress accumulates in pipeline sections, which causes global buckling. For an exposed deep-water pipeline, lateral buckling is the major form of this global buckling. Large lateral displacement causes a very high bending moment which may lead to a local buckling failure in the pipe cross-section. This paper proposes a lateral global buckling failure envelope for deep-water HT/HP pipelines using a numerical simulation analysis. It analyzes the factors influencing the envelope, including the thickness t, diameter D, soil resistance coefficient μ, calculating length Lf, imperfection length L and imperfection amplitude V. Equations to calculate the failure envelope are established to make future post-buckling pipeline failure assessment more convenient. The results show that (1) the limit pressure difference pmax (the failure pressure difference for a post-buckling pipeline when it suffers no difference in temperature) is usually below the burst pressure difference pb (which is the largest pressure difference a pipeline can bear and is determined from the strength and sectional dimensions of the pipeline) and is approximately 0.62–0.75 times the value of pb and (2) thickness t has little influence on the normalized envelopes, but affects pmax. The diameter D, soil resistance coefficient μ, and calculating length Lf influence the maximum failure temperature difference Tmax (the failure temperature difference for a pipeline suffering no pressure difference). The diameter D also significantly affects the form of the normalized envelope.  相似文献   

15.
The drag and the interia coefficients Cd,CM of wave-current force on vertical pile are well related to the redefined Keulegan-Carpenter number N' Kc by the test data of the authors. The relation could be also used for irregular wave-current force to calculate in time domain. A simplified method for the calculation of cumulative probabilistic distribution of peak value of irregular wave-current force is also recommended in this paper. These methods were justified by the model test of the authors.  相似文献   

16.
It is shown that the values of pK1C and pK2C for carbonic acid, pKB for boric acid and the ionic product of water, pKw, in sea water may be explained on the basis of their determination in 0.7 Mw sodium chloride and the formation of the following ion-pairs: NaSO4?, MgSO4, CaSO4, MgCO3, CaCO3, MgHCO3+, CaHCO3+, MgOH+, HSO4?, MgB(OH)4+ and CaB(OH)4+. On the whole the calculated stability constants are lower than those given by Garrels and Thompson (1962).  相似文献   

17.
The vortex shedding from near-bed piggyback pipelines in a steady flow has been investigated experimentally in a large water flume. A specially arranged PIV system with upward-illumination of pulsed laser arrays from the flume bottom was employed for the flow visualization and quantitative measurement of the lee-wake flow in a sub-critical regime around the piggyback pipelines in the proximity of a plane boundary. Based on dimensional analyses, a dimensionless maximum swirling strength (Wm) is used for analyzing the vortex shedding intensity and its frequency. Time-averaged swirling strength analyses indicate that the lee-wake patterns for the near-bed piggyback pipelines are dependent on the configuration factors, including the gap-to-diameter ratio (e/D), the spacing-to-diameter ratio (G/D), and the diameter ratio of two pipes (d/D), etc. The swirling strength in the lee-wake is obviously asymmetric for piggyback pipelines with bed proximity. For the fixed values of G/D and d/D, the maximum swirling strength decreases with the decrease of e/D. Moreover, for the examined G/D range (0 ≤ G/D ≤ 0.5), minimum values of Wm and corresponding VIV amplitude for the piggyback pipelines are evidently within the same range of spacing-to-diameter ratio G/D ≈ 0.05–0.20.  相似文献   

18.
For strongly tidal, funnel-shaped estuaries, we examine how tides and river flows determine size and shape. We also consider how long it takes for bathymetric adjustment, both to determine whether present-day bathymetry reflects prevailing forcing and how rapidly changes might occur under future forcing scenarios.Starting with the assumption of a 'synchronous' estuary (i.e., where the sea surface slope resulting from the axial gradient in phase of tidal elevation significantly exceeds the gradient in tidal amplitude ), an expression is derived for the slope of the sea bed. Thence, by integration we derive expressions for the axial depth profile and estuarine length, L, as a function of and D, the prescribed depth at the mouth. Calculated values of L are broadly consistent with observations. The synchronous estuary approach enables a number of dynamical parameters to be directly calculated and conveniently illustrated as functions of and D, namely: current amplitude Û, ratio of friction to inertia terms, estuarine length, stratification, saline intrusion length, flushing time, mean suspended sediment concentration and sediment in-fill times.Four separate derivations for the length of saline intrusion, LI, all indicate a dependency on (Uo is the residual river flow velocity and f is the bed friction coefficient). Likely bathymetries for `mixed' estuaries can be delineated by mapping, against and D, the conditions LI/L<1,EX/L<1 (EX is the tidal excursion) alongside the Simpson-Hunter criteria D/U3<50 m−2 s3. This zone encompasses 24 out of 25 `randomly' selected UK estuaries.However, the length of saline intrusion in a funnel-shaped estuary is also sensitive to axial location. Observations suggest that this location corresponds to a minimum in landward intrusion of salt. By combining the derived expressions for L and LI with this latter criterion, an expression is derived relating Di, the depth at the centre of the intrusion, to the corresponding value of Uo. This expression indicates Uo is always close to 1 cm s−1, as commonly observed. Converting from Uo to river flow, Q, provides a morphological expression linking estuarine depth to Q (with a small dependence on side slope gradients).These dynamical solutions are coupled with further generalised theory related to depth and time-mean, suspended sediment concentrations (as functions of and D). Then, by assuming the transport of fine marine sediments approximates that of a dissolved tracer, the rate of estuarine supply can be determined by combining these derived mean concentrations with estimates of flushing time, FT, based on LI. By further assuming that all such sediments are deposited, minimum times for these deposition rates to in-fill estuaries are determined. These times range from a decade for the shortest, shallowest estuaries to upwards of millennia in longer, deeper estuaries with smaller tidal ranges.  相似文献   

19.
We present a numerical study on the hydrodynamic performance of undulation NACA0012 foil in the near wake of D-section cylinder. Computations are conducted using unsteady incompressible Navier-Stokes equations with a moving adaptive mesh based on laminar flow. Investigations are focused on the effect of distance ratio between foil tip and centre of cylinder (L/D≤2.0) on the thrust/drag performance of foil and cylinder at various foil undulation frequency (St). We found that, foil thrust coefficient (Ct) increases considerably with the appearance of cylinder and an optimal distance exists at which Ct reaches maxima. The maximum increment is about eleven times that of its counterpart of single foil, which is obtained at St=0.23 and L/D=0.5. Our results for the cylinder drag coefficient (Cd) observed the existence of optimal parametric map, combined with various gap ratios and foil frequencies. With these parameters, insertion of an undulation foil can significantly lead to the drag reduction indicating that undulating foil could work efficiently as a passive vortex control device for cylinder drag reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号