首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Book review     
《Climate Policy》2013,13(4):395-396
In 2007 the US Congress began considering a set of bills to implement a cap-and-trade system to limit the nation's greenhouse gas (GHG) emissions. The MIT Integrated Global System Model (IGSM)—and its economic component, the Emissions Prediction and Policy Analysis (EPPA) model—were used to assess these proposals. In the absence of policy, the EPPA model projects a doubling of US greenhouse gas emissions by 2050. Global emissions, driven by growth in developing countries, are projected to increase even more. Unrestrained, these emissions would lead to an increase in global CO2 concentration from a current level of 380 ppmv to about 550 ppmv by 2050 and to near 900 ppmv by 2100, resulting in a year 2100 global temperature 3.5–4.5°C above the current level. The more ambitious of the Congressional proposals could limit this increase to around 2°C, but only if other nations, including developing countries, also strongly controlled greenhouse gas emissions. With these more aggressive reductions, the economic cost measured in terms of changes in total welfare in the United States could range from 1.5% to almost 2% by the 2040–2050 period, with 2015 CO2-equivalent prices between $30 and $55, rising to between $120 and $210 by 2050. This level of cost would not seriously affect US GDP growth but would imply large-scale changes in its energy system.  相似文献   

2.
Three distinct models from earlier work are combined to: (1) produce probabilistically weighted scenarios of greenhouse-gas-induced sea-level rise; (2) support estimates of the expected discounted value of the cost of sea-level rise to the developed coastline of the United States, and (3) develop reduced-form estimates of the functional relationship between those costs to anticipated sea-level rise, the cost of protection, and the anticipated rate of property-value appreciation. Four alternative representations of future sulfate emissions, each tied consistently to the forces that drive the initial trajectories of the greenhouse gases, are considered. Sea-level rise has a nonlinear effect on expected cost in all cases, but the estimated sensitivity falls short of being quadratic. The mean estimate for the expected discounted cost across the United States is approximately $2 billion (with a 3% real discount rate), but the range of uncertainty around that estimate is enormous; indeed, the 10th and 90th percentile estimates run from less than $0.2 billion up to more than $4.6 billion. In addition, the mean estimate is very sensitive to associated sulfate emissions; it is, specifically, diminished by nearly 25% when base-case sulfate emission trajectories are considered and by more than 55% when high-sulfate trajectories are allowed.  相似文献   

3.
We use a physically-based water and energy balance model to simulate natural snow accumulation at 247 winter recreation locations across the continental United States. We combine this model with projections of snowmaking conditions to determine downhill skiing, cross-country skiing, and snowmobiling season lengths under baseline and future climates, using data from five climate models and two emissions scenarios. Projected season lengths are combined with baseline estimates of winter recreation activity, entrance fee information, and potential changes in population to monetize impacts to the selected winter recreation activity categories for the years 2050 and 2090. Our results identify changes in winter recreation season lengths across the United States that vary by location, recreational activity type, and climate scenario. However, virtually all locations are projected to see reductions in winter recreation season lengths, exceeding 50% by 2050 and 80% in 2090 for some downhill skiing locations. We estimate these season length changes could result in millions to tens of millions of foregone recreational visits annually by 2050, with an annual monetized impact of hundreds of millions of dollars. Comparing results from the alternative emissions scenarios shows that limiting global greenhouse gas emissions could both delay and substantially reduce adverse impacts to the winter recreation industry.  相似文献   

4.
Researchers and policy makers increasingly recognize the need to adapt to future changes in climate, given that past emissions of greenhouse gases have already committed the world to some level of climate change. However, the current understanding of the costs and benefits of adaptation measures is still fairly rudimentary, and far from comprehensive. An assessment is presented of the current state of knowledge on the magnitude of adaptation costs in the United States. While incomplete, the studies suggest that adaptation cost could be as high as tens or hundreds of billions of dollars per year by the middle of this century. Key studies are identified in each sector, and the cost estimates and approaches to cost estimation are surveyed. Methodological issues are highlighted in interpreting, comparing, and aggregating adaptation cost estimates. Policy recommendations are made along with appropriate steps to make future adaptation cost studies more comparable within and across sectors and more accessible and relevant to policy and decision makers.

Policy relevance

Designing and implementing climate change adaptation policy requires good information about the effectiveness and cost of available adaptive options. The current state of knowledge on adaptation costs in the United States is assessed and significant gaps in the literature are highlighted – particularly in terms of sectoral and geographic coverage – as well as inconsistencies in methodologies and assumptions that hamper comparison across studies. Critical steps are identified that can be taken to make adaptation cost studies more accessible and useful to decision makers. The findings and recommendations are relevant to adaptation cost studies globally, not just in the United States.  相似文献   

5.
At the current rate of global warming, the target of limiting it within 2 degrees by the end of the century seems more and more unrealistic. Policymakers, businesses and organizations leading international negotiations urge the scientific community to provide realistic and accurate assessments of the possible consequences of so called “high end” climate scenarios.This study illustrates a novel procedure to assess the future flood risk in Europe under high levels of warming. It combines ensemble projections of extreme streamflow for the current century based on EURO-CORDEX RCP 8.5 climate scenarios with recent advances in European flood hazard mapping. Further novelties include a threshold-based evaluation of extreme event magnitude and frequency, an alternative method to removing bias in climate projections, the latest pan-European exposure maps, and an improved flood vulnerability estimation.Estimates of population affected and direct flood damages indicate that by the end of the century the socio-economic impact of river floods in Europe is projected to increase by an average 220% due to climate change only. When coherent socio-economic development pathways are included in the assessment, central estimates of population annually affected by floods range between 500,000 and 640,000 in 2050, and between 540,000 and 950,000 in 2080, as compared to 216,000 in the current climate. A larger range is foreseen in the annual flood damage, currently of 5.3 B€, which is projected to rise at 20–40 B€ in 2050 and 30–100 B€ in 2080, depending on the future economic growth.  相似文献   

6.
A case study of excessive rainfall forecasting   总被引:1,自引:0,他引:1  
Summary Flash floods have been recognized as one of the most significant natural disaster problems in the world. Within the United States, the annual average flood death toll exceeds one hundred and property damage is on the order of a billion dollars. There has been an increased effort of the meteorological community to improve short term quantitative precipitation forecasting, principally by improving mesoscale numerical weather prediction for heavy rain events. Nevertheless, to date, numerical weather prediction has had rather limited impact on the prediction of the most damaging convective rainstorms.This study examines numerical experiments, including both coarse-mesh and fine-mesh model simulations, of the Enid, Oklahoma flood of 10–11 October 1973. Besides the great concentration of rainfall, the Enid flood was rather unique in comparison with other flash flood cases in that it was part of a much larger area of heavy rainfall which soaked the central Plains over the 24h period ending at 1200 UTC 11 October. The objective is to assess the overall usefulness and limitation of numerical weather prediction models in quantitative precipitation forecasting for this flash flood event.The model experiments reveal that the broad-scale precipitation patterns associated with the front and cyclone are well predicted, but the maximum rainfall amounts around Enid are underpredicted. The fine-mesh model is superior to the coarse-mesh model because of the former's ability to generate many significant mesoscale features in the vicinity of the front. In the fine-mesh model, many convection-related parameters (e.g., moisture flux convergence) are correlated very well temporally and spatially with the observed heavy precipitation scenario.  相似文献   

7.
This study presents the first appraisal of the socio-economic impacts of river floods in the European Union in view of climate and socio-economic changes. The assessment is based on two trajectories: (a) no adaptation, where the current levels of protection are kept constant, and (b) adaptation, where the level of protection is increased to defend against future flooding events. As a basis for our analysis we use an ensemble-based pan-European flood hazard assessment for present and future conditions. Socio-economic impacts are estimated by combining flood inundation maps with information on assets exposure and vulnerability. Ensemble-based results indicate that current expected annual population affected of ca. 200,000 is projected to increase up to 360,000 due to the effects of socio-economic development and climate change. Under the no adaptation trajectory current expected annual damages of €5.5 billion/year are projected to reach €98 billion/year by the 2080s due to the combined effects of socio-economic and climate change. Under the adaptation trajectory the avoided damages (benefits) amount to €53 billion/year by the 2080s. An analysis of the potential costs of adaptation associated with the increase in protection suggests that adaptation could be highly cost-effective. There is, however, a wide range around these central numbers reflecting the variability in projected climate. Analysis at the country level shows high damages, and by association high costs of adaptation, in the United Kingdom, France, Italy, Romania, Hungary and Czech Republic. At the country level, there is an even wider range around these central values, thus, pointing to a need to consider climate uncertainty in formulating practical adaptation strategies.  相似文献   

8.
This paper studies the effects of mitigation and adaptation on coastal flood impacts. We focus on a scenario that stabilizes concentrations at 450 ppm-CO2-eq leading to 42 cm of global mean sea-level rise in 1995–2100 (GMSLR) and an unmitigated one leading to 63 cm of GMSLR. We also consider sensitivity scenarios reflecting increased tropical cyclone activity and a GMSLR of 126 cm. The only adaptation considered is upgrading and maintaining dikes. Under the unmitigated scenario and without adaptation, the number of people flooded reaches 168 million per year in 2100. Mitigation reduces this number by factor 1.4, adaptation by factor 461 and both options together by factor 540. The global annual flood cost (including dike upgrade cost, maintenance cost and residual damage cost) reaches US$ 210 billion per year in 2100 under the unmitigated scenario without adaptation. Mitigation reduces this number by factor 1.3, adaptation by factor 5.2 and both options together by factor 7.8. When assuming adaptation, the global annual flood cost relative to GDP falls throughout the century from about 0.06 % to 0.01–0.03 % under all scenarios including the sensitivity ones. From this perspective, adaptation to coastal flood impacts is meaningful to be widely applied irrespective of the level of mitigation. From the perspective of a some less-wealthy and small island countries, however, annual flood cost can amount to several percent of national GDP and mitigation can lower these costs significantly. We conclude that adaptation and mitigation are complimentary policies in coastal areas.  相似文献   

9.
2017年6月1日,美国总统特朗普正式宣布退出《巴黎协定》,有关美国退协原因、后续影响和应对策略的研究成为国际社会关注的焦点。本文基于自主构建的美国政策评估模型,综合定性定量分析,系统评估了美国宣布退出《巴黎协定》可能造成的全球气候变化减缓、资金和治理"三大赤字",并据此提出中国的应对策略和建议。研究表明,考虑美国退协对后续政策的影响,美国2030年的排放将有可能达57.9(56.0~59.8)亿t CO2-eq,仅相当于在2005年的水平上下降12.1%(9.1%~15.0%),相对自主贡献目标情景将上升16.4(12.5~20.1)亿t CO2-eq,额外增加8.8%~13.4%的全球减排赤字。美国拒绝继续履行资金支持义务还将使得本不充裕的气候资金机制更加雪上加霜,绿色气候基金(GCF)的筹资缺口将增加20亿美元,而长期气候资金(LTF)的缺口每年将增加50亿美元左右。这就要求欧盟和日本对GCF的捐助至少上升40%,同时欧盟及其成员国的长期资金支持至少上浮25.2%才能填补上述资金赤字。美国是全球气候博弈的重要一方,且美国退协的影响已蔓延至全球治理的主要议事平台,期望中欧、基础四国+等模式短期内迅速填补美国退出后全球气候治理的治理赤字是不现实的,政治推动乏力的情况可能会在今后一段时期内始终存在。虽然国际社会对中国领导全球气候治理充满期待,但中国应有清醒认识,全面评估"接盘"美国领导力的成本、效益和可行性,并秉持"国家利益"优先的原则,谋定而后动。同时,中国应聚焦国内工作,凝聚应对气候变化的战略共识,做好长期战略谋划,并积极推动国际社会从合作中寻找出路应对"三大赤字"难题。  相似文献   

10.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

11.
气候变化情景下澜沧江流域极端洪水事件研究   总被引:1,自引:0,他引:1  
以澜沧江流域为研究对象,基于ISIMIP2b协议中提供的GFDL-ESM2M、HadGEM2-ES、IPSL-CM5A-LR、MIROC5这4种全球气候模式,通过4种模式的输出数据耦合VIC模型,分析4种模式在历史时期(1961—2005年)对洪峰洪量极值(年最大洪峰流量、3 d最大洪量)、极端洪水的模拟能力,比较RCR2.6和RCP6.0两种情景下未来时期(2021—2050年)年均径流量较基准期(1971—2000年)的变化情况,并结合P-III型分布曲线预估了澜沧江流域在两种情景下未来时期极端洪水的强度变化情况。结果表明:VIC模型在该流域能够较好地模拟极端洪水;HadGEM2-ES和MIROC5两种气候模式的输出数据在澜沧江流域有较好的径流模拟适用性;在RCP2.6情景下,澜沧江流域未来时期年均径流量没有明显变化,可能会有略微的增加,而在RCP6.0情景下,未来时期年均径流量有较大可能增加;澜沧江流域未来时期极端洪水较基准期,在RCP2.6情景下无明显变化,而在RCP6.0情景下,洪峰、洪量增加的可能性较大,极端洪水频率和强度也较大可能增加。  相似文献   

12.
《Climate Policy》2013,13(3):293-304
One problem in international climate policy is the refusal of large developing countries to accept emission reduction targets. Brazil, China and India together account for about 20% of today's CO2 emissions. We analyse the case in which there is no international agreement on emission reduction targets, but countries do have domestic targets, and trade permits across borders. We contrast two scenarios. In one scenario, Brazil, China and India adopt their business as usual emissions as their target. In this scenario, there are substantial exports of emission permits from developing to developed countries, and substantial economic gains for all. In the second scenario, Brazil, China and India reduce their emissions target so that they have no net economic gain from permit trade. Here, developing countries do not accept responsibility for climate change (as they bear no net costs), but they do contribute to an emission reduction policy by refusing to make money out of it. Adopting such break-even targets can be done at minor cost to developed and developing countries (roughly $2 bn/year each in extra costs and forgone benefits), while developing countries are still slightly better off than in the case without international emissions trade. This result is robust to variations in scenarios and parameters. It contrasts with Stewart and Wiener (2003) who propose granting ‘hot air’ to developing countries to seduce them to accept targets. In 2020, China and India could reduce their emissions by some 10% from the baseline without net economic costs.  相似文献   

13.
This paper compares the results of the three state of the art climate-energy-economy models IMACLIM-R, ReMIND-R, and WITCH to assess the costs of climate change mitigation in scenarios in which the implementation of a global climate agreement is delayed or major emitters decide to participate in the agreement at a later stage only. We find that for stabilizing atmospheric GHG concentrations at 450?ppm CO2-only, postponing a global agreement to 2020 raises global mitigation costs by at least about half and a delay to 2030 renders ambitious climate targets infeasible to achieve. In the standard policy scenario??in which allocation of emission permits is aimed at equal per-capita levels in the year 2050??regions with above average emissions (such as the EU and the US alongside the rest of Annex-I countries) incur lower mitigation costs by taking early action, even if mitigation efforts in the rest of the world experience a delay. However, regions with low per-capita emissions which are net exporters of emission permits (such as India) can possibly benefit from higher future carbon prices resulting from a delay. We illustrate the economic mechanism behind these observations and analyze how (1) lock-in of carbon intensive infrastructure, (2) differences in global carbon prices, and (3) changes in reduction commitments resulting from delayed action influence mitigation costs.  相似文献   

14.
This paper uses the OECD’s global recursive-dynamic general equilibrium model ENVLinkages to examine the mid-term economic consequences and the optimal energy supply mix adjustments of a simultaneous implementation of i) a progressive fossil fuel subsidy reform in emerging and developing economies and ii) a progressive phase out of nuclear energy, mostly affecting OECD countries, China and Russia. The analysis is then transposed in the context of climate change mitigation to depict the corresponding implications for CO2 emissions, to assess the interactions between the two energy policies, and to derive how the associated costs are affected by the different policies. The phase-out scenario projects a nuclear capacity halved by 2035 as compared to the Baseline, corresponding to $120 billion losses in value-added of the nuclear industry for that year. The nuclear phase-out leaves GDP and real household consumption marginally affected in energy importing countries. A multilateral subsidy reform is more likely to affect international fossil fuel prices and alter patterns of global energy use. The fossil fuel subsidy reform, when implemented together with nuclear phase-out, more than offsets negative consequences on household consumption but still leads to a decrease in global CO2 emissions. The combined policies help save the equivalent of current energy consumption in the Middle East. Combining a climate policy, an effective fossil fuel subsidy reform, even with a lower nuclear share in the power mix, brings about multiple benefits to OECD countries which reduce their energy bill and achieve large climate change mitigation at lower cost.  相似文献   

15.
Global cooling: increasing world-wide urban albedos to offset CO2   总被引:2,自引:0,他引:2  
Increasing urban albedo can reduce summertime temperatures, resulting in better air quality and savings from reduced air-conditioning costs. In addition, increasing urban albedo can result in less absorption of incoming solar radiation by the surface-troposphere system, countering to some extent the global scale effects of increasing greenhouse gas concentrations. Pavements and roofs typically constitute over 60% of urban surfaces (roof 20–25%, pavements about 40%). Using reflective materials, both roof and pavement albedos can be increased by about 0.25 and 0.15, respectively, resulting in a net albedo increase for urban areas of about 0.1. On a global basis, we estimate that increasing the world-wide albedos of urban roofs and paved surfaces will induce a negative radiative forcing on the earth equivalent to offsetting about 44 Gt of CO2 emissions. At ~$25/tonne of CO2, a 44 Gt CO2 emission offset from changing the albedo of roofs and paved surfaces is worth about $1,100 billion. Furthermore, many studies have demonstrated reductions of more than 20% in cooling costs for buildings whose rooftop albedo has been increased from 10–20% to about 60% (in the US, potential savings exceed $1 billion per year). Our estimated CO2 offsets from albedo modifications are dependent on assumptions used in this study, but nevertheless demonstrate remarkable global cooling potentials that may be obtained from cooler roofs and pavements.  相似文献   

16.
在梳理新常态以来各省经济布局发展以及能源需求特征的基础上,重点剖析了国家区域协调发展战略,并利用中国多区域动态可计算一般均衡模型(China Multi-Regional Computable General Equilibrium,CMRCGE),对“十四五”时期各省经济社会发展、能源需求及碳排放进行了模拟分析。主要结论包括:(1)在区域协调发展战略指引下,预计到“十四五”末,中国将有13个省市人均GDP超过1.5万美元,16个省市人均GDP在1.0万~1.5万美元之间,各省经济有望实现平稳较快发展。(2)预计2025年各省能源需求总量可达54.5亿tce(由于数据原因,未测算西藏),“十四五”年均增长约为1.5%,能源需求仍保持低速增长。同时能源需求的重心逐步从东部向中部转移,而西部地区能源大省的用能比重基本保持稳定,这与各地所处的经济发展阶段、区域协调发展战略导向基本一致。(3)“十四五”时期各省的碳排放(主要考虑能源利用碳排放)强度年均降幅约为5.4%,绝大部分省份降幅超过4.0%。近年来碳强度显著下降的趋势有望继续保持。  相似文献   

17.
Projections of greenhouse gas (GHG) emissions are critical to enable a better understanding and anticipation of future climate change under different socio-economic conditions and mitigation strategies. The climate projections and scenarios assessed by the Intergovernmental Panel on Climate Change, following the Shared Socioeconomic Pathway (SSP)-Representative Concentration Pathway (RCP) framework, have provided a rich understanding of the constraints and opportunities for policy action. However, the current emissions scenarios lack an explicit treatment of urban emissions within the global context. Given the pace and scale of urbanization, with global urban populations expected to increase from about 4.4 billion today to about 7 billion by 2050, there is an urgent need to fill this knowledge gap. Here, we estimate the share of global GHG emissions driven by urban areas from 1990 to 2100 based on the SSP-RCP framework. The urban consumption-based GHG emissions are presented in five regional aggregates and based on a combination of the urban population share, 2015 urban per capita CO2eq carbon footprint, SSP-based national CO2eq emissions, and recent analysis of urban per capita CO2eq trends. We find that urban areas account for the majority of global GHG emissions in 2015 (61.8%). Moreover, the urban share of global GHG emissions progressively increases into the future, exceeding 80% in some scenarios by the end of the century. The combined urban areas in Asia and Developing Pacific, and Developed Countries account for 65.0% to 73.3% of cumulative urban consumption-based emissions between 2020 and 2100 across the scenarios. Given these dominant roles, we describe the implications for potential urban mitigation in each of the scenario narratives in order to meet the goal of climate neutrality within this century.  相似文献   

