首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
武行  赵海盛  李昕 《海洋工程》2021,39(3):72-82
在深海环境中,海底管线不仅承受较高外压,还会因为海水及运输介质的常年侵蚀而形成腐蚀缺陷,而腐蚀缺陷往往会导致管道的外压承载力下降。基于壳体稳定性理论,建立了含有非对称局部壁厚减薄管道在外压作用下的屈曲压力理论公式。公式具有广泛的适用性,当内、外局部壁厚减薄深度相等时,可用于计算含有对称局部壁厚减薄管道屈曲压力,而当内部或外部缺陷深度为零时,便可用于计算只含外部或者内部腐蚀缺陷的管道屈曲压力。通过有限元分析验证了该公式的正确性,结果表明公式可以准确预测不同缺陷位置及尺寸时管道的屈曲压力。详细研究了局部壁厚减薄缺陷位置、长度和深度等参数对屈曲压力的影响。研究表明,局部腐蚀对管道的屈曲压力产生重要影响,尤其当腐蚀角度和深度较大时,在腐蚀形成初期就会造成管道的承载力急剧下降,并且管道的屈曲压力与缺陷的径向位置有关,腐蚀缺陷位于管道外侧时的屈曲压力明显大于其位于管道内侧时的屈曲压力。  相似文献   

2.
王慧平  李昕  周晶 《海洋工程》2014,32(5):50-56
初始几何缺陷被认为是影响管道极限承载力和稳定性的重要因素,但是大部分的管道力学特性研究都没有考虑初始缺陷的影响。基于管道几何尺寸测量机,获得管道的壁厚和直径沿轴向以及环向的分布规律。据此建立了四个三维实体有限元模型,分别为完好管道模型、只考虑直径缺陷的管道模型、只考虑壁厚缺陷的管道模型以及考虑所有缺陷的管道模型。分析了初始缺陷对管道的极限内压承载力、极限轴力承载力和极限弯矩承载力的影响。结果表明,直径缺陷对管道的极限内压承载力影响较大;壁厚缺陷对管道在复杂荷载作用下的极限弯矩承载力影响较大。  相似文献   

3.
鲍健  陈正寿 《海洋工程》2022,40(2):78-87
管内流动会影响输流管的振动响应,目前关于输流弹性管涡激振动方面的研究较少。基于计算流体力学(CFD)方法,开展内外流对细长输流弹性管振动特性影响的研究。首先在不考虑内流的情况下将弹性管涡激振动数值预报结果与模型试验数据进行对比,验证了数值方法的可靠性。再者考虑内外流耦合作用情况下,对不同内流流速下细长输流弹性管振动位移时—空分布、顺流向最大平均偏移、振动轨迹、内部横向涡的形成与分布等进行了对比分析。结果发现,与外流流速相比,内流流速的增加虽然难以改变弹性管的主振模态,但对沿管体的振动强度影响显著。顺流向最大偏移处管体运动轨迹发生明显的变形和跳跃。在剪切外流和均匀内流对弹性管的联合作用下,沿管跨方向模态间能量转换频繁,伴随着间歇性出现或消失的沿弹性管传播的行波组分,这主要归因于复杂的双重流固耦合系统(外流—管体,内流—管体)。在内流以附加质量力、离心力和科氏力形式的激励下,弹性管内二次流现象明显。在振动过程中,内部横向涡沿管壁生成、脱落并逐渐散布于整个横截面。  相似文献   

4.
海底双层管单层连接管道结构受力分析   总被引:1,自引:0,他引:1  
粘性高的海洋石油通常需要通过海底保温管道加温输送.温度变化会引起管道变形,并在管壁内产生较大的温度应力.同时,管道正常运营期间还受到管道内压、外压、管内流体粘滞力和土体摩擦力等环境荷载的作用.复杂的环境可能导致海底管道轴向应力过大发生破坏.为了提高铺管效率,提出了双层管单层连接管道这一特殊管道形式,并从理论上分析温度变化和环境荷载对该管道的影响,计算正常运行时管道不同位置处横截面内最大Von-Mises应力.最后得到了Von-Mises应力沿管道轴线分布情况,发现内管和单层连接管的应力一般比外管大,变径管和内管的焊缝处是Von-Mises应力最大的地方.  相似文献   

