首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
首先介绍了CFRP加固受损钢筋混凝土柱的数值模拟方法,通过OpenSees软件进行了建模分析,数值模拟结果与试验结果的对比验证了该数值模型的有效性;其次,对一6层钢筋混凝土框架以受极罕遇地震影响进行预损,采用损伤指数和折减系数的方法建立震损钢筋混凝土框架的分析模型,并选择5种不同的CFRP加固方案对其进行加固;最后,对CFRP加固的震损RC框架进行增量动力分析。定量的评价了CFRP加固震损RC框架的抗整体性倒塌能力和抗倒塌安全储备。结果表明:CFRP加固能有效提高震损钢筋混凝土框架结构的抗震性能。加固部位的选择对加固效果的影响很大,在所选用的5种CFRP加固方案中,对底层及第2层的梁柱进行加固的方案对提高震损钢筋混凝土框架的抗整体性倒塌能力效果最佳。  相似文献   

2.
A hybrid numerical and experimental simulation to collapse was conducted on a one‐half scale moment‐resisting frame building with two experimental substructures at different locations. An extensible hybrid test framework was used that adopts a generalized interface to encapsulate each numerical or tested substructure, through which only boundary displacements and forces are exchanged. Equilibrium and compatibility between substructures are enforced by an iterative quasi‐Newton procedure, while adopting a predictor‐and‐corrector method to avoid loading reversals on physically tested substructures. To overcome difficulties in controlling stiff axial and rotational deformations at the boundaries, the flexible test scheme employs either open‐loop or closed‐loop control at the boundaries: enforcing either compatibility or equilibrium, or both requirements at critical boundaries. The effectiveness of the extensible framework and its capability to simulate structural behavior through collapse is demonstrated by a geographically distributed test that reproduced the collapse behavior of a four‐story, two‐bay, steel moment frame previously tested on an earthquake simulator. A comparison of both experiments highlights the viability of the hybrid test as an effective tool for the performance evaluation of structural systems from the onset of damage through collapse. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated dynamic earthquake loads. Particularly for experimental seismic collapse simulation of structures, hybrid testing can be an attractive alternative to earthquake simulators due to the limited capacity of most facilities and the difficulties and risks associated with a collapsing structure on a shaking table. The benefits of hybrid simulation through collapse can be further enhanced through accurate and practical substructuring techniques that do not require testing the entire structure. An innovative substructuring technique for hybrid simulation of structures subjected to large deformations is proposed to simplify the boundary conditions by overlapping the domains between the numerical and experimental subassemblies. The advantages of this substructuring technique are the following: it requires only critical components of the structure to be tested experimentally; it reduces the number of actuators at the interface of the experimental subassemblies; and it can be implemented using typically available equipment in laboratories. Compared with previous overlapping methods that have been applied in hybrid simulation, this approach requires additional sensing in the hybrid simulation feedback loop to obtain internal member forces, but provides significantly better accuracy in the highly nonlinear range. The proposed substructuring technique is verified numerically and validated experimentally, using the response of a four‐story moment‐resisting frame that was previously tested to collapse on an earthquake simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Presence of irregularities in reinforced concrete (RC) buildings increases seismic vulnerability. During severe seismic shaking, such buildings may suffer disproportionate damage or even collapse that can be minimized by increasing robustness. Robustness is a desirable property of structural systems that can mitigate susceptible buildings to disproportionate collapse. In this paper, the effects of vertical irregularity and thickness of unreinforced masonry infill on the robustness of a six‐story three‐bay RC frame are quantified. Nonlinear static analysis of the frame is performed, and parametric study is undertaken by considering two parameters: absence of masonry infill at different floors (i.e., vertical irregularities) and infill thickness. Robustness has been quantified in terms of stiffness, base shear, ductility, and energy dissipation capacity of the frame. It was observed that the infill thickness and vertical irregularity have significant influence on the response of RC frame. The response surface method is used to develop a predictive equation for robustness as a function of the two parameters. The predictive equation is validated further using 12 randomly selected computer simulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This study presents a fast algorithm for collapse behavior simulation of space truss structures under extreme earthquake excitation by introducing the Woodbury formula to efficiently solve the structural response caused by material and geometric nonlinearity (hybrid nonlinearity). The Woodbury formula, which is an efficient tool in mathematics for solving low-rank perturbation problems, has successfully been used to improve the efficiency of local material nonlinear analysis but still has difficulties with seismic collapse analysis in which geometric nonlinearity should be considered. In this study, by implementing stiffness matrix decomposition according to the unchanged reference configuration, the effects of hybrid nonlinearity on the change in tangent stiffness of truss structures are uniformly formulated in the form of hybrid nonlinear perturbation to the reference elastic stiffness. Thus, a hybrid nonlinearity separated governing equation can be established, in which the hybrid nonlinear behaviors are depicted by the additional nonlinear degrees of freedom (NLDOFs) separated from the reference system. This allows for employing the Woodbury formula to perform seismic collapse analysis of space truss structures for avoiding the repeated updating of the global stiffness. To overcome the adverse effect of the large NLDOF number caused by the global characteristics of geometric nonlinearity on the efficiency advantages of the Woodbury formula during seismic collapse analysis, an element state judgment strategy and an adaptive restart mechanism are presented to activate only a small number of NLDOFs within critical local regions. The accuracy and efficiency of the proposed method are verified by two numerical examples.  相似文献   

