首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modified Gaussian phase distributions are used to generate short time series containing a specific extreme value of a ship response. The corresponding incident wave train is calculated via linear systems theory. Sample response and wave time series are compared to the expected time series as calculated by probabilistic analysis. The average of the sample response time series compares favorably to the expected time series, but the average of the sample wave trains does not, in general, match the expected wave train. These comparisons show the danger in estimating extreme ship responses considering only extreme waves. A sample analysis for a Great Lakes bulk carrier is included for illustration.  相似文献   

2.
The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship''s manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.  相似文献   

3.
A shipborne wave-recording system which consists of a sonic wave gauge, accelerometers, gyroscopes and a computer system is described. Signals from the measuring apparatus are fed directly into a shipborne digital computer system at a prescribed sampling rate. The time series of wave heights and the acceleration are transformed into Fourier series using an algorithm of Fast Fourier Transform. Errors contained in the observed wave heights due to ship motion are corrected in the Fourier series by using the Fourier coefficients for the vertical acceleration. Power spectra and waveforms can also be calculated in a short time with this system from Fourier coefficients. Examples of the observational results obtained in the central part of the East China Sea in 1969 are presented.  相似文献   

4.
The purpose of this paper is to analyze the nonlinear ship roll motion equation and the main parameters that induce ship capsizing in beam seas, estimate the survival probability of a ferry in random seas and to find out a risk assessment method for the ship’s intact stability. A single degree of freedom (1-DOF) dynamic system of ship rolling in beam seas is investigated and the nonlinear differential equation is solved in the time domain by the fourth order Runge-Kutta algorithm. The survival probability of a ferry in beam seas is investigated using the theory of “safe basin”. The survival probability is calculated by estimating erosion of “safe basin” during ship rolling motion by Monte Carlo simulations. From the results it can be concluded that the survival probability of a ship in beam sea condition can be predicted by combining Monte Carlo simulations and the theory of “safe basin”.  相似文献   

5.
In actual sea states, damage to offshore floating structures is usually caused by a few extreme waves or wave groups in an irregular wave train. Accurate simulation of the irregular wave trains can lay a solid foundation for understanding the local flow field and impact loads that would potentially cause such damage. This paper describes how the generation of a single extreme wave was investigated. Determination of the wave-maker motion for generating specified irregular wave trains is the key to this work. First, an experimental irregular wave train was decomposed into a certain number of small-amplitude waves. Fourier series expansion was performed to determine the amplitude and the initial phase angle of each wave component. Then a hydrodynamic transfer function was used to calculate the amplitude of the wave-maker motion associated with each wave component. Superposition was made on all the wave components to get the final wave-maker motion. During the numerical simulation, calculated horizontal velocity profiles of the extreme wave at different moments were analyzed and compared with experimental results, and a satisfactory agreement was obtained. In the simulation, VOF method was employed to capture the free surface, and a dissipation zone was used to deal with wave reflection.  相似文献   

6.
全极化X波段雷达掠散射海面回波统计分布特征研究   总被引:1,自引:0,他引:1  
尽管复Wishart分布已被广泛应用于SAR数据统计分析,然而该分布函数却很少被用来研究雷达海面掠散射回波时间序列的统计特征。本文通过分析IPIX雷达海面掠散射回波数据发现:大尺度海浪遮挡区的雷达回波能量很低,主要是雷达系统噪声,如果将该部分低能量回波数据剔除以后,真实海面的IPIX 雷达回波时间序列数据亦满足圆高斯分布,因此,IPIX 雷达海面回波的时间序列数据也必然满足复Wishart分布。在此,我们基于Wishart分布模型分别对全极化IPIX 雷达不同极化通道数据的海面回波时间序列数据进行了统计研究,并推导给出了不同通道数据协方差矩阵元素实部、虚部及相位差等参数的统计分布函数模型。通过与雷达测量数据比计较可见,推导所得理论统计模型与实际测量数据吻合很好。本文所得结论对进一步深入理解掠散射海面雷达回波的统计特征具有一定理论意义。  相似文献   

