首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
南沙渚碧礁生态系营养关系的稳定碳同位素研究   总被引:4,自引:0,他引:4  
利用稳定碳同位素分析技术研究了南沙渚碧礁生态系食物网主要生物类群之间的营养关系。结果表明,生物的稳定碳同位素组成与其营养来源有密切关系。浮游植物的δ^13C为-18.3‰,与其所处海域的环境条件一致,浮游动物的δ^13C值变化较大,范围为-20.4‰~-10.9‰,表明可能存在浮游植物和碎屑两种营养来源。珊瑚和砗磲的碳同位素组成(-17‰~-15‰)与浮游动物相差较大,暗示共生虫黄藻可能在这些珊瑚的营养来源中起重要作用。底栖海参(-9.6‰)和蜘蛛螺(-12.5‰)的碳同位不比组成与它们沉积物食性的营养特征吻合。鱼类的δ^13C值变化范围较大(-17.7‰~-10.9‰),未表现出随营养级升高而增大的趋势,说明影响鱼类碳同位素组成的因素比较复杂。  相似文献   

2.
塔形马蹄螺人工促熟及催产的研究   总被引:1,自引:0,他引:1  
进行了塔形马蹄螺(Trochus pyramis Born)的人工促熟及催产实验。结果表明,塔形马蹄螺的生物学最小型为:雄性个体壳高1.33cm,雌性个体壳高1.42cm。塔形马蹄螺人工促熟的适宜温度为26~28℃,用叉珊藻(Jania arborescens Yendo)为饵料促熟塔形马蹄螺的效果较好。经促熟的实验贝采用降温阴干的方法进行催产效果较好,实验贝的催产率最高可达95%左右。  相似文献   

3.
本文主要研究福建海区拥剑梭子蟹、红星梭子蟹和锈斑(虫寻)3种经济蟹类的食性与营养级.结果表明,3种蟹类胃饱满系数呈现明显的季节变化,拥剑梭子蟹、红星梭子蟹和锈斑(虫寻)胃饱满系数高峰分别出现在秋季、春季和冬季;3种蟹类皆为摄食混合饵料的动物,甲壳类和鱼类是它们的主要食物,其食性的生态类型较为接近,拥剑梭子蟹、红星梭子蟹属较典型的底栖生物食性类型,而锈斑(虫寻)的食性相对较杂.其混合饵料的营养级分别为2.38、2.59和2.60,均处于第三营养层次(低级肉食性动物).3种蟹类之间的食物的重叠指数均超过0.7,它们的食物重叠显著,对该海域的甲壳动物(主要是长尾类和短尾类)、鱼类、珊瑚虫、腹足类、底栖藻类等饵料资源存在激烈的竞争.  相似文献   

4.
黄美珍 《台湾海峡》2004,23(2):159-166
本文主要研究福建海区拥剑梭子蟹、红星梭子蟹和锈斑(虫寻)3种经济蟹类的食性与营养级.结果表明,3种蟹类胃饱满系数呈现明显的季节变化,拥剑梭子蟹、红星梭子蟹和锈斑(虫寻)胃饱满系数高峰分别出现在秋季、春季和冬季;3种蟹类皆为摄食混合饵料的动物,甲壳类和鱼类是它们的主要食物,其食性的生态类型较为接近,拥剑梭子蟹、红星梭子蟹属较典型的底栖生物食性类型,而锈斑(虫寻)的食性相对较杂.其混合饵料的营养级分别为2.38、2.59和2.60,均处于第三营养层次(低级肉食性动物).3种蟹类之间的食物的重叠指数均超过0.7,它们的食物重叠显著,对该海域的甲壳动物(主要是长尾类和短尾类)、鱼类、珊瑚虫、腹足类、底栖藻类等饵料资源存在激烈的竞争.  相似文献   

5.
龟足(Capitulum mitella Linnaeus)的食物组成可分为4 类, 动物性食物、植物性食物、有机碎屑和无机颗粒。动物性食物主要以桡足类为主, 植物性食物主要以硅藻类为主, 有机碎屑在龟足的食物组成中占据重要地位。龟足食物的食物多样性指数在夏季最高, 冬季最低。小规格龟足主要摄食植物性食物和有机碎屑, 未见摄食动物性食物; 大规格龟足和中等规格的龟足的食性差异不大, 以桡足类和有机碎屑为主。龟足的摄食强度在8 月最强, 1 月、2 月和12 月最弱。龟足摄取食物的大小范围很广, 能够摄取包括2~2 130 μm 大小的食物。  相似文献   