6.
The performance of force-based and displacement-based seismic assessment methods for the life-safety limit state check of out-of-plane loaded unreinforced masonry walls is evaluated on the basis of refined numerical simulations. For this purpose, a discrete element model of a vertically spanning wall is built and validated against experimental results from static and dynamic test conditions. The model is then analysed for a large range of wall configurations. For each configuration, a static pushover analysis and a series of incremental dynamic analyses are run, the latter permitting to determine the capacity of the wall under dynamic loading. The accuracy of the assessment methods in predicting the acceleration at which the walls collapse is evaluated. It is found that the displacement-based method is more accurate, robust, and safe than the force-based method. The comparison also shows that for walls characterised by a relatively high ratio of axial load to Euler's critical load, both assessment methods lead to an overestimation of the wall capacity. As a remedy, a modification to the methods based on a recently developed mechanical model is put forward and tested. For the force-based method, it is additionally suggested to set for walls with relatively high overburden ratios the behaviour factor equal to 1. To ensure reproducibility of this study, all input and output files of the numerical simulations are made publicly available.  相似文献   

7.
The dynamic identification of a historical masonry palace located in Benevento (Italy) has been carried out. The case study is representative of many buildings located in historic Italian centres. Since the building has been instrumented by the Department of Civil Protection with a permanent dynamic monitoring system, some of the recorded data, acquired in various operating conditions have been analysed with basic instruments of the Operational Modal Analysis in order to identify the main eingenfrequencies and vibration modes of the structure. The experimental results have been compared to the numerical outcomes provided by a detailed three-dimensional Finite Element (FE) model of the building where Soil–Structure Interaction (SSI) has been taken into account. The comparison of experimental vs. numerical frequencies and vibration modes of the palace evidenced the role exerted by the subsoil on the dynamic response of the building.  相似文献   

8.
为了提高钢筋混凝土建筑结构的抗震性能,分析多维地震作用下钢筋混凝土建筑结构的抗连续倒塌能力,结合钢筋混凝土建筑结构特性、节点构造特点以及其在多维地震作用下的破坏机理,采用离散单元法建立结构连续倒塌的理论模型,对建筑结构连续倒塌过程进行数值模拟。基于数值模拟化结果,通过备用荷载路径法,实现建筑结构的抗连续倒塌分析。仿真实验结果得出,所提方法能实现对建筑结构抗连续倒塌的准确分析,且在多维地震作用下建筑结构扭转的幅度明显变大,结构顶层位移发散状态显著,不同楼层会产生不同的层间位移以及薄弱部位,建筑结构的抗连续倒塌性能随着失效构件位置的提升而增强。  相似文献   