7.
The present study is employing the equivalent irregular wave approach to predict the wave loads for a ship encountering the worst sea state with respect to the critical dynamic loading parameter. Two different hydrodynamic numerical models, i.e. 3D pulsating source technique and 3D translating pulsating source technique, are applied to calculate the corresponding RAO of the ship moving in waves. Incorporating the RAO of the related physical properties, we can calculate the extreme value for the corresponding ship loading factor, which can be regarded as the worst sea state in the service lifetime of the ship. With the time and period of the occurrence of the corresponding extreme value, we can simulate the time history of the wave load in this period, which is so-called equivalent irregular wave approach. Comparing with the results calculated by the traditional equivalent regular wave approach, we find that the equivalent irregular wave approach can simulate the corresponding wave load more realistic, especially for dynamic pressure. Using the equivalent irregular wave approach can offer the effective and practical base for the ship structural analysis.  相似文献   

8.
A recurring problem in wave climate analyses is the need to predict long term events from short duration records. The relative sparsity of the observational record is enhanced by judicious recognition of near-maximum events, in addition to the annual maximum events. This paper pursues the application of triple annual maximum series. Given any extreme value distribution, the theoretical distributions for the annual second largest monthly wave and the annual third largest monthly wave are established. A maximum likelihood method is proposed to fit these simultaneous distributions to the triple annual maximum series. An application of the method to the historical record at the Farallon Is. off San Francisco adopts several of the more common extreme value distributions and demonstrates the potential of triple annual maximum series in enhancing the reliability of distribution fits. Nevertheless, the common practice of extrapolating short duration records to long term events remains precarious.  相似文献   

9.
Gabriele Bulian 《Ocean Engineering》2010,37(11-12):1007-1026
This paper presents a probabilistic methodology for the analysis of the vulnerability of a ship to the risk of inception of pure loss of stability events. A pure loss of stability failure is modelled as the persistence of the metacentric height below a critical level for a too long time. The metacentric height is modelled as a stationary Gaussian process with a spectrum obtained from the sea elevation spectrum. The time dependent failure index is obtained under the assumption of filtered Poisson process for the occurrence of critical events. The analysis separates cases where the fluctuation of the metacentric height is narrow-band from those where the bandwidth of the spectrum is wide, with an intermediate blending. In case of narrow-band processes appropriate approximate solutions to the problem are provided, while in the wide-band cases an exponential distribution for the persistence time below the critical level is employed. A rational development for the critical persistence time is also provided considering an approximation of the roll dynamics during periods of time where the metacentric height is negative. Monte Carlo simulations are performed to check the developed approximate distributions for the persistence time, and examples of application are provided for a sample ship.  相似文献   

10.
Using the half-cycle analysis method, a comparison is made between extreme events in half-hour intervals of hurricane Camille wave data and extreme events in synthesized Gaussian realizations having the same variance spectra as the measured data. While various statistical comparisons of measured and simulated Gaussian data reveal a consistent trend toward Gaussian behavior for the majority of wave events in the hurricane generated data, it is shown using the half-cycle analysis method that the more extreme wave events occurring near the height of the storm were distinctly non-Gaussian.  相似文献   

11.
The paper describes a method for the prediction of extreme response statistics of floating offshore structures subjected to random seas by Monte Carlo simulation. The particular case of the horizontal surge motions of a tension leg platform is considered, taking into account both the first order, wave frequency and the second order, slow-drift motions. The advantage of the Monte Carlo method is its simplicity and versatility, which allows us to account for the effect of time-variant wave-drift damping, as well as nonlinear mooring characteristics without noticeable increase in the computational complexity. It is demonstrated in this paper that the commonly assumed obstacle against using the Monte Carlo method for estimating extreme responses, i.e. excessive CPU time, can be circumvented, bringing the computation time down to quite acceptable levels.  相似文献   

