首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Livestock constitutes an integral component of Indian agriculture sector and also a major source of GHGs emissions. The study presents a detailed inventory of GHG emissions at district/state level from different age-groups, indigenous and exotic breed of different Indian livestock categories estimated using the recent census 2003 and country-specific emission coefficients based on IPCC guidelines. The total methane emission including enteric fermentation and manure management of livestock was estimated at 11.75 Tg/year for the year 2003. Enteric fermentation constitutes ~91 % of the total methane emissions from Indian livestock. Dairy buffalo and indigenous dairy cattle together contribute 60 % of the methane emissions. The total nitrous oxide emission from Indian livestock for the year 2003 is estimated at 1.42 Gg/year, with 86.1 % contribution from poultry. The total GHGs emission from Indian livestock is estimated at 247.2 Mt in terms of CO2 equivalent emissions. Although the Indian livestock contributes substantially to the methane budget, the per capita emission is only 24.23 kgCH4/animal/year. Using the remote sensing derived potential feed/fodder area available for livestock, the average methane flux was calculated as 74.4 kg/ha. The spatial patterns derived in GIS environment indicated the regions with high GHGs emissions that need to be focused subsequently for mitigation measures. The projected estimates indicate a likely increase of 40 % in methane emissions from buffalo population.  相似文献   

2.
Summary In this paper, we discuss past climatic trends over India, greenhouse gas emissions due to energy consumption, forest and land-use changes, climate change scenarios for the year 2050, potential consequences for agriculture and cyclone activity and the possibility that India might limit the increasing trend in its emissions.India's mean surface air temperature has increased significantly by about 0.4°C over the past ccntury. Neither monsoon nor annual rainfall shows any significant trend. On average, there has been a rise in sea levels around India over recent decades, though considerable uncertainties exist in the accuracy and interpretation of the available data.Carbon emissions from the energy sector amount to 71 MT a year, equivalent to all other sectors combined. From land-use data, a marginal net sequestration of 5.25 million tonnes of carbon occurred during 1986. Following the IPCC guidelines, methane emissions from rice and livestock are estimated at 17.4 and 12.8 Tg/year, respectively.According to recent climate model projections, India may experience a further rise in temperature of 1 °C by the year 2050, about four times the rate of warming experienced over the past 100 years. A modest increase in precipitation amounts might occur. Cereals production is estimated to decrease and the nutrition security of the population-rich but land-hungry region of India might be hampered. An increase in local tropical cyclone activity may occur over thc next century, posing added problems as large areas in the coastal regions have a dense population.About 70% of the electricity generation in India is from coal-based power stations. Altering this dependence significantly to reduce emissions would imply a substantial change in the present energy policy of India. There is great potential for improving energy efficiency and conservation. The adoption of cleaner coal-technologies should be considered, as must the development of renewable, non-conventional energy sources. In all cases, serious institulional barriers and resource limitations need to be addressed. The scope for carbon sequestration is limiled by land availabilily and other factors. It is argued that any response to global warming must be located firmly in the framework of sustainable development.With 5 Figures  相似文献   

3.
Climate benefits of changing diet   总被引:3,自引:3,他引:0  
Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in the adverse health effects of beef and pork have lead to a revision of meat consumption recommendations. Here, we explored the potential impact of dietary changes on achieving ambitious climate stabilization levels. By using an integrated assessment model, we found a global food transition to less meat, or even a complete switch to plant-based protein food to have a dramatic effect on land use. Up to 2,700 Mha of pasture and 100 Mha of cropland could be abandoned, resulting in a large carbon uptake from regrowing vegetation. Additionally, methane and nitrous oxide emission would be reduced substantially. A global transition to a low meat-diet as recommended for health reasons would reduce the mitigation costs to achieve a 450 ppm CO2-eq. stabilisation target by about 50% in 2050 compared to the reference case. Dietary changes could therefore not only create substantial benefits for human health and global land use, but can also play an important role in future climate change mitigation policies.  相似文献   

4.
《Climate Policy》2013,13(1):62-74
What is the potential for developing small-scale CDM projects in India to reduce enteric methane emissions from cattle and buffaloes? The issue of baseline setting for prospective CDM projects is a complex one in the Indian context. The baselines constructed on the basis of aggregate emission rates at the national level are unlikely to be precise as methane emission rates are influenced by the livestock and feed characteristics, which vary widely across regions in an agro-climatically diverse country like India. This calls for establishing a project specific baseline underpinned with regional methane emission rates. The various aspects of sustainable development that merit consideration in formulating a CDM project in the Indian dairy sector include; increasing the productivity of animals, increasing the net income of producers, decreasing the cost of milk production and the transfer of safe technologies. The projects in the sector would be able to meet the ‘additionality’ conditions of the CDM. However, there are a number of constraints in implementing the enteric methane mitigation strategies through a CDM project at the field level. The article discusses these technical, financial, socio-cultural and institutional barriers along with possible responses to these constraints.  相似文献   

5.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

6.
Global and regional trends in greenhouse gas emissions from livestock   总被引:2,自引:0,他引:2  
Following IPCC guidelines (IPCC 2006), we estimate greenhouse gas emissions related to livestock in 237 countries and 11 livestock categories during the period 1961–2010. We find that in 2010 emissions of methane and nitrous oxide related to livestock worldwide represented approximately 9 % of total greenhouse gas (GHG) emissions. Global GHG emissions from livestock increased by 51 % during the analyzed period, mostly due to strong growth of emissions in developing (Non-Annex I) countries (+117 %). In contrast, developed country (Annex I) emissions decreased (?23 %). Beef and dairy cattle are the largest source of livestock emissions (74 % of global livestock emissions). Since developed countries tend to have lower CO2-equivalent GHG emissions per unit GDP and per quantity of product generated in the livestock sector, the amount of wealth generated per unit GHG emitted from the livestock sector can be increased by improving both livestock farming practices in developing countries and the overall state of economic development. Our results reveal important details of how livestock production and associated GHG emissions have occurred in time and space. Discrepancies with higher tiers, demonstrate the value of more detailed analyses, and discourage over interpretation of smaller-scale trends in the Tier 1 results, but do not undermine the value of global Tier 1 analysis.  相似文献   

7.
Methane emissions from livestock enteric fermentation and manure management represent about 40% of total anthropogenic greenhouse gas emissions from the agriculture sector and are projected to increase substantially in the coming decades, with most of the growth occurring in non-Annex 1 countries. To mitigate livestock methane, incentive policies based on producer-level emissions are generally not feasible because of high administrative costs and producer transaction costs. In contrast, incentive policies based on sectoral emissions are likely administratively feasible, even in developing countries. This study uses an economic model of global agriculture to estimate the effects of two sectoral mitigation policies: a carbon tax and an emissions trading scheme based on average national methane emissions per unit of commodity. The analysis shows how the composition and location of livestock production and emissions change in response to the policies. Results illustrate the importance of global mitigation efforts: when policies are limited to Annex 1 countries, increased methane emissions in non-Annex 1 countries offset approximately two-thirds of Annex 1 emissions reductions. While non-Annex 1 countries face substantial disincentives to enacting domestic carbon taxes, developing countries could benefit from participating in a global sectoral emissions trading scheme. We illustrate one scheme in which non-Annex 1 countries collectively earn USD 2.4 billion annually from methane emission permit sales when methane is priced at USD 30/t CO2-eq.  相似文献   

8.
Strong and rapid greenhouse gas (GHG) emission reductions, far beyond those currently committed to, are required to meet the goals of the Paris Agreement. This allows no sector to maintain business as usual practices, while application of the precautionary principle requires avoiding a reliance on negative emission technologies. Animal to plant-sourced protein shifts offer substantial potential for GHG emission reductions. Unabated, the livestock sector could take between 37% and 49% of the GHG budget allowable under the 2°C and 1.5°C targets, respectively, by 2030. Inaction in the livestock sector would require substantial GHG reductions, far beyond what are planned or realistic, from other sectors. This outlook article outlines why animal to plant-sourced protein shifts should be taken up by the Conference of the Parties (COP), and how they could feature as part of countries’ mitigation commitments under their updated Nationally Determined Contributions (NDCs) to be adopted from 2020 onwards. The proposed framework includes an acknowledgment of ‘peak livestock’, followed by targets for large and rapid reductions in livestock numbers based on a combined ‘worst first’ and ‘best available food’ approach. Adequate support, including climate finance, is needed to facilitate countries in implementing animal to plant-sourced protein shifts.

Key policy insights

  • Given the livestock sector’s significant contribution to global GHG emissions and methane dominance, animal to plant protein shifts make a necessary contribution to meeting the Paris temperature goals and reducing warming in the short term, while providing a suite of co-benefits.

  • Without action, the livestock sector could take between 37% and 49% of the GHG budget allowable under the 2°C and 1.5°C targets, respectively, by 2030.

  • Failure to implement animal to plant protein shifts increases the risk of exceeding temperate goals; requires additional GHG reductions from other sectors; and increases reliance on negative emissions technologies.

  • COP 24 is an opportunity to bring animal to plant protein shifts to the climate mitigation table.

  • Revised NDCs from 2020 should include animal to plant protein shifts, starting with a declaration of ‘peak livestock’, followed by a ‘worst first’ replacement approach, guided by ‘best available food’.

  相似文献   

9.
Western diets are characterised by a high intake of meat, dairy products and eggs, causing an intake of saturated fat and red meat in quantities that exceed dietary recommendations. The associated livestock production requires large areas of land and lead to high nitrogen and greenhouse gas emission levels. Although several studies have examined the potential impact of dietary changes on greenhouse gas emissions and land use, those on health, the agricultural system and other environmental aspects (such as nitrogen emissions) have only been studied to a limited extent. By using biophysical models and methods, we examined the large-scale consequences in the European Union of replacing 25–50% of animal-derived foods with plant-based foods on a dietary energy basis, assuming corresponding changes in production. We tested the effects of these alternative diets and found that halving the consumption of meat, dairy products and eggs in the European Union would achieve a 40% reduction in nitrogen emissions, 25–40% reduction in greenhouse gas emissions and 23% per capita less use of cropland for food production. In addition, the dietary changes would also lower health risks. The European Union would become a net exporter of cereals, while the use of soymeal would be reduced by 75%. The nitrogen use efficiency (NUE) of the food system would increase from the current 18% to between 41% and 47%, depending on choices made regarding land use. As agriculture is the major source of nitrogen pollution, this is expected to result in a significant improvement in both air and water quality in the EU. The resulting 40% reduction in the intake of saturated fat would lead to a reduction in cardiovascular mortality. These diet-led changes in food production patterns would have a large economic impact on livestock farmers and associated supply-chain actors, such as the feed industry and meat-processing sector.  相似文献   

10.
A typology of dairy farmer perceptions towards climate change   总被引:2,自引:2,他引:0  
Dairy farming is an industry which could potentially mitigate a large amount of greenhouse gas emissions. However, perception and acceptance towards climate change is a significant barrier to voluntary adoption of best practice techniques. A number of countries have set targets for reducing emissions, of which Scotland has one of the most ambitious agendas. This paper presents results from an extensive survey of 540 dairy farmers, conducted in 2009, with the aim of understanding attitudes, values and intentions towards climate change. Only half of these farmers agreed that temperatures would rise in the future and this could significantly hinder adoption of voluntary measures to meet emissions targets. To explore this further a typology was developed on the responses to attitude and value statements, using principal components and cluster analysis methods. Six distinct types were found to exist which had a range of outlooks towards the impact of climate change in the future. However, five of the six types stated no intention to adopt practices which would reduce emissions. The typology approach supports diversified engagement strategies and a more innovation-led or resource maximisation view towards farming was expressed by several of these types. This may indicate that policy makers should focus on ‘win-win’ technologies as a means to effectively engage with these. However, a number of types were disengaged from the process which was driven by uncertainties towards projections for global warming and this needs to be addressed by both scientists and policy makers to ensure greater participation within the farming community.  相似文献   

11.
Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO2 GHG emissions. As a result, we found that global agricultural non-CO2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.  相似文献   

12.
This study explores the effects of agricultural trade liberalisation and concomitant changes in agricultural areas and livestock production on greenhouse gas emissions using the coupled LEITAP–IMAGE modelling system. The results indicate that liberalisation leads to an increase in total greenhouse gas emissions by about 6% compared to the reference scenario value in 2015. The increase in CO2 emissions are caused by vegetation clearance due to a rapid expansion of agricultural area; mainly in South America and Southeast Asia. Increased methane emissions in the case of full liberalisation are caused by less intensive cattle farming in regions such as South America and Southeast Asia. This pattern is observed up to 2050. Total global production of milk, dairy and beef do not change with full liberalisation, but production shifts were observed from North America and Europe to South America and Southeast Asia. Results are less pronounced in variants where trade liberalisation is only implemented partially. Remarkably, our study shows in the trade barrier removal scenario larger numbers of dairy cows in Australia and New Zealand (ANZ) then with full liberalisation scenario or a variant in which only milk quota are abolished. This illustrates that different types of liberalisation need to be analysed regionally and per commodity before general conclusions on the impact of trade liberalisation can be drawn. Our study contributes new information on greenhouse gas emissions to a vast number of trade liberalisation studies that focus on economic impacts. The combined economic-environmental impacts need to be assessed in detail before general conclusions on trade liberalisation can be given.  相似文献   

13.
Anthropogenic emissions of methane (CH4) and nitrous oxide (N2O) from livestock agriculture (enteric fermentation, animal waste management systems, and pasture manure) and plant growing of the Russia (CH4 emissions from rice fields, direct and indirect N2O emissions from agricultural lands) are considered. In 2004, the total emissions of these greenhouse gases in the agricultural sector amounted to 1.4 × 105 thousand t CO2-equivalent, which corresponds to 45% of the 1990 level (3.1 × 105 thousand t CO2-equivalent). In 2004, the contribution of N2O to the total agricultural emissions was approximately twice (67.0%) that of CH4 (33.0%). Direct N2O emissions from agricultural soils (0.5 × 105 thousand t CO2-equivalent) and CH4 emissions from the internal fermentation of domestic animals (0.4 × 105 thousand t CO2-equivalent) are the most significant sources in the agricultural sector of the Russian Federation. In 2004, all these agricultural sources emitting methane and nitrous oxide contributed about 7% CO2-equivalent to the total emission of the anthropogenic greenhouse gases in Russia.  相似文献   

14.
Mitigating Agricultural Emissions of Methane   总被引:7,自引:0,他引:7  
Agricultural crop and animal production systems are important sources and sinks for atmospheric methane (CH4). The major CH4 sources from this sector are ruminant animals, flooded rice fields, animal waste and biomass burning which total about one third of all global emissions. This paper discusses the factors that influence CH4 production and emission from these sources and the aerobic soil sink for atmospheric CH4 and assesses the magnitude of each source. Potential methods of mitigating CH4 emissions from the major sources could lead to improved crop and animal productivity. The global impact of using the mitigation options suggested could potentially decrease agricultural CH4 emissions by about 30%.  相似文献   

15.
The carbon footprint (CF) has emerged as an important yardstick to understand the total contribution of countries, sectors and individuals to climate change. In contrast to conventional emissions accounting which captures only territorial or local production activities, the CF includes the emissions imposed by consumption across global supply chains for goods and services. Recent interest has grown in the application of CF assessment for municipalities owing to their large contribution to global carbon emissions and the limited coverage of existing data to monitor their climate pledges. By linking household-level consumer surveys to a global supply chain database, spatially-explicit CF assessment is possible at a district and household scale. To date, such technique has exposed otherwise unforeseen differences in consumer carbon footprints in developed countries. Within this study we calculate and compare the household carbon footprints 623 districts in India, based on micro consumption data from 203,313 households and explain their variation by economic, cultural and demographic factors. We show the eradication of extreme poverty does not conflict with ambitious climate change mitigation in India. However, our analysis suggests CF reduction policies within India need to target high-expenditure households which are responsible for nearly seven times the carbon emissions than low-expenditure households (living on $1.9 consumption a day). These vast disparities between the carbon footprint of citizens in India highlights the need to differentiate individual responsibilities for climate change in national and global climate policy.  相似文献   

16.
Projected production responses were derived for confined swine and beef and for milk-producing dairy cattle based on climate change projections in daily ambient temperature. Milk production from dairy cattle and the number of days to grow swine and beef cattle were simulated. Values were obtained for three central United States transects and three climate scenarios which were based on projected mean daily ambient temperatures associated with a baseline, doubling, and tripling of atmospheric greenhouse gas (CO2) levels for the period June 1 to October 31. For swine, a slight northwest to southeast gradient is evident. Transect 1 (west side) shows no losses under the doubling scenario and losses up to 22.4% under the tripling scenario. Transect 3 (east side) displays losses of over 70% under the tripling scenario. For beef, positive benefits were simulated in Transect 1 with increasing temperatures, although a northwest to southeast gradient was also evident. For dairy, no positive benefits in milk production were found due to climate effects. Projected production declines ranged from 1% to 7.2%, depending on location. However, ranges in predicted differences were less than those simulated for beef and swine. These simulations suggest regional differences in animal production due to climate change will be apparent. For small changes in climate conditions, animals will likely be able to adapt, while larger changes in climate conditions will likely dictate that management strategies be implemented. Exploration of the effects of climate changes on livestock should allow producers to adjust management strategies to reduce potential impact and economic losses due to environmental changes.  相似文献   

17.
The Agriculture, forestry and other land use (AFOLU) sector as a whole accounts for more than 80% of the total greenhouse gas (GHG) emission in Nepal. This study estimates the GHG emissions from the AFOLU sector in the business as usual (BAU) case during 2010–2050 and identifies the economically attractive countermeasures to abate GHG emissions from the sector at different carbon prices. It also estimates the carbon price elasticity of GHG abatement from the sector. The study finds that enteric fermentation processes in the livestock and emissions from agricultural soils are the two major contributors of GHG emission in AFOLU sector. It identifies no-regret abatement options in the AFOLU sector that could mitigate about 41.5% of the total GHG emission during 2016–2050 in the BAU scenario. There would be a net cumulative carbon sequestration of 16 million tonnes of carbon dioxide equivalent (MtCO2e) at $10 per tonne of carbon dioxide equivalent (tCO2e) during the period. Carbon price above $75/tCO2e is not found to be much effective in achieving significant additional reduction in GHG emissions from the AFOLU sector.  相似文献   

18.
The possibility of extreme sea-level rise is one of the commonly cited reasons for concern about climate change. Major increases in sea level would likely be driven by the melting or collapse of major ice sheets. This possibility has implications for the social cost of carbon dioxide, which is a key policy value as well as a useful summary measure of damage caused by greenhouse gas emissions.This paper extends earlier work on the importance of low-probability, high-impact events for the social cost of carbon dioxide to incorporate the possibility of extreme sea-level rise.To estimate its impact, an integrated assessment model is used, which allows a probabilistic assessment of climate change damages based on the linkages between the economic and climate systems. In the model, the generic discontinuity damage is replaced with the possibility of large-scale damage from factors that are taken to be correlated with temperature rise and, crucially for this paper, explicit consideration of extreme sea-level rise.Estimates of the amount of increase in the social cost of carbon dioxide that can be expected from incorporating extreme sea-level rise show that the increase is significant, though not especially large in percentage terms.The paper contributes to the literature of how to represent uncertain climate impacts in integrated assessment models and the associated estimation of the social cost of carbon dioxide.  相似文献   