9.
混凝土框架倒塌全过程的颗粒流数值模拟   总被引:2,自引:0,他引:2  
周健  屈俊童  贾敏才 《地震研究》2005,28(3):288-293
应用基于离散元原理的颗粒流数值模拟(Particle Flow Code in 2 Dimensions,简称PFC2D)软件,对框架倒塌的全过程进行了数值模拟。模拟结果与框架倒塌的宏观过程吻合,较好地反应出结构在倒塌过程中构件开裂、失效、退出工作、局部倒塌一直到整体倒塌的全过程,并讨论了数值分析中存在的一些难以解决的问题。  相似文献   

10.
Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design. It is important to investigate the failure mechanism and collapse margin of structures beyond design, especially for high-rise buildings. In this study, steel high-rise buildings using either square concrete-filled-tube (CFT) columns or steel tube columns are designed. A detailed three-dimensional (3D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse. The effectiveness is verified by both component tests and a full-scale shaking table test. The collapse margin, which is defined as the ratio of PGA between the collapse level to the design major earthquake level (Level 2), is quantified by a series of numerical simulations using incremental dynamic analyses (IDA). The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20. The significant variation in the collapse margin was caused by the different characteristics of the input ground motions. The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns, exhibiting only 57% of the collapse margin of the baseline building. The influence of reducing the height of the first story was quite significant. The shortened first story not only enlarged the collapse margin by 20%, but also changed the collapse mode.  相似文献   

11.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated earthquake loading. Structural system level response can be obtained by expressing the equation of motion for the combined experimental and numerical substructures, and solved using time‐stepping integration similar to pure numerical simulations. It is often assumed that a reliable model exists for the numerical substructures while the experimental substructures correspond to parts of the structure that are difficult to model. A wealth of data becomes available during the simulation from the measured experiment response that can be used to improve upon the numerical models, particularly if a component with similar structural configuration and material properties is being tested and subjected to a comparable load pattern. To take advantage of experimental measurements, a new hybrid test framework is proposed with an updating scheme to update the initial modeling parameters of the numerical model based on the instantaneously‐measured response of the experimental substructures as the test progresses. Numerical simulations are first conducted to evaluate key algorithms for the selection and calibration of modeling parameters that can be updated. The framework is then expanded to conduct actual hybrid simulations of a structural frame model including a physical substructure in the laboratory and a numerical substructure that is updated during the tests. The effectiveness of the proposed framework is demonstrated for a simple frame structure but is extendable to more complex structural behavior and models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The reinforced concrete frame‐core tube structure is a common form of high‐rise building; however, certain vertical components of these structures are prone to be damaged by earthquakes, debris flow, or other accidents, leaving no time for repair or retrofit. This study is motivated by a practical problem—that is, the seismic vulnerability and collapse resistant capability under future earthquakes when a vertical member has failed. A reduced scale model (1:15 scale) of a typical reinforced concrete frame‐core tube with a corner column removed from the first floor is designed, fabricated, and tested. The corner column is replaced by a jack, and the failure behavior is simulated by manually unloading the jack. The model is then excited by a variety of seismic ground motions on the shaking table. Experimental results concerning the seismic responses and actual process of collapse are presented herein. Finally, the earthquake‐induced collapse process is simulated numerically using the software program ANSYS/LS‐DYNA. Validation and calibration of the model are carried out by comparison with the experimental results. Furthermore, based on both experimental investigations and numerical simulations, the collapse mechanism is discussed, and some suggestions on collapse design are put forward. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Collapse calderas have received considerable attention due to their link to Earth's ore deposits and geothermal energy resources, but also because of their tremendous destructive potential. Although calderas have been investigated through fieldwork, numerical models and experimental studies, some important aspects on their formation still remain poorly understood. One key issue concerns the volume of magmas involved in caldera-forming eruptions. We perform analogue experiments to correlate the structural evolution of a collapse with the erupted magma chamber volume fraction. The experimental device consists of a transparent box (60 × 60 × 40 cm) filled with dry quartz sand and a water-filled latex balloon as a magma chamber analogue. Evacuation of water through a pipe causes a progressive deflation of the balloon that leads to a collapse of the overlying structure. The experimental design allows to record the temporal evolution of the collapse and to track the evolution of fractures and faults. We study the appearance and development of specific brittle structures, such as surface fractures or internal reverse faults, and correlate each different structure with the corresponding removed magma chamber volume fraction. We also determine the critical conditions for caldera onset. Experimental results show that, at any stage of caldera developments, the experimental relationship between volume fraction and chamber roof aspect ratio fits a logarithmic curve. It implies that volume fractions required to trigger caldera collapse are lower for chambers with low aspect ratios (shallow and wide) than for chambers with high aspect ratios (deep and small). These results are in agreement with natural examples and previous theoretical studies.  相似文献   