6.
本研究利用核糖体大亚基5'端序列PCR-RFLP以及转录单元内间隔区(Internal TranlsclqIbed Sppacer,rrS)序列分析相结合的方法,首次对福建东山岛附近海域3种优势种类造礁石珊瑚共生藻进行了分子系统分类和遗传多样性研究.PCR-RFLP分析发现东山岛附近海域3种优势种类造礁石珊瑚共生藻都属于C系群共生藻,而ITS序列的序列分析结果表明东山岛附近海域3种优势种类造礁石珊瑚共生藻都属于C1亚系群.研究结果表明ITS序列进化速度快,适合于造礁石珊瑚共生藻属亚系群水平的鉴定.而东山岛附近海域造礁石珊瑚共生藻的多样性低,暗示东山岛附近海域造礁石珊瑚共生藻共生系统面对外界环境压力的适应能力较低.  相似文献   

7.
渤海主要渔业资源结构的演变分析   总被引:2,自引:0,他引:2  
通过对现有资料的系统分析,简化了渤海生态系统食物网,并剖析了近50年来渤海主要渔业资源结构的变化特征,这对进一步阐明渤海生态系统动力学的变化特征以及研究渔业资源衰退的原因有重要的科学意义。研究表明,渤海主要鱼类可聚为4类:游泳动物食性鱼类、底栖动物食性鱼类、浮游动物食性鱼类和腐屑食性鱼类,在此基础上渤海生态系统食物网可简化为3条食物链:浮游植物→浮游动物→浮游动物食性鱼类→游泳动物食性鱼类(第一条食物链);浮游植物和碎屑→底栖动物→底栖动物食性鱼类和头足类→游泳动物食性鱼类(第二条食物链);碎屑→腐屑食性鱼类(第三条食物链)。20世纪50年代末以来,第一条食物链渔业资源已取代第二条食物链渔业资源成为最主要的渔业资源,第三条食物链渔业资源生物量百分比呈上升趋势,近年来已成为继第一条食物链渔业资源的第二大类渔业资源。渔业捕捞、渤海次级生产力结构的变化以及各渔业资源生物自身生长和繁殖特点的不同是导致渤海主要渔业资源结构变化的重要因素。  相似文献   

8.
造礁石珊瑚的分子系统学研究进展   总被引:1,自引:0,他引:1  
综述了造礁石珊瑚系统发生关系和分类的研究现状,重点概述了造礁石珊瑚的分类和遗传多样性在分子生物学领域的研究进展。目前采用的进行造礁石珊瑚分类和遗传多样性研究的分子生物学方法,主要弥补了造礁石珊瑚在传统形态分类学上无法准确界定的缺点,其中核糖体RNA和线粒体DNA序列分析是目前对造礁石珊瑚分子进化和系统发育研究最有效的方法。最后,对未来造礁石珊瑚的分类和遗传多样性研究做了展望,对珊瑚礁框架生物造礁石珊瑚进行分类和遗传多样性的研究,将有助于为珊瑚礁生态系统的保护和恢复提供理论基础。  相似文献   

9.
通过nlsrDNA(nuclear large-subunit ribosomal DNA)及nssrDNA(nuclear small-subunit ribosomal DNA)的PCR-RFLP研究广东徐闻地区8科15属25种62个造礁石珊瑚样本的共生藻。结果表明,共生藻nlsrDNA的RsaI酶切基因型只存在一种,属于C系群共生藻;而nssrDNA的MobⅠ和TaqⅠ两种酶切都存在两种基因型。实验进一步通过PCR直接测序法得到62个造礁石珊瑚样品的共生藻ITS序列,与GenBank上的4种虫黄藻ITS序列构建Neighbor-Joining系统发育树,结果表明该区的造礁石珊瑚共生两种不同种类(亚系群)的共生藻,分别为C1亚系群与C15亚系群共生藻,两个亚系群间的遗传距离为0.019。广东徐闻地区造礁石珊瑚共生藻多样性偏低,暗示该地区珊瑚礁生态系统应对环境变化的能力可能较弱。  相似文献   

10.
于2006年4~7月在湛江硇洲岛海域采集文昌鱼,进行春夏季节不同性别、不同体长组等的胃含物观察分析。结果表明,湛江硇洲岛文昌鱼消化道残留食物成分以泥沙碎屑为主,可辨生物成分有34种,大部分为底栖硅藻,占58.8%,也有少量甲藻、瓣鳃类幼虫、底栖桡足类幼虫和原生动物等。春夏季节的文昌鱼的摄食喜好不尽相同,饵料生物的出现率随着季节的变化有所变化。不同性别文昌鱼的摄食喜好比较相近。文昌鱼到了性腺成熟后才开始进食动物性食物。研究结果表明,文昌鱼摄食藻类、微生物等而自身转化为其他动物的较高营养层次食物,在海洋食物网中具有一定的重要作用。  相似文献   