18.
利用最新的全国洪涝灾害损失资料以及气象站点降水观测资料,研究了2001—2020年中国洪涝灾害损失的演变特征及其与降水的关系。结果表明:2001—2020年,我国洪涝灾害造成的年均受灾人口超过1亿人次,直接经济损失1678.6亿元。尽管洪涝灾害造成的全国直接经济损失有增加趋势,但全国农作物受灾面积、受灾人口、死亡人口、损坏房屋以及直接经济损失占国内生产总值的比例均呈减少趋势。从空间分布来看,长江流域上中游地区及黑龙江、河北、甘肃、广西等地是洪涝灾害损失较为严重的地区。全国大部分地区死亡人口和损坏房屋呈减少趋势,直接经济损失呈增加趋势,而受灾人口和农作物受灾面积呈北增南减的变化趋势。近10年,我国北方大部分地区除了死亡人口外其余各项损失均较上个10年增加,其中黑龙江和河北增加幅度较大。同时,近10年我国北方大部分地区降水量增加,尤其是黑龙江、河北等地暴雨量和暴雨日数增加幅度较大,加剧了相对脆弱的北方地区的洪涝灾害风险。  相似文献   

19.
《Climate Policy》2013,13(1):56-70
Oregon's governor has proposed a load-based cap and trade programme that limits carbon dioxide (CO2) emissions to 10% below 1990 levels by 2020. A load-based programme is different from the source-based European Union Emissions Trading Scheme (EU ETS), as it regulates emissions sources, located outside the state, that serve Oregon's electricity load. This article describes the stakeholder process that developed the legislative proposal for the load-based cap. The Oregon Clean Energy Planning Model©, a modified capacity expansion model of annual load resource balances, is used to estimate programme costs. The net present value of the climate policy to Oregon ranges from a $518 million benefit to a $414 million cost under various load growth scenarios. Programme benefits are possible under low and medium load growth because the societal returns of energy efficiency exceed its cost over the life of the programme. CO2 allowance prices in 2017–2020 are estimated in the medium case at approximately $21 per tonne. Low energy efficiency deployment could raise allowance costs to $36, while an aggressive efficiency programme could reduce them to $13.50. Competition for Northwest renewable resources could increase allowance prices in final phase to $37, indicating the interdependence in programme design among state climate policies.  相似文献   

20.
The U.S. road network is one of the nation's most important capital assets and is vital to the functioning of the U.S. economy. Maintaining this asset involves approximately $134 billion of government funds annually from Federal, State, and local agencies. Climate change may represent a risk or an opportunity to this network, as changes in climate stress will affect the resources necessary for both road maintenance and construction projects. This paper develops an approach for estimating climate-related changes in road maintenance and construction costs such that the current level of service provided by roads is maintained over time. We estimate these costs under a baseline scenario in which annual mean global temperature increases by 1.5 °C in 2050 relative to the historical average and a mitigation scenario under which this increase in mean temperature is limited to 1.0 °C. Depending on the nature of the changes in climate that occur in a given area, our analysis suggests that climate change may lead to a reduction in road maintenance and/or construction costs or an increase in costs. Overall, however, our analysis shows that climate change, if unchecked, will increase the annual costs of keeping paved and unpaved roads in service by $785 million in present value terms by 2050. When not discounted, this figure increases to $2.8 billion. Policies to reduce greenhouse gas emissions are estimated to reduce these costs by approximately $280 million in present value terms and by $885 million when not discounted. These costs vary substantially by region and time period, information that should be important for transportation planners at the national, state, and local levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号