14.
静力作用下夯土遗址根部掏蚀失稳机制实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
根部掏蚀是土遗址坍塌的主要因素。关于土遗址掏蚀失稳机理已有众多研究成果,但主要基于数值模拟和理论分析,等比例进行根部掏蚀实验的研究较少。基于夯土遗址掏蚀调查研究,制作1∶1夯土墙体模型,通过墙体根部掏蚀实验和数值模拟对其失稳机制进行研究。实验结果表明:掏蚀深度小于20%时,墙体应力变化很小;掏蚀深度大于20%时,墙体出现偏应力,并且快速增大;掏蚀深度为45%时,墙体发生倾倒破坏。在实验过程中,墙体应力重分布主要发生在掏蚀阶段,掏蚀稳定后应力变化不明显;墙体倾倒破坏过程非常迅速,整体表现为刚性倾倒,从夯层根部层界面拉裂是主要破坏模式,其应力应变特征与数值模拟结果相吻合。研究成果可为夯土遗址根部保护和夯筑支顶加固提供参考依据。  相似文献   

15.
In this report, the capabilities of the adaptively shifted integration (ASI)‐Gauss code in the analysis of the seismic responses of framed structures are verified and validated by comparing the results with detailed numerical simulations performed by the parallel finite element analysis code, E‐Simulator, and with experimental results obtained by E‐Defense. The numerical results obtained by both codes showed good agreement with the experimental results obtained by E‐Defense. Furthermore, seismic waves with unnaturally large magnitudes are applied to a high‐rise building model to demonstrate the ability of the ASI‐Gauss code to analyze the collapse behaviors of building frames. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
强导(含)水隐伏陷落柱底板突水机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
华北型煤田采场底板隐伏强导(含)水岩溶陷落柱突水以其隐蔽性强,突水速度快,水量大,破坏性强,危害严重的特点已成为影响煤矿安全生产的重大隐患.但是,受奥陶系灰岩承压水和采动应力耦合作用下的岩溶陷落柱突水机理、突水过程和突水力学规律的研究尚不够系统和完善.本文以陷落柱上覆岩层层状介质假设和剪切破坏理论方法为出发点,建立了不同水平截面形状类型的强导(含)水岩溶陷落柱突水力学模型,并确立了奥灰承压水与采动应力共同作用诱发强导(含)水陷落柱突水的临界条件,并提出了突水危险性系数对陷落柱突水危险性进行定性和定量的评价.理论推导和数值分析表明,奥灰承压水和采动应力耦合作用下的强导(含)水陷落柱突水与其水平截面形状、隔水层厚度、岩石物理性质有关.当采场环境确定后,陷落柱水平截面形状则是决定其突水的关键因素,而且陷落柱水平截面形状是圆形时最容易发生突水.  相似文献   

17.
Earthquake-induced building collapