首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

2.
The hydrodynamic interactions due to wave scattering between the numbers of an array of stationary, truncated circular cylinders simulating the columns of an idealized tension-leg platform (TLP) are investigated. The method of solution for the fluid velocity potential involves replacing scattered waves by equivalent plane waves together with non-planar correction terms. This technique is, therefore, essentially a large spacing approximation. Use of this approach makes it possible to determine the hydrodynamic interactions between the array members utilizing only the diffraction characteristics of an isolated cylinder.Numerical results are presented for six array configurations consisting of 2–6 cylinders representing the legs of idealized TLPs. Calculations of the wave loads on these cylinders have been performed for a range of wave and structural parameters. It is found that, for certain parameter combinations, the influence of neighbouring bodies on the total wave field leads to hydrodynamic loading on individual columns which is significantly greater than the loading they would experience in isolation. The presented results demonstrate the significance of hydrodynamic interactions between TLP columns and clearly indicate that these effects should be considered by the designers and researchers associated with TLPs.  相似文献   

3.
为了研究类似张力腿平台(TLP)等海洋工程结构物的运动,浮式直立柱群的波浪荷载计算是十分重要的。应用匹配渐进和特征函数展开法得到单柱流场速度势的半解析解,再引入大间距假设,将柱群中某一柱体对其它柱体的扰动作用用平面入射波来代替。同时对该问题进行了非平面波修正,计入柱间水动力相互作用,解决了柱群的绕射问题。应用该方法计算了不同条件下的双柱波浪荷载的幅频特征。  相似文献   

4.
《Ocean Engineering》1999,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

5.
The third order triple-frequency wave load on fixed axisymmetric bodies by monochromatic waves is considered within the frame of potential theory. Waves are assumed to be weak non-linearity and a perturbation method is used to expand velocity potentials and wave loadings into series according to a wave steepness of kA. Integral equation method is used to compute velocity potentials up to second order in wave steepness. The third order triple-frequency wave loads are computed by an indirect method and an efficient method is applied to form the third order forcing term on the free surface quickly. The method can be used to compute third order triple-frequency surge force, heave force and pitch moment on any revolution bodies with vertical axes. The comparison with Malenica and Molin's results is made on surge force on a uniform cylinder, and comparison with experimental results is made on third order surge force, heave force and pitch moment on a truncated cylinder. More numerical computations are carried out for third order forces and moments on a uniform cylinder, truncated cylinders and a hemisphere.  相似文献   

6.
This paper presents a potential based boundary element method for solving a nonlinear free surface flow problem for a ship moving with a uniform speed in finite depth of water. The free surface boundary condition is linearized by the systematic method of perturbation in terms of a small parameter up to third order. The surfaces are discretized into flat quadrilateral elements and the influence coefficients are calculated by Morino's analytical formula. Dawson's upstream finite difference operator is used in order to satisfy the radiation condition. The second order solution gives better result than the first or third order solution. So the present method with the second order solution can be adopted as a powerful tool for the hydrodynamic analysis of the thin ship in finite depth of water.  相似文献   

7.
Multipole expansions for wave diffraction and radiation in deep water   总被引:1,自引:0,他引:1  
A multipole expansion of the velocity potential is described for two- and three-dimensional wave diffraction and radiation problems. The velocity potential is expressed in terms of a series of multipole potentials. The wave terms and the local disturbance terms are represented by separated multipole potentials. Floating bodies and submerged bodies are treated in the same way. This approach differs from that of some other authors, who considered floating bodies and submerged bodies separately and derived entirely different multipoles. Semi-analytical solutions for a circular cylinder in two-dimensional motions are given. It is found that the local disturbance decays rapidly and steadily. The general application of the multipole expansion to arbitrary geometries is also presented, based on a method coupling multipoles to a boundary integral expression. Numerical results for several floating and submerged cylinders are presented.  相似文献   

8.
This paper presents a modified Euler–Lagrange transformation method to obtain the third-order trajectory solution in a Lagrangian form for the water particles in nonlinear water waves. We impose the assumption that the Lagrangian wave frequency is a function of wave steepness and an arbitrary vertical position for each water particle. Expanding the unknown function in a small perturbation parameter and using a successive expansion in a Taylor series for the water particle path and the period of a particle motion, the third-order asymptotic expressions for the Lagrangian particle trajectories, the mass transport velocity and the period of particle motion can be derived directly in Lagrangian form. The wave frequency and mean level of the particle motion in Lagrangian form differ from those of the Eulerian. Finally, the third-order asymptotic solution obtained is uniformly valid in contrast with early works containing resonant terms presented by Wiegel [1964. Oceanographical Engineering. Prentice-Hall, New Jersey, pp. 37–40] (Eqs. (B.1) and (B.1), (B.2) in Appendix B) or Chen et al.[2006. Theoretical analysis of surface waves shoaling and breaking on a sloping bottom. Part 2 nonlinear waves. Wave motion, 43, 356–369] based on a straightforward expansion for two-dimensional progressive waves.  相似文献   

9.
K.R. Drake 《Ocean Engineering》2011,38(5-6):810-814
An analytical solution is presented for the horizontal drift force acting on a uniform circular cylinder that is undergoing surge and pitch motion in regular waves. The solution is exact to second order, for a perturbation expansion in terms of wave steepness, but is limited in a strict sense to the hypothetical case when the draught is equal to the water depth. The formulation is used to provide an analytical approximation for investigating the influence of key parameters on the horizontal drift force acting on a deep draught spar.  相似文献   

10.
The problem of oscillating viscous flow over a stationary cylinder of elliptic cross-section is investigated. The free stream direction is horizontal and is always normal to the cylinder axis and oscillations are only allowed in the magnitude of the stream velocity. The flow is incompressible and two-dimensional and the free steam oscillations are harmonic. The elliptic cylinder considered has a major-minor axis ratio of 0.6 and is inclined to the free stream direction at angles of incidence of either 30 or 60°. The investigation is based on the solution of the time-dependent Navier-Stokes equations together with the mass conservation equation. The parameters involved are the cylinder axis ratio, angle of incidence, Reynolds number, and Strouhal number. The Reynolds number ranges between 102 and 103 and the Strouhal number ranges between π/4 and π/2. The time variation of the flow field is presented in the form of streamline patterns as well as surface vorticity distribution. The surface pressure distribution and the time variation of the in-line and transverse force coefficients are also presented and compared with an inviscid flow solution for the same problem. The comparison between viscous and inviscid flow results shows a better agreement for higher values of Reynolds and Strouhal numbers.  相似文献   

11.
在势能流及微小振幅波理论假设下,采用复合边界元素法(CBEM)数值解析规则波通过单根外壁透水cosine-type型同心圆柱结构物绕射。将cosine-type外壁不透水条件改为透水外,并在内部设有一半径为b的不透水内圆柱共同组成同心圆柱,为了验证CBEM数值模式正确性与可行性,将其退化成圆柱,均得到合理结果。数值计算条件包含波浪正向入射凸端、透水参数及绕射参数,探讨波浪通过单根cosine-type同心圆柱体四周水面波动变化情况,并与双重圆筒同心圆柱作比较。计算结果显示结构物外壁采用透水型式,可以大幅降低cosine-type同心圆柱体四周整个波浪绕射场的水面波动。  相似文献   

12.
This paper shows how the second order wave pressure on the submerged surface of a body may be obtained without solving the boundary value problem for the second order velocity potential. The corresponding analytical solution for a vertical circular cylinder is developed, and selected results are presented which illustrate a number of novel phenomena not occurring in first order diffraction analysis.  相似文献   