11.
Ian Bell 《Marine Ecology》2013,34(1):43-55
This paper describes the food selection of hawksbill turtles, Eretmochelys imbricata, using reefs of the Far Northern Section of the Great Barrier Reef Marine Park (nGBR) during 2006 and 2007. A total of 467 gastric lavage and 71 buccal cavity ingesta items were collected from 120 individual E. imbricata, comprising adult female and immature turtles of both sexes. Nineteen E. imbricata that were captured in 2006 were recaptured and sampled again in 2007. Within the total pooled buccal and lavage sample (n = 538), the occurrence of food items was dominated (72.7%) by only three algal taxonomic divisions: Rhodophyta (red algae; 53.7%, n = 289); Chlorophyta (green algae; 11.0%, n = 59) and algae from the division of Phaeophyceae (brown algae; 8.0%, n = 43). The remaining total (buccal and lavage) ingesta sample comprised sponges (10.4%, n = 56), soft corals and a wide variety of possibly nutritionally important invertebrate species (12.6%, n = 68), and a small percentage (5.4%, n = 22) of inorganic material. Generally, E. imbricata were considered to be primarily a sponge‐feeding specialist and secondarily an omnivorous species; within coral reef habitats and in various parts of the world this is the case. However, this study has shown that E. imbricata found foraging on reefs of the nGBR are primarily algivorous and secondarily omnivorous. A feeding strategy that relies on a predominantly algal diet may infer important benefits to the species if the impacts of climate change and ocean acidification inhibit coral growth, while promoting algal density and distribution within the Great Barrier Reef ecosystem.  相似文献   

12.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

13.
Much of coral reef ecology has focused on how human impacts change coral reefs to macroalgal reefs. However, macroalgae may not always be a good indicator of reef decline, especially on reefs with significant sea urchin populations, as found in Kenya and Hawaii. This study tests the effects of trophic interactions (i.e. herbivory by fishes and sea urchins) and spatial competition (between algae and coral) on algal community structure of reefs surrounding two Hawaiian Islands that vary in their level of human impacts. Reef‐building organisms (corals and crustose coralline algae) were less abundant and turf algae were more abundant on Maui as compared to Lanai, where human impacts are lower. In contrast to previous studies, we found no evidence that macroalgae increased with human impacts. Instead, low turf and macroalgal abundance were best explained by the interactive effects of coral cover and sea urchin abundance. Fishing sea urchin predators appeared to have cascading effects on the benthic community. The absence of sea urchin predators and high sea urchin densities correspond to a disproportionately high abundance of turf and crustose coralline algae. We propose that high turf algal abundance is a better indicator of reef decline in Hawaii than high macroalgal abundance because turf abundance was highest on reefs with low coral cover and few fish. The results of this study emphasize that understanding changes in community composition are context‐dependent and that not all degraded reefs look the same.  相似文献   

14.
The benthic assemblage of reefs provides an important resource of food and habitat for reef fishes. However, how benthic composition mediates reef fishes' biotic interactions at isolated environments such as oceanic islands remains largely unknown. Here, we aimed to investigate the role of four different reef microhabitats over biological interactions of fishes in an understudied oceanic island, Príncipe Island. For that, we recorded a total of 46 Underwater Remote Videos (RUVs) to document benthic composition and fishes' trophic and agonistic interactions. We used benthic cover estimates to group the samples into four microhabitats (dominated by epilithic algal matrix [EAM], sand/rock, corals and sponges), then quantified fishes' trophic and agonistic interactions in each microhabitat. All microhabitats presented a different structure of trophic and agonistic interactions of the fish assemblage. Feeding pressure (FP) and agonistic interactions were higher on the EAM microhabitat and lower in coral microhabitat. Herbivores were the main responsible group for the FP in all microhabitats. Territorial damselfishes used microhabitats differently for both trophic and agonistic interactions. We demonstrated that reef fish diversity and intensity of biotic interactions varied according the spatial distribution of benthic resources, which suggests that benthic composition plays an important role on structuring biological interactions at isolated reef systems.  相似文献   

15.
Effective conservation requires knowledge of the effects of habitat on distribution and abundance of organisms. Although the structure of coral reef fish assemblages is strongly correlated with attributes of reef structure, data relating reef types to fish assemblages are scarce. In this study we describe the influence of gross habitat characteristics and seasonality on coral reef fish assemblages of fringing and patch reefs in Kenya. Results showed that total fish abundance was not significantly different between the reefs; however, the fringing reef had higher species diversity during both the northeast (42 spp.) and southeast (36 spp.) monsoon seasons when compared to the patch reef. The more fished species (e.g. Siganus sutor and Lethrinus mahsena) were more abundant on the patch reef in both seasons. Statistical analysis indicated common species between the reefs were more abundant on the fringing reef. Seasons affected abundance of the more vagile species (S. sutor), whereas the reef‐attached sky emperor, L. mahsena was affected more by reef type than by seasons. No significant interaction effects of habitat and seasons were found, indicating independence of habitat and environmental variability in affecting fish assemblages on the reefs. Smaller sized fish dominated the fringing reef more than the patch reef, whereas the skewness index (Sk) indicated a normal‐sized frequency distribution on the patch reef. Trophic structure of the fishes varied more within than between reefs, whereas fish assemblage structure was affected more by seasons on the fringing reef. These results suggest that conservation measures such as marine protected area (MPA) design and setting should consider effects of reef morphology and environmental variability on coral‐reef fish assemblage structure.  相似文献   

16.
Benthic structure of coral reefs determines the availability of refuges and food sources. Therefore, structural changes caused by natural and anthropogenic disturbances can have negative impacts on reef‐associated communities. During the 1990s, coral reefs from Bahía Culebra were considered among the most diverse ecosystems along the Pacific coast of Costa Rica; however, recently they have undergone severe deterioration as consequence of chronic stressors such as El Niño‐Southern Oscillation and harmful algal blooms. Reef fish populations in this area have also been intensely exploited. This study compared reef fish assemblages during two periods (1995–1996 and 2014–2016), to determine whether they have experienced changes as a result of natural and anthropogenic disturbances. For both periods, benthic composition and reef fish abundance were recorded using underwater visual censuses. Live coral cover (LCC) decreased from 43.09 ± 18.65% in 1995–1996 to 1.25 ± 2.42% in 2014–2016 (U = 36, p < 0.05). Macroalgal cover (%) in 2014–2016 was sixfold higher than mean values reported for the Eastern Tropical Pacific region. Mean (±SD) fish species richness in 1995–1996 (36.67 ± 14.20) was higher than in 2014–2016 (23.00 ± 9.14; U = 20, p < 0.05). Over 40% of reef fish orders observed in 1995–1996 were not detected in the 2014–2016 surveys, including large‐bodied predators. Reduction in abundance of fish predators such as sharks, grunts, and snappers is likely attributed to changes in habitat structure. Herbivorous such as parrotfishes and pufferfishes increased their abundance at sites with low LCC, probably in response to predators decline and increased algal cover. These findings revealed significant degradation and drastic loss of structural complexity in coral reefs from Bahía Culebra, which now are dominated by macroalgae. The large reduction in structural complexity of coral reefs has resulted in the loss of diversity and key ecological roles (e.g., predation and herbivory), thus potentially reducing the resilience of the entire ecosystem.  相似文献   

17.
肉芝软珊瑚属(Sarcophyton)是珊瑚礁生态系统中常见的软珊瑚,具有极强的药用价值.我国肉芝软珊瑚种类资源十分丰富,但目前国内对此种珊瑚的分类研究处于停滞状态,肉芝软珊瑚外部形态差异较小,难以直接进行种类鉴定.本研究采集海南省三亚市西瑁岛、万宁市甘蔗岛和大洲岛珊瑚礁区的26个肉芝软珊瑚样品,根据骨针形态学初步鉴定,并分析线粒体msh1基因和COI基因序列进行种类鉴定.结果显示:所有采集的26个样品,鉴定为5个种,分别为:Sarcophyton cherbonnieri、Sarcophyton crassum、Sarcophyton trocheliophorum、Sarcophyton glaucum和Sarcophyton ehrenbergi.其中S. cherbonnieri和S. crassum为我国新纪录种.本研究为海南岛附近海域肉芝软珊瑚的鉴定提供参考,并为我国软珊瑚种类鉴定和生物多样性的研究提供基础数据.  相似文献   

18.
健康的珊瑚礁生态系统具有造礁、护礁、固礁、防浪护岸、防止国土流失的功能。同时, 珊瑚礁生态系统生物多样性极高, 被称为海洋中的“热带雨林”。我国南海拥有200多个珊瑚岛、礁与沙洲, 是世界海洋珊瑚礁最丰富的区域之一。近年来, 由于全球气候变化和围填海等人类活动的影响, 珊瑚礁生态系统受到了不同程度的影响或破坏, 危及海洋生态与岛礁安全, 珊瑚礁生态系统的修复至关重要。本文对珊瑚礁生态系统的现状、修复方法及存在的问题进行了总结, 并在此基础上创新性地提出了基于系统的珊瑚礁多维生态系统修复模式并付诸实践, 以期提供更有效的珊瑚礁生态系统修复新方法。  相似文献   

