首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
于2006年4月至2007年1月对桑沟湾海域进行了4个航次的调查,采集表层海水样品,研究了该海域表层海水中溶解N_2O的分布特征及海气交换通量的季节变化,结果表明:桑沟湾表层海水中溶解N_2O浓度和饱和度存在一定的季节性变化,浓度表现为冬季最高而饱和度为夏季最高.利用Liss和Merlivat公式(LM86)以及Wanninkhof公式(W92)估算了该海湾海水中N_2O的年平均海-气交换通量,分别为0.2 μmol/(m~2·d)±0.1 μmol/(m~2·d)和1.5 μmol/(m~2·d)±1.0 μmol/(m~2·d).  相似文献   

2.
根据2003—2008年东海及黄海南部海域多个航次现场观测获得的海表温度、盐度及海水表层pCO_2观测数据,分析该海域海水表层pCO_2及海-气CO_2通量的季节变化特征,探讨了海-气界面CO_2转移与海表温度、盐度分布之间的联系。结果表明:该海域海水表层pCO_2及海-气CO_2通量具有显著的季节性差异。近海区域,春季受海表温度上升、生物作用加强的影响黄海南部、东海近岸区及陆架中部、东海南部表现为大气CO_2汇,其海-气界面季平均通量分别为(-7.77±6.59),(-11.08±8.99),(-2.94±6.78)mmol·m~(-2)·d~(-1)。夏季黄海南部区域表现为大气CO_2源(2.99±6.09)mmol·m~(-2)·d~(-1),与该海域的下层海水涌升有关,东海中部陆架区及东海南部近岸区由于淡水输入,形成跃层阻碍水体混合,再加上光合作用增强等的综合作用为大气CO_2汇,通量为(-4.81±8.92),(-0.75±12.14)mmol·m~(-2)·d~(-1)。秋季北风逐渐增强水体混合加剧,向冬季格局转变,底层富含CO_2的海水上涌,致使海表pCO_2升高,整个海区表现为大气CO_2源。在年际变化上,春季碳汇呈减弱趋势,而秋季碳源则逐渐增强。  相似文献   

3.
文章综合分析了南海西部2012年秋季海表二氧化碳分压(p_(CO_2))分布及控制因素,估算并讨论了海-气CO_2通量及其区域性差异。结果表明,秋季南海西部海表p_(CO_2)变化范围为37.8~57.1Pa,均高于大气p_(CO_2),表现为大气CO_2的源。研究海域海表p_(CO_2)分布主要受海水碳酸盐热力学的影响,海表温度(SST)是影响海表p_(CO_2)分布的主要因素。但在局部海域,海表p_(CO_2)分布还受到其他因素的控制。其中,越南东部局部海域表层海水受湄公河冲淡水的影响呈低盐特征,高p_(CO_2)的冲淡水团和离岸水团的混合作用直接影响该海域海表p_(CO_2)分布。此外,珊瑚礁的钙化活动造成南沙群岛弹丸礁西部海域出现表层p_(CO_2)极高值。秋季南海西部表层海水CO_2释放速率的分布格局主要受风速的控制。北部海域海-气CO_2分压差(Δp_(CO_2))低于中南部海盆,但其海表风速远高于中南部海盆,造成北部海域表层海水CO_2释放速率(2.9mmol C·m~(-2)·d~(-1))明显高于中南部海盆(0.9mmol C·m~(-2)·d~(-1))。海-气CO_2通量估算中不能忽视局部海域珊瑚礁代谢作用的影响。  相似文献   

4.
系统考察2014年4月胶州湾海水中甲烷的氧化速率。通过一系列的海水培养实验,采用气相—稳定同位素比值质谱仪(GC-IRMS)追踪了培养样品中δ13 CH4的变化,计算了胶州湾海水的甲烷氧化速率(MOX)。结果表明:胶州湾表层水中甲烷的氧化速率的变化范围为3.7~255.5nmol·L~(-1)·d~(-1),平均值为(104.7±89.7)nmol·L~(-1)·d~(-1)。底层水中甲烷的氧化速率的变化范围为38.2~227.1nmol·L~(-1)·d~(-1),平均值为(148.9±76.2)nmol·L~(-1)·d~(-1)。总体而言,在胶州湾东部和西部,特别是海泊河口、洋河河口附近的水域,表层海水中甲烷氧化速率的分布都明显呈现出近岸高,远岸低的趋势。胶州湾甲烷的氧化速率与溶解无机碳浓度的变化以及甲酸的含量呈较明显的线性正相关。根据甲烷氧化速率估算出胶州湾氧化甲烷的量为1.15×108 mol/a,该值相当于胶州湾甲烷海-气通量的6.4~14.3倍。  相似文献   

5.
甲烷(CH4)是影响地球辐射平衡的主要温室气体,海洋是大气CH4的自然源,而陆架等近海是释放CH4的热点海域。于2021年4月、7月和10月对渤海进行了调查,以认识其分布特征并估算其海-气交换通量。春、夏和秋季表层海水CH4浓度分别为(4.56±2.60)、(8.31±4.01)和(4.99±1.31) nmol/L,夏季明显高于春秋季。CH4的垂直分布规律为底层普遍高于表层,不同站位的垂直分布空间差异较大。渤海CH4分布主要受河流输入、油气泄漏、生物活动以及沉积物-水界面交换等因素的影响,其中黄河向渤海输入CH4约为每月1.4×104~2.8×105mol,秋冬季沉积物-水界面CH4交换通量范围为–4.0~0.42μmol/(m2·d),表明秋冬季沉积物既可能是渤海水体CH4的源,也可能是其汇。春、夏和秋季渤海CH4海-气交换通量分别为(1.1±...  相似文献   

6.
夏季渤海溶解甲烷的分布与通量研究   总被引:2,自引:0,他引:2       下载免费PDF全文
于2008-08-26—09-11对渤海海域进行了调查,采集了28个站位表、底层和部分站位中层海水样品,对溶解甲烷(CH4)浓度进行了测定。结果表明:夏季渤海各个站位表、底层海水中CH4的浓度和饱和度变化幅度较大,其中在秦皇岛沿岸海域出现高值,体现了人为活动的影响。表层海水中CH4的浓度和饱和度均低于底层的。估算出夏季渤海溶解CH4的海-气交换通量为(3.1±1.6)~(8.1±4.2)μmol/(m2.d)。渤海海域表、底层海水中CH4呈过饱和状态,是大气中CH4的净源。  相似文献   

7.
2009-04-2010-02对山东荣成典型养殖海湾-桑沟湾海区表层海水的石油烃进行6个航次的监测,分析该海区石油烃的污染现状,探讨石油烃在桑沟湾表层海水中的分布特征,以及与水温、叶绿素a、营养盐等环境因子的相关性.结果表明,桑沟湾表层海水石油烃质量浓度的季节变化大致呈现春夏季高,秋季偏低,冬季最低的特点;水平分布基本...  相似文献   

8.
分别于2006年8月,12月和2007年4月,10月采集胶州湾及周边海域大气和海水样品,对氧化亚氮(N2O)和甲烷(CH4)浓度进行了测定,并设置1个连续站进行24 h连续观测.结果表明:大气中N2O春、夏、秋、冬的平均浓度(体积分数)分别为(3.17±0.03)×10-7,(3.24±0.15)×10-7,(3.19±0.02)×10-7和(3.08±0.25)×10-7;大气中CH4春、夏、秋、冬的平均浓度(体积分数)分别为(1.89±0.04)×10-6,(1.79±0.04)×10-6,(2.09±0.21)×10-6和(2.01±0.09)×10-6.胶州湾表、底层海水中N2O和CH4的浓度和饱和度表现出明显的季节变化,其中N2O浓度和饱和度冬季最高,春、秋季次之,夏季最低;CH4浓度和饱和度夏季最高,冬季最低.利用Liss and Merlivat(1986)公式和Wanninkhof(1992)公式估算出胶州湾海域N2O的年平均海-气交换通量分别为(11.16±14.15)和(22.42±27.56)μmol m-2·d-1;CH4分别为(7.75±6.19)和(17.76±14.84)μmol m-2·d-1.胶州湾大部分海域表层海水中N2O和CH4呈过饱和状态,是大气中N2O和CH4的净源.  相似文献   

9.
基于2011-04,2011-08,2011-10和2012-01对桑沟湾海域大面调查的资料,利用改进的荧光镓(LMG)分子荧光光谱分析法测定溶解态铝的含量,研究了桑沟湾溶解态铝的分布和季节变化特征。结果表明,4个航次桑沟湾溶解态铝的平均浓度分别是(47.3±14.4),(56.0±14.6),(64.5±11.3)和(32.1±6.0)nmol/L,呈现出明显的季节变化,即秋季最高,夏季、春季次之,冬季最低。除几个异常站位外,溶解态铝的分布大致呈现随离岸距离的增加其浓度逐渐降低的趋势。夏季表层溶解态铝的浓度在近岸出现低值,夏、秋季湾口北部均出现高值。影响桑沟湾溶解态铝分布的主要因素包括与黄海的水交换、河流及地下水、浮游植物和养殖生物、悬浮颗粒物。根据简单箱式模型对桑沟湾溶解态铝的通量进行了估算,结果显示,除了河流和大气沉降外,桑沟湾溶解态铝还存在其他的源。与相邻的爱莲湾和俚岛湾相比,桑沟湾溶解态铝的浓度在春季较高,在夏季较低。与世界大洋相比,桑沟湾溶解态铝的浓度全年均较高。  相似文献   

10.
于2013年10~11月现场测定了东海中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP,分为溶解态DMSPd和颗粒态DMSPp)的含量,研究其水平分布特征、DMSPp的粒径分布及DMSPd的降解速率,并对DMS的海-气交换通量进行了探讨。研究结果表明,表层海水中DMS、DMSPd和DMSPp的浓度平均值分别为(4.84±0.40)、(5.84±0.93)和(13.01±0.52)nmol·L-1。海水中DMSPd的降解速率在2.59~16.36nmol·L-1·d-1之间,平均值为(6.78±0.84)nmol·L-1·d-1。调查海域范围内,小型浮游植物(20μm)是DMSPp和叶绿素a(Chl a)重要贡献者。此外,秋季东海表层海水DMS的海-气交换通量为0.66~31.73μmol·m-2·d-1,平均值为(11.63±0.71)μmol·m-2·d-1。  相似文献   

11.
于2011年5至6月在东海采集不同深度海水样品,研究了其中溶存氧化亚氮(N2O)的分布并估算其海-气交换通量。结果表明,春季东海表层海水中溶存N2O浓度范围为6.31~11.88 nmol/L,平均值为(9.13±1.45)nmol/L;底层海水中N2O浓度范围为7.53~39.75 nmol/L,平均值为(13.71±7.76)nmol/L。随着深度的增加,N2O浓度逐渐升高。温度是影响春季东海N2O分布的主要因素,N2O浓度与温度呈负相关关系。长江冲淡水和黑潮水是东海N2O的重要来源。东海表层海水中N2O的饱和度范围为92.5%~139.3%,平均值为118.5%±10.3%,绝大多数站位都处于过饱和状态,因此,春季东海是大气N2O的净源。利用LM86公式和W92公式求得东海的海-气交换通量分别为(4.96±6.12)μmol/(m2·d)和(10.25±17.18)μmol/(m2·d),初步估算出东海年释放N2O通量约为0.061~0.127 Tg/a,占全球海洋释放总量的2.0%,远高于其所占的面积比0.2%。  相似文献   

12.
甲烷是大气中重要的温室气体,对全球气候变暖具有重要的贡献,在全球的碳循环中也扮演着重要的角色。2013年7月(生长季)和2013年12月(非生长季)在中国江苏省盐城海岸带盐沼湿地采用静态箱技术原位测定CH_4的通量。结果表明,在光滩和植被演替带上,光滩、互花米草带和獐茅带甲烷的通量均值分别为0.26±0.44mg·m~(-2)·d~(-1)、25.83±4.25mg·m~(-2)·d~(-1)和2.68±1.47mg·m~(-2)·d~(-1)表现为甲烷的源,盐地碱蓬带通量均值为-0.56±0.94mg·m~(-2)·d~(-1)表现为甲烷的汇,距离潮沟远近上,潮沟处甲烷的通量均值最大(16.90±3.71mg·m~(-2)·d~(-1)),大于近潮沟处(5.17±2.11mg·m~(-2)·d~(-1))和远潮沟处的甲烷通量均值(8.93±3.21mg·m~(-2)·d~(-1));植被区生长季与非生长季甲烷通量较为接近,甲烷通量均值分别为10.48±2.90mg·m~(-2)·d~(-1)、9.65±2.29mg·m~(-2)·d~(-1),生长季的甲烷通量略大于非生长季的甲烷通量;生长季潮水周期性变化中落潮甲烷通量比涨潮、平潮时期的甲烷通量值大,非生长季涨潮时期甲烷通量大于平潮、落潮时期的甲烷通量。高等植物的地上部分去除对甲烷的排放影响不一,去除高等植物后的互花米草带甲烷通量增加,盐地碱蓬带和獐茅带甲烷通量减少。盐沼甲烷排放与丰富的有机质有关,有机质提供甲烷产生的基质。在过碱的盐沼环境中产甲烷菌的活性受到限制,甲烷的通量与pH的呈负相关。硫酸盐浓度在378mg/L~530mg/L与甲烷通量无相关性、530mg/L~1100mg/L与甲烷通量呈正相关,在1100mg/L~1130mg/L与甲烷通量呈负相关。生长季光照、温度与甲烷通量呈正相关。  相似文献   

13.
利用催化动力学分光光度法和两步提取法对2011年4月(春)、8月(夏)、10月(秋)和2012年1月(冬)桑沟湾海域溶解态无机锰(DIMn)和表层沉积物中的锰的含量进行测定。结果表明,桑沟湾4个季节(春季至冬季,后同)DIMn浓度呈现出近岸高、远岸低的分布特点,其平均浓度分别为(60.5±43.1) nmol/L、(42.0±30.5) nmol/L、(23.4±11.2) nmol/L和(18.2±13.5) nmol/L,呈现出明显的季节变化,即春季最高,夏季、秋季次之,冬季最低;与相邻的俚岛湾和爱莲湾相比,桑沟湾春季、夏季DIMn的浓度较高,秋季、冬季则没有显著性差异。桑沟湾表层沉积物中总Mn在4个季节的含量分别为(861±308) mg/kg、(915±322) mg/kg、(589±108) mg/kg、(653±185) mg/kg,表层沉积物中醋酸提取态Mn在4个季节的含量分别为(500±272) mg/kg、(502±232) mg/kg、(322±81) mg/kg、(345±91) mg/kg,两者均表现出近岸高、远岸低的分布特点。醋酸提取态Mn的含量在春季、夏季要显著高于秋季、冬季。悬浮颗粒物的吸附和浮游生物的利用是影响桑沟湾DIMn浓度与分布的重要因素。桑沟湾DIMn的源主要包括河流及地下水输送、大气输送、沉积物?水界面释放;汇主要包括养殖生物的清除、向黄海的输送等。简单箱式模型收支计算结果显示,桑沟湾DIMn的源略大于汇,表明除了养殖生物的清除和向黄海的输送,桑沟湾DIMn还存在其他汇。本研究的结果为桑沟湾DIMn的生物地球化学循环的深入认识提供了基础数据。  相似文献   

14.
海南东部沿岸河流和潟湖中溶存甲烷的分布及通量   总被引:1,自引:0,他引:1  
甲烷(CH4)作为大气中重要的温室气体,直接或间接地影响全球气候变化。于2009年3月27日至4月15日对海南东部河流(文昌河、文教河、万泉河)、潟湖(八门湾、博鳌、小海和老爷海)等进行了调查,采集了表层和部分底层水样,对溶解CH4浓度进行了测定并初步估算了其水-气交换通量。结果表明,文昌河、文教河受人为活动影响较大,表层CH4饱和度较高,分别为(60664±25118)%、(38582±26339)%,污水输入、红树林输入和现场产生是其CH4的主要来源。万泉河表层CH4饱和度为(9472±5594)%,现场产生是其水体溶存CH4的主要源。八门湾、博鳌、小海和老爷海潟湖表层水体溶存CH4均处于过饱和状态,但其饱和度远小于入湖河流,分别为(2471±2937)%、(5692±3435)%、(546±251)%和(6878±4635)%,其中河流输入、地下水和红树林间隙水输入、现场产生是潟湖中CH4的主要来源,水体中CH4的氧化和水-气交换是潟湖中CH4的主要汇。初步估算出文昌河和万泉河CH4的水-气交换通量分别为5967.0±5142.1和496.2±335.9μmol·m 2·d 1,八门湾、博鳌、小海和老爷海潟湖的水-气交换通量分别为528.7±625.0、441.7±473.3、26.6±21.6和1287.8±1453.3μmol·m 2·d 1。海南东部河流、潟湖是近岸水体及大气CH4的净源。  相似文献   

15.
海岸带盐沼是全球生物地球化学循环的重要的一环,对全球气候变化也产生深远影响。2013年7月(生长季)和2013年12月(非生长季)在中国江苏省盐城海岸带盐沼湿地采用静态箱技术原位测定DMS的通量。结果表明,盐城海岸带盐沼湿地整体上表现为DMS的源。植被带及光滩上,互花米草带具有最高的DMS排放率38.06±8.97mg·m~(-2)·d~(-1);距离潮沟远近上,潮沟内DMS通量0.35±0.11mg·m~(-2)·d~(-1)远小于近潮沟10.30±5.09mg·m~(-2)·d~(-1)与远潮沟9.57±4.04mg·m~(-2)·d~(-1)DMS通量;非生长季DMS通量14.31±5.80mg·m~(-2)·d~(-1)高于生长季的DMS通量5.56±2.63mg·m~(-2)·d~(-1)。地上植被及其残留根系、潮水的周期性变化均影响DMS的通量大小。  相似文献   

16.
基于2012年和2014年中国北极科学考察航次白令海现场调查数据,分析白令海东陆架区二甲基硫(DMS)及其前体物质β-二甲基硫巯基丙酸内盐(DMSP)的空间分布特征和年际变化。结果显示,白令海东部陆架区DMS浓度呈自西向东递减的趋势,浓度平均值由2012年0.80 nmol·L~(-1)(范围为0.11~2.27 nmol·L~(-1))增加至2014年1.33 nmol·L~(-1)(范围为0.07~4.49 nmol·L~(-1))。DMSP浓度的空间变化与DMS不一致,高值区位于断面东部,主要受近岸阿拉斯加沿岸流以及育空河淡水输入的影响。2012—2014年,溶解态DMSP(DMSPd)和颗粒态DMSP(DMSPp)浓度平均值分别从4.21 nmol·L~(-1)、16.83 nmol·L~(-1)提高至14.94 nmol·L~(-1)、49.77 nmol·L~(-1),应是冷水团范围缩减以及浮游植物群落变化所引起的。DMS浓度同温度、c_(PO~(3-)_4)、c_(SiO~(2-)_3)显著相关,而DMS和DMSP浓度同无机氮浓度、盐度均存在显著相关性。表层海水DMS和DMSPd的生物生产速率均高于消费速率,且呈现出东高西低的趋势,原因是温度影响了微生物代谢活动。2014年的生产和消费速率均高于2012年的,主要由于表层海水DMS和DMSPd浓度升高和水团的年际变化。2012年和2014年表层海水中DMS微生物消耗速率平均值分别为13.66 nmol·L~(-1)·d~(-1)和33.87 nmol·L~(-1)·d~(-1),海-气通量平均值分别为3.66μmol·m~(-2)·d~(-1)和5.33μmol·m~(-2)·d~(-1),表层海水DMS通过海气扩散去除的周转时间分别是微生物消费的7.4和5.7倍。白令海东部陆架区表层水体中微生物消费是比海气释放更重要的DMS去除途径。  相似文献   

17.
分别于2014年10月和2015年6月对南海北部陆坡区进行了调查,研究了其溶存氧化亚氮(N_2O)的分布、产生并估算了其海-气交换通量。结果表明:秋季南海北部表层海水中溶解N_2O浓度为(8.19±0.79)nmol/L,饱和度为132.5%±13.4%;夏季表层海水中溶解N_2O浓度为(7.72±0.56)nmol/L,饱和度为135.5%±9.7%。夏季由于受到珠江冲淡水的影响,表层N_2O浓度随盐度升高呈降低趋势,秋季调查区域东北部受到穿过吕宋海峡的黑潮分支表层水的影响,N_2O浓度较低。结合文献资料,南海北部陆坡区表层N_2O浓度季节变化特征为春末秋季夏季,同一季节,南海陆坡区的N_2O浓度高于其他区域。温度是影响N_2O分布的重要因素,ΔN_2O与表观耗氧量(apparent oxygen utilization,AOU)和NO_3~ˉ的显著相关说明硝化作用是南海水体中N_2O产生的主要机制,由此估算硝化作用的N_2O产率分别为秋季0.033%,夏季0.035%。利用N2000和W2014公式分别估算了该区域秋季和夏季N_2O的海-气交换通量:秋季为1.81—23.81(11.11±6.52,平均值±SD,下同)(N2000)和1.73—24.38(11.30±6.81)(W2014),夏季为1.01—21.57(7.04±6.10)(N2000)和0.75—22.69(6.94±6.49)(W2014),单位均为μmol/(m~2·d)。初步估算出南海北部陆坡N_2O释放量为0.055Tg/a,约占全球海洋总释放量的0.39%,远高于其面积比,说明南海北部陆坡是N_2O释放的活跃海域,是大气N_2O的重要源。  相似文献   

18.
根据2006年7~8月和2007年1月对北黄海进行的大面调查,分析研究了夏冬季表层海水中二甲基硫(DMS)的浓度分布和海-气交换通量.研究表明:表层海水以及大气中DMS浓度季节变化明显,夏季平均值分别是冬季的3.2和3.7倍.相关性分析显示,海水中DMS和Chl a浓度存在明显的相关性,说明浮游植物生物量是影响DMS浓度分布的1个重要因素.利用Liss和Merlivat公式(LM86)估算了北黄海夏冬季DMS的海-气交换通量,其平均值分别为7.31和4.98 μmol·m-2·d-1.另外,根据测定的大气中甲基磺酸盐(MSA)和非海盐硫酸盐(Nss-SO2-4)的浓度及比例,估算出夏冬季北黄海生源硫释放对气溶胶中Nss-SO2-4的贡献比例分别为10.1%和2.8%.此结果表明北黄海大气中Nss-SO2-4主要来源于人为排放.  相似文献   

19.
南海东北部海水中N2O分布与产生机制的初步研究   总被引:6,自引:0,他引:6  
2004年9月18—10月4日调查了南海东北部海水中氧化亚氮(N2O)浓度。表层海水中的N2O浓度平均值为8.40±0.79 nmol.L-1,饱和度平均为123%±11.6%,是大气N2O的源。不同区域表层海水中的N2O浓度存在明显差异,在水深200m层呈现南高、北低的分布特征。各层次海水中的N2O浓度均处于过饱和状态,N2O浓度由海水表层到底层呈上升趋势。ΔN2O与AOU间有显著的正线性相关性,说明海洋内部的硝化作用是产生N2O的主要机制。N2O的海-气通量平均值为0.72±0.36μmol.(m2.d)-1。  相似文献   

20.
桑沟湾养殖海域营养盐和沉积物-水界面扩散通量研究   总被引:7,自引:0,他引:7  
利用2006年4,7,11月和2007年1月4个航次对桑沟湾养殖海域的观测资料,分析了该海域营养盐分布、结构特征、主要控制过程以及沉积物-水界面扩散通量,结果表明,该海域的营养盐分布具有明显的季节变化,海水中NO3-,NO2-,PO43-,DOP,TDP和SiO32-浓度皆是秋季最高,而NH4+,DON,TDN浓度则为夏季最高;各种营养盐的最低值除DON外都出现在春季。春季湾内外海水交换不畅,再加上大型藻类海带等生长旺盛期的消耗,使营养盐浓度处于较低水平,在夏秋两季丰水期沿岸河流注入对该海域营养盐的影响较大,冬季无机营养盐浓度分布主要受沿岸流的影响。磷的结构变化较大,其中DOP百分含量在夏季最高,达到81%。从春季到秋季海水中TDN的结构变化从以DON为主转变成以DIN为主。硅和氮的原子比值全年变化不大,硅和氮和氮和磷原子比值春夏两季的高于秋冬季的。分析营养盐化学计量限制标准和浮游植物生长的最低阈值结果表明,磷是春夏两季桑沟湾浮游植物生长的限制性因素;春季硅浓度低于浮游植物生长的最低阀值,也是一个潜在的限制因素。计算结果显示桑沟湾沉积物释放的NH4+,SiO32-和PO43-对初级生产力的贡献较小,与其他浅海环境相比,桑沟湾沉积物-水界面的营养盐通量处于较低或中等水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号