19.
Unleakable carbon, or the uncombusted methane and carbon dioxide associated with fossil fuel systems, constitutes a potentially large and heretofore unrecognized factor in determining use of Earth’s remaining fossil fuel reserves. Advances in extraction technology have encouraged a shift to natural gas, but the advantage of fuel switching depends strongly on mitigating current levels of unleakable carbon, which can be substantial enough to offset any climate benefit relative to oil or coal. To illustrate the potential warming effect of methane emissions associated with utilizable portions of our remaining natural gas reserves, we use recent data published in peer-reviewed journals to roughly estimate the impact of these emissions. We demonstrate that unless unleakable carbon is curtailed, up to 59–81% of our global natural gas reserves must remain underground if we hope to limit warming to 2°C from 2010 to 2050. Successful climate change mitigation depends on improved quantification of current levels of unleakable carbon and a determination of acceptable levels of these emissions within the context of international climate change agreements.

Policy relevance

It is imperative that companies, investors, and world leaders considering capital expenditures and policies towards continued investment in natural gas fuels do so with a complete understanding of how dependent the ultimate climate benefits are upon increased regulation of unleakable carbon, the uncombusted carbon-based gases associated with fossil fuel systems, otherwise referred to as ‘fugitive’, ‘leaked’, ‘vented’, ‘flared’, or ‘unintended’ emissions. Continued focus on combustion emissions alone, or unburnable carbon, undermines the importance of assessing the full climate impacts of fossil fuels, leading many stakeholders to support near-term mitigation strategies that rely on fuel switching from coal and oil to cleaner burning natural gas. The current lack of transparent accounting of unleakable carbon represents a significant gap in the understanding of what portions of the Earth’s remaining global fossil fuel reserves can be utilized while still limiting global warming to 2°C. Successful climate change mitigation requires that stakeholders confront the issue of both unburnable and unleakable carbon when considering continued investment in and potential expansion of natural gas systems as part of a climate change solution.  相似文献   

20.
The shale gas boom in the United States spurred a shift in electricity generation from coal to natural gas. Natural gas combined cycle units emit half of the CO2 to produce the same energy as a coal unit; therefore, the market trend is credited for a reduction in GHG emissions from the US power sector. However, methane that escapes the natural gas supply chain may undercut these relative climate benefits. In 2016, Canada, the United States and Mexico pledged to reduce methane emissions from the oil and natural gas sector 40–45% from 2012 levels by 2025. This article reviews the science-policy landscape of methane measurement and mitigation relevant for meeting this pledge, including changes in US policy following the 2016 presidential election. Considerable policy incoherence exists in all three countries. Reliable inventories remain elusive; despite government and private sector research efforts, the magnitude of methane emissions remains in dispute. Meanwhile, mitigation efforts vary significantly. A framework that integrates science and policy would enable actors to more effectively inform, leverage and pursue advances in methane measurement and mitigation. The framework is applied to North America, but could apply to other geographic contexts.

Key policy insights

  • The oil and gas sector’s contribution to atmospheric methane concentrations is becoming an increasingly prominent issue in climate policy.

  • Efforts to measure and control fugitive methane emissions do not presently proceed within a coherent framework that integrates science and policy.

  • In 2016, the governments of Canada, Mexico and the United States pledged to reduce methane emissions from the oil and natural gas sector 40–45% from 2012 levels by 2025.

  • The 2016 presidential election in the United States has halted American progress at the federal level, suggesting a heavier reliance on industry and subnational efforts in that country.

  • Collectively or individually, the countries, individual agencies, or private stakeholders could use the proposed North American Methane Reduction framework to direct research, enhance monitoring and evaluate mitigation efforts, and improve the chances that continental methane reduction targets will be achieved.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号