19.
珊瑚礁是全球生物多样性最高的海洋生态系统之一,底栖贝类是该生态系统的重要组成类群。为了解北部湾涠洲岛珊瑚礁底栖贝类的群落现状及特征,于2015年秋季(10月)与2018年春季(5月)采用水肺潜水截线样条定量调查法对涠洲岛珊瑚礁区6个断面的底栖贝类进行了调查,并分析了物种组成、丰度、生物多样性指数等群落特征。综合两次调查结果显示涠洲岛珊瑚礁区共有底栖贝类128种,分别属于多板纲1科1属3种,腹足纲25科46属68种,双壳纲22科31属57种。优势种为斑顶拟舌骨牡蛎、粗衣蛤、刺荔枝螺、马蹄螺、杂色牙螺、青蚶、旗江珧、甲虫螺、蕾丝蟹守螺、珠母爱尔螺。2018年春季定量断面采集到的样品为2纲14科43种,各断面的丰度、生物量、多样性指数、物种丰度指数和均匀度指数均值分别为3.39个/m2、86.94 g/m2、3.31、3.50、0.37。通过对两年的调查数据比较,发现2015?2018年涠洲岛珊瑚礁区的贝类生物群落呈现良好演替发育趋势。南海珊瑚礁区贝类群落结构可能受到了人为干扰强度和纬度的双重影响。本研究全面掌握了涠洲岛珊瑚礁底栖贝类的种类、分布区及群落的结构与变化,可为该地区海洋生物资源开发利用、珊瑚礁保护和生态修复等工作提供数据支持。  相似文献   

20.
Coral reefs of the Turks and Caicos Islands (TCIs) (Caribbean Sea) constitute some of the few pristine coral reef systems in the world and play a crucial role in the islands’ economy because they support rich fisheries catches and tourism development. Ambitious development plans involving increase in fishing and tourism pressures are about to bring changes in coastal zone resources of the TCIs associated with increased sediments and nutrients and reduced predation by herbivorous fish on coral reefs. Understanding change is critical when attempting to protect the resources that these coral reefs support and to adopt proper management strategies. Yet, an environmental assessment program to detect imminent human‐induced changes on the surrounding reefs of the TCIs is lacking. Thus, (i) we obtained baseline data on benthic composition and coral community structure at seven reef sites of representative reefs of the TCIs within the Admiral Cockburn Land and Sea National Park (ACLSNP) of South Caicos Island and (ii) performed a priori statistical power analysis to calculate replication requirements for safely and confidently detecting small (δ = 0.1), medium (δ = 0.3), and large (δ = 0.5) effect sizes for a number of relevant to anticipated changes, univariate, benthic indices and for power β = 0.95. The platforms of the margin reefs studied (9–12 m depth) appeared rather variable regarding benthic composition but quite homogeneous regarding hard coral community structure. Mean percent cover of algal functional groups was 0.1 ± 0.3 (mean ± sd) percent for coralline algae and Halimeda, 0.1 ± 0.6 (mean ± sd) percent for macroalgae, 21.7 ± 33 (mean ± sd) percent for turf algae and 4.8 ± 4.0 (mean ± sd) percent for hard coral cover. The dominant benthic component, however, was carbonate substrate (mean ± sd = 30.4 ± 34.3), thus indicating an accreting reef framework. Mean hard coral density, colony size and recruit density were 5.5 ± 1.8 (mean ± sd) corals per 20‐m line transect, 13.0 ± 2.3 (mean ± sd) cm maximum colony diameter, and 1.3 ± 1.4 (mean ± sd) recruits per square foot, respectively. Due to high natural variance, hard coral colony size and density were practically the most sensitive indices in detecting even small size changes on benthos. Also, the geometric mean of log‐transformed colony size‐frequency distributions of the most abundant hard coral taxa, i.e. Montastrea annularis, Agaricia spp., Siderastrea spp. and Porites asteroides were practically sensitive for the same purpose. We hope that the study will optimize the spatial component of a necessary environmental impact assessment program on coral reefs of the TCIs once the natural spatial variability of the system has been assessed and sensitive, benthic, univariate indices have been identified for representative reference coral reef sites of the TCIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号