5.
腐蚀是管道常见的缺陷形式之一,会极大降低管道的压溃压力,同时深海环境下高静水外压易引发管道压溃失效,威胁管道的安全运行,因此准确预测管道压溃压力显得尤为重要。采用数值模拟方法研究了含腐蚀缺陷的高强钢厚壁管道压溃失效模式,分析了管材、管道径厚比、腐蚀深度、长度和宽度等参数对高强钢厚壁管道压溃压力的影响规律。分析结果表明:管道径厚比愈大,对厚壁管道的承压能力提升愈显著;腐蚀缺陷的存在对管道压溃压力具有减小作用;随着管道材料等级的提升,压溃压力有明显提高。提出了相应的压溃压力预测公式,为厚壁管道完整性评价提供了参考依据。  相似文献   

6.
A semi-analytical method of the stress-strain analysis of buried steel pipelines under submarine landslides was proposed, considering the nonlinearities of the pipe-soil interaction and mechanical properties of the pipe steel. The pipeline was divided into three parts according to different loading conditions, and the corresponding differential equations were established based on a combination of the beam-on-elastic foundation and elastoplastic-beam theories. According to the second-order central difference method, the transverse horizontal displacement was calculated, and then the bending strain was obtained based on the relation between bending strains and curvatures. Considering the interaction between the axial and bending strains, the axial strain can be derived from the equilibrium condition by equating the axial force. The proposed method was verified through the comparison of obtained solutions to ANSYS results, with minor deviations which do not exceed about 4.6%. Additionally, the effects of the slide width, the buried depth of pipelines, the internal friction angle of soils, the cohesion of soils and the bulk density of soils are investigated through parametric studies.  相似文献   

7.
Corrosion is one of the main reasons to cause the operation accident of submarine oil and gas transmission pipelines. As the major corrosion pattern in submarine pipelines, the effects of corrosion clusters consisting of the adjacent corrosion defects on failure pressure are investigated through non-linear large-deformation finite element method. Typically, the failure behavior and limit strength of submarine pipeline with axial groove-groove corrosion defect pair exposed to internal pressure are analyzed. The effects of corrosion depth and axial spacing between a pair of corrosion defects on failure pressure are concluded. An interaction relationship for corrosion defects in pipelines, as well as prediction formulations for assessing the remaining strength of corroded pipelines are proposed. The expressions based on the proposed interaction relationship give more accurate results than the methods used in the existing design guidelines.  相似文献   

8.
Internal corrosion in pipelines is often caused by water, sediment, or chemical contaminants present in the multi-phase flow. This normally occurs at the bottom of the pipe and at low points in the pipeline where sediment and water can settle out of the product being transported, therefore creating narrow and long defects. The effect of corrosion defects on the collapse pressure of offshore pipelines was studied through combined small-scale experiments and nonlinear numerical analyses based on the finite element method. After calibrated in view of the experimental results, the model was used to determine the collapse pressure as a function of material and geometric parameters of different pipes and defects. An extensive parametric study using two and three-dimensional numerical models was carried out encompassing different defect geometries and their interaction with pipe ovalization. This paper reports these results which are subsequently used to develop a simple procedure for estimating the collapse pressure of pipes with narrow defects.  相似文献   

9.
This paper presents analytical and numerical researches on the buckling or collapse of offshore pipelines under external hydrostatic pressure. Firstly the case of homogeneous ring model is investigated followed by a detailed study on corroded rings. The elastic-plastic collapse pressure could be treated as the least root of an elementary function. We prove that collapse pressure is a strictly increasing function of mode number in this paper and present some interesting structures of the roots. Partially corroded ring is parametrized by corrosion depth and angle extent. A comprehensive comparison shows that plasticity should not be neglected when the ring is thick-walled. Moreover, a study on large deflection deformation of 3D cylindrical shells quasi-statically dented under constant external pressure is carried out theoretically and numerically. The buckle propagation pressure is shown to be a meaningful value to normalize external pressure. This paper serves to enhance the understanding of destabilizing effect of external pressure mainly applicable and relevant to subsea offshore industry.  相似文献   