12.
Surface water wave elevations and kinematics from four unidirectional irregular wave trains, with a Pierson and Moskowitz or JONSWAP random wave spectrum, were measured in the laboratory using resistance wave probes and a laser Doppler anemometer. The wave elevation data, velocity time series, extreme (largest) wave horizontal velocity profiles and extreme wave acceleration fields are compared with the predictions of a new wave kinematics model, named the hybrid wave model. Irregular waves are commonly viewed as the summation of many linear wave components of different frequencies, but more accurate predictions of downstream surface elevations (wave evolution) and wave kinematics are attained by considering the non-linear interactions among wave components. The hybrid wave model incorporates these non-linear wave component interactions, and its wave evolution predictions and kinematics estimates are compared with laboratory measurements in this study. Linear random wave theory, Wheeler stretching and linear extrapolation wave kinematic prediction techniques are also compared. Comparisons between measurements and hybrid wave model estimates demonstrate its improved capability to predict velocity and acceleration fields and wave evolution in two-dimensional irregular waves.  相似文献   

13.
Extreme sea conditions in the nearshore zone are required for coastal flood risk analysis and structural design. Many multivariate extreme value methods that have been applied in the past have been limited by assumptions relating to the dependence structure in the extremes. A conditional extremes statistical model overcomes a number of these previous limitations. To apply the method in practice, a Monte Carlo sampling procedure is required whereby large samples of synthetically generated events are simulated. The use of Monte Carlo approaches, in combination with computationally intensive physical process models, can raise significant practical challenges in terms of computation. To overcome these challenges there has been extensive research into the use of meta-models. Meta-models are approximations of computationally intensive physical process models (simulators). They are derived by fitting functions to the outputs from simulators. Due to their simplified representation they are computationally more efficient than the simulators they approximate.Here, a methodology for deriving a large Monte Carlo sample of extreme nearshore sea states is described. The methodology comprises the generation of a large sample of offshore sea conditions using the conditional extremes model. A meta-model of the wave transformation process is then constructed. A clustering algorithm is used to aid the development of the meta-model. The large sample of offshore data is then transformed through to the nearshore using the meta-model. The resulting nearshore sea states can be used for the probabilistic design of structures or flood risk analysis. The application of the methodology to a case study site on the North Coast of Spain is described.  相似文献   

14.
This paper considers the problem of estimating long-term predictions of significant wave-height. A method which combines Bayesian methodology and extreme value techniques is adopted. Inferences are based on the Metropolis–Hastings algorithm implemented in an appropriate Markov Chain Monte Carlo scheme. The method is applied to obtain return values of extreme values of significant wave height collected on the northern North Sea. The results are compared with those obtained by Guedes Soares and Scotto [Guedes Soares, C. and Scotto, M.G., 2004. Application of the r-order statistics for long-term predictions of significant wave heights. Coastal Engineering, 51, 387–394].  相似文献   

15.
防波堤建设费用巨大,且一旦遭到破坏,后果甚为严重,因此,如何准确地计算防波堤的可靠性意义重大.随着人工神经网络理论的快速发展,人工神经网络方法在结构可靠性分析中的应用逐渐得到重视.基于神经网络的Monte Carlo法计算直立式防波堤的可靠性,概率意义明确.以秦皇岛典型直立堤为算例,采用基于神经网络的Monte Carlo法对直立式防波堤进行可靠性分析时,将直立堤滑动破坏和倾覆破坏的极限状态方程中的所有参数均作为变量处理,并将计算结果与Monte Carlo模拟的直接抽样法、重要抽样法以及独立变量JC法的计算结果进行对比.结果表明:基于神经网络的Monte Carlo法和Monte Carlo模拟的直接抽样法、重要抽样法计算结果相近,而比独立变量JC法的计算结果略低.  相似文献   

16.
Single Gaussian wave groups with different initial wave steepness ε_0 and width N are produced in laboratory in finite depth to study the nonlinear evolution, the extreme events and breaking. The results show that wave groups with larger ε_0 will evolve to be several envelope solitons(short wave groups). By analyzing geometric parameters, a break in the evolution of the wave elevation and asymmetric parameters after extreme wave may be an indicator for the inception of refocus and the maximal wave moving to the middle, namely, wave down-shift occurs. The analysis of the surface elevations with HHT(Hilbert-Huang Transform), which presents the concrete local variation of energy in time and frequency can be exhibited clearly, reveals that the higher frequency components play a major role in forming the extreme event and the contribution to the nonlinearity. Instantaneous energy and frequency in the vicinity of the extreme wave are also examined locally. For spilling breakers, the energy residing in the whole wave front dissipates much more due to breaking, while the energy in the rear of wave crest loses little, and the intra-wave frequency modulation increases as focus. It illustrates that the maximal first order instantaneous frequency f_1 and the largest crest tend to emerge at the same time after extreme wave when significant energy dissipation happens, and vice versa. In addition, it shows that there is no obvious relation of the CDN(combined degree of nonlinearity) to the wave breaking for the single Gaussian wave group in finite water depth.  相似文献   

17.
本文基于Longuet-Higgins随机波浪模型和JONSWAP谱,进行了大量深水随机波的模拟,获取了畸形波发生概率稳定的随机波列,并对随机波列中的畸形波进行了分析。结果表明,畸形波发生的概率小于基于Rayleigh分布预测结果,且随谱宽的减小而增大。在固定时间段内,畸形波发生的频次服从泊松分布,时间间隔服从指数分布,且随着谱宽的增大,畸形波的发生频次减小,相邻畸形波的发生时间间隔增加。通过小波变换方法分离随机波中的波群,研究了出现畸形波的波群特征,发现一个波群中最多会出现4个畸形波,但是在发生畸形波的波群中,单个畸形波的概率最大。随着谱宽减小,一个波群中包含多个畸形波的概率增加。另外,出现畸形波的波群时间长度服从广义极值分布,随着谱宽减小,畸形波波群的时间跨度增加。  相似文献   

18.
Longuet-Higgins(1983)[1]导出了波高与周期的联合分布函数,此分布函数虽然与实际数据符合良好,但存在很大的缺陷,如:由此分布函数得出的波高分布为形式较为复杂的非Rayleigh分布,很难应用于工程计算中。孙孚(1988a)[2]应用射线理论导出了一种波高与周期联合分布,虽然弥补了Longuet-Higgins的一些缺陷,但推导过程过于复杂。本文在窄谱假定下通过应用Hilbert变换方法得出新的分布函数并与前两者比较,表明Hilbert变换的方法不但简便,而且完全克服Longuet-Higgins的不足,可以方便的应用于工程计算中。本文也为Hilbert变换的方法在工程中的应用提供了理论依据。  相似文献   

19.
The problem of diffraction of a unidirectional incident wave group by a bottom-seated cylinder is considered. We assume the amplitude of the incoming wave to be small in comparison with other linear scales of the problem, and develop the corresponding second-order perturbation theory. We use the Fourier transform to treat time variation and separate spatial variables when solving the non-homogeneous second-order problem. The resulting set of non-homogeneous Bessel equations is solved numerically.Solutions for various types of incoming wave spectrum are obtained including the Gaussian spectrum and the Pierson–Moskowitz spectrum. To validate the method, problems with gradually decreasing bandwidth of Gaussian spectrum are solved and it is shown that the corresponding solution approaches that for the monochromatic case. The Pierson–Moskowitz spectrum with a set of realistic physical parameters is used as an example of extreme wave interaction with an offshore structure. The corresponding first- and second-order solutions are obtained and the effect of non-linearity on the solution is discussed with the emphasis on the growth of maximum free-surface elevation on the cylinder’s surface and generation of high frequency free radiated waves.  相似文献   

20.
In this study, we considered the problem of estimating long-term predictions of design wave height based on the observation data collected over 10–15 years along the eastern-coast of the Korean peninsula. We adopted a method that combines Bayesian method and extreme value theory. The conventional frequency analysis methods must be reconsidered in two ways. First, the conventional probability distributions used in the frequency analysis should be evaluated to determine whether they can accurately model the variation in extreme values. Second, the uncertainty in the frequency analysis should also be quantified. Therefore, we performed a comparative study of the Gumbel distribution and GEV distribution to show the higher efficiency of the latter. Further, we compared the Bayesian MCMC (Markov Chain Monte Carlo) scheme and the MLE (Maximum Likelihood Estimation) with asymptotic normal approximation for parameter estimation to confirm the advantage of the Bayesian MCMC with respect to uncertainty analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号