13.
Dynamic and static analysis of a marine riser   总被引:1,自引:0,他引:1  
A frequency domain normal mode solution is presented for the dynamic response of an unbuoyed marine riser subjected to periodic excitation from a surface vessel in the direction of wave propagation. The variable tension beam-column equation is solved in terms of normal modes of free vibration of the riser and the rigid body displacement. Drag forces on the riser are represented by Morison's formula taking account of the velocity of the riser and wave-induced fluid velocity. A periodic solution for the flexural motion of the riser and the bending stress is then obtained by means of an iterative solution of the frequency response function. The drag force induced stresses arising from a linearly varying current are also determined. The results presented compare favourably with those obtained by other methods.  相似文献   

14.
A solution is presented for the wave induced drift forces acting on a submerged sphere in a finite water depth based on linearised velocity potential theory. In order to obtain the velocity potential, use has been made of multipole expansions in terms of an infinite series of Legendre functions with unknown coefficients. The series expression for the second order mean forces (drift forces) is provided by integrating the fluid pressure over the body surface. The horizontal drift force is also expressed by a series solution obtained using the far-field method.  相似文献   

15.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

16.
在有限水深下1个漂浮在水中的矩形浮子和1个淹没在水下的浮子构成双矩形波能装置模型。基于特征函数展开法求解了线性入射波作用下双矩形浮子波能装置的辐射问题,得出了双矩形浮子辐射速度势的1种新解析式,然后根据Haskind关系由入射势和辐射势来计算波浪激励力,并且采用数值方法对相同算例进行了计算,得到了完全一致的结果,从而证明这种方法是正确的。研究了在不同工况下的波浪激励力和系统的水动力学系数变化的规律。  相似文献   

17.
两层流体中振荡水平圆柱潜体水动力特性   总被引:1,自引:1,他引:1  
研究了有限深两层流体中水平圆柱潜体的振荡辐射问题。在线性势流理论框架内,建立求解辐射势的多极展开理论,提出附加质量和阻尼系数的计算方法,进行了数值计算分析,并且与均匀流中的情况进行比较。结果表明,在圆柱潜体的某个振荡频率范围内,流体的分层效应对其附加质量和阻尼系数是有重要影响的。同时,对水平圆柱潜体振荡产生的自由面和内界面波动特性进行了数值分析。  相似文献   

18.
The two-dimensional nonlinear time domain free surface flow problem is analysed using potential flow theory. The problem is solved by a time marching method. At each time step two numerical approaches are used. One is based on the boundary element method in the complex plane. The complex potential is assumed to vary linearly within each element and the solution is obtained by imposing the boundary conditions at the nodes of the elements. The other approach is based on the finite element formulation. Triangular elements and linear shape functions are used. The solution is obtained by the Galerkin method. Numerical results are obtained for the wave elevation generated by a vertical wave maker. Results are also provided for a circular cylinder oscillating below the free surface. For these cases the finite element method is found to provide substantially more efficient computations than the boundary element method using equivalent discretizations.  相似文献   

19.
Z. Zhong  K.H. Wang   《Ocean Engineering》2006,33(7):927-949
Theoretical investigations on solitary waves interacting with a surface-piercing concentric porous cylinder system are presented in this paper. The outer cylinder is porous and considered thin in thickness, while the inner cylinder is solid. Both cylinders are rigidly fixed on the bottom. Following Isaacson's [Isaacson, Micheal de St. Q., 1983. Solitary wave diffraction around large cylinder. Journal of the Waterway, Port, Coastal and Ocean Engineering 109(1), 121–127.] approach, we obtained the solutions for free-surface elevation and the corresponding velocity potential in terms of Fourier integrals. Numerical results are presented to show the effects of incident wave condition, porosity of the outer cylinder and radius ratio on wave forces and wave elevations around the inner and outer cylinders.  相似文献   

20.
This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for the calculation of the first- and second-order potential which can be used to obtain a reduced-order model for the sloshing dynamics. The results of the presented model are verified with the analytical solution for the second-order analysis of sloshing in a rectangular tank and very good results were obtained. Also, the second-order sloshing in some other example tanks with complex bed shapes is studied. The second-order resonance conditions of liquid sloshing in the example tanks are investigated and some conclusions are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号