10.
As an important part of lifeline engineering in the development and utilization of marine resources, the submarine fluid-filled pipeline is a complex coupling system which is subjected to both internal and external flow fields. By utilizing Kennard’s shell equations and combining with Helmholtz equations of flow field, the coupling equations of submarine fluid-filled pipeline for n=0 axisymmetrical wave motion are set up. Analytical expressions of wave speed are obtained for both s=1 and s=2 waves, which correspond to a fluid-dominated wave and an axial shell wave, respectively. The numerical results for wave speed and wave attenuation are obtained and discussed subsequently. It shows that the frequency depends on phase velocity, and the attenuation of this mode depends strongly on material parameters of the pipe and the internal and the external fluid fields. The characteristics of PVC pipe are studied for a comparison. The effects of shell thickness/radius ratio and density of the contained fluid on the model are also discussed. The study provides a theoretical basis and helps to accurately predict the situation of submarine pipelines, which also has practical application prospect in the field of pipeline leakage detection.  相似文献   

11.
邢静忠  柳春图 《海洋工程》2007,25(4):21-26,38
针对裸露悬跨海底管道,考虑线弹性海床刚度,利用梁的小挠度理论,研究管道在自重作用下的变形和内力,推导给出了未脱离海床的管道段和悬跨管道段的变形和内力公式。在跨度较大的悬跨情况下,悬跨管道段较大的向下弯曲变形可能引起海床上管道脱离海床而翘起。建立管道翘起的判定准则,对于翘起情况推导相应的计算公式,通过算例给出翘起情况下管道的变形和内力。通过计算分析发现:工程上多数悬跨是翘起情况,没有翘起的计算公式只适应于跨度较小的悬跨管道。同时翘起情况下不同海床刚度对悬跨管道无量纲内力影响不大。  相似文献   

12.
考虑阻尼海底悬跨段管道的动力特性及允许悬空长度   总被引:8,自引:0,他引:8  
以海底悬跨段输液管道为研究对象,考虑管道结构阻尼、流体附加阻尼、管内流体流动及管道轴向力和压强的作用,对其进行受力分析,导出管道振动微分方程,进而得到管道动力特性方程。用Hermit插值函数对管道的动力特性方程进行离散得到有限元表达式,采用复模态分析法,求得管道的自振频率。为防止管道发生横向涡激振动,用约化速度作为控制条件,确定管道允许悬空长度。结果表明,管道允许悬空长度随着内流流速、轴向压力和管内压强的增加而减小,随着轴向拉力的增加而加大。  相似文献   

13.
Offshore oil and gas exploration are gradually heading toward the deep sea and even the ultra-deep sea. According, the working temperature and pressure intensity of subsea oil and gas pipelines have increased by a considerable degree. This situation is accompanied by the global buckling problem in deep sea pipelines, which has become increasingly common. Meanwhile, ordinary single-layer pipelines cannot last for a long time under harsh deep-sea working conditions. Thus, multilayer pipelines, such as the pipe-in-pipe (PIP) structure and bundled pipelines, have gradually become top choices. However, the global buckling mechanisms of these multilayer pipelines are more complicated than those of single-layer pipelines. The sleeper–snake lay pipeline, which is an active control method for global buckling, was used in this study. The change and development laws of global buckling in a PIP structure at different wavelengths and amplitudes were determined through an experimental study. A dynamic solution method that considers artificial damping was adopted to establish finite element global buckling models of a PIP structure with initial imperfections. The effects of various factors, such as pipeline laying shape, sleeper–pipe function, and seabed–pipe function, on global buckling were analyzed. By the result of finite element method analysis, the initial imperfection, and sleeper–pipeline friction were determined to be the key factors that influenced critical pipeline buckling force. Accordingly, a reference for the design of PIP structures is presented.  相似文献   

14.
海上风机中,上部支撑结构和基础之间的连接是通过灌浆连接段实现的。近年来,风力发电发展迅速,风力发电机的功率越来越大,对单桩基础灌浆连接段的受力性能提出了更高的要求。在复杂荷载作用下,灌浆连接段受到轴力和弯矩的共同作用,有必要对压-弯共同作用下的灌浆连接段进行受力性能的研究。采用数值分析方法,分析了压-弯作用下不同轴压比时灌浆连接段的极限承载力、钢管与灌浆料之间的接触压力情况和灌浆连接段的应力情况。同时,根据学者Lotsberg提出的弯曲承载力组成理论,通过提取钢管与灌浆料之间的接触力,并对它们进行数值积分,分析了不同轴压比下灌浆连接段抗弯承载力组分的变化规律。通过分析,明晰了带剪力键的灌浆连接段的受力性能,为设计工作提供依据。  相似文献   

15.
Based on the elastic-plastic, large-deformation finite element method, burst capacity of steel pipeline with longitudinal corrosion defect subjected to internal pressure is studied. The appropriate stress-based criterion is used to predict the failure pressure of finite element model of corroded pipeline under internal pressure. By considering the pipe steel grades and geometries of corrosion defects, a series of finite element analyses is conducted. The effects of corrosion depth, length and width on burst capacity are also discussed. A specific failure pressure solution for the assessment of corrosion defects in moderate-to-high strength pipeline is proposed on the base of numerical results. The failure pressures predicted by the proposed method are in better agreement with the experimental results than the results by the other methods.  相似文献   

16.
- With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show some new features due to the existence of both internal and external flows. The paper is intended to investigate the vortex-induced vibration of the suspended pipeline span exposed to submarine steady flow. Especially, the effects of the flow inside the pipeline are taken into account. Its influences on the amplitude of pipeline response, and then on the fatigue life, are given in terms of the velocity of the internal flow.  相似文献   

17.
With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.  相似文献   

18.
极端波浪条件下黏土质斜坡海床稳定性解析   总被引:1,自引:1,他引:0  
海洋资源开发引起海底软黏土的结构性破坏,导致土体强度弱化,在百年一遇的极端波浪作用时极易发生斜坡海床的局部失稳甚至大范围海底滑坡,给海洋工程建设和正常运营带来严重影响。目前,主要采用极限平衡法评价这类海底斜坡,但该法只能给出近似解。基于极限分析上限方法,推导了极端波浪诱发的波压力对斜坡海床的做功功率,建立了外力功与内能耗散率平衡方程;利用最优化方法,结合数值积分和强度折减技术,求解了不同时刻的斜坡海床稳定性系数,并针对扰动后的斜坡海床开展了有限元解的对比验证。在此基础上,深入探讨了不同波浪参数(波长、波高和水深)和坡长小于一个波长等极端条件下的海底斜坡稳定性。  相似文献   

19.
臧志鹏  许振  邹星  侯静 《海洋工程》2023,41(4):114-126
以往的海底管道落锚撞击防护数值模拟主要为单一保护层模型,这里则针对块石+混凝土排垫复合方案建立模型并开展防护性能研究。基于ABAQUS建立有限元数值模型,模拟了落锚、海底管道、海床土体、块石层和混凝土排垫组成的复杂系统相互作用,研究了管道壁厚、内压,落锚质量和撞击速度等因素对管道应变极值和管体凹陷变形的影响。与单纯块石层保护方案相比,采用的块石+混凝土排垫方案具有更优良的防护效果。研究结果表明:在撞击点处,管道的轴向应变和环向应变均达到最大值,且随着与撞击点距离的增加沿管道轴向逐渐减小;撞击结束后,管道上仍然残留一定的塑性应变。随着管道壁厚的增加,管道的最大应变和凹陷深度也随之减小;随着内压的增加,管道上最大拉伸应变变大,而最大压缩应变和凹陷深度减小。随着落锚速度或者质量的增加,管道上最大应变和凹痕深度均变大;在相同动能情况下,管道上的最大应变和凹陷值基本相同,也表明落锚动能是影响管道变形响应的控制因素。本文研究成果可为海底管道防护方案设计提供科学依据。  相似文献   

20.
At present, most researches on the vortex-induced vibration of submarine free spanning pipelines ignore the effect of internal flowing fluid; furthermore, there are no research reports considering the coupling effect of internal and external fluid with the free span. In this paper, combining Iwan‘s wake oscillator model with the differential equation derived for the dynamic response of submarine free spanning pipelines with inclusion of internal flow, the pipe-fluid coupling equations are developed to investigate the effect of internal flow on the vortex-induced vibration of the free spans. The finite dement approximation is implemented to derive the matrix equations of equilibrium. The Newmark method combined with simple iteration is used to solve the system of equations. The results indicate that the internal fluid flow may cause the shift of resonance band to the lower frequency and a slight decrease in the peak value; the effect will be mare pronounced with the increase of the span length and can be weakened in the presence of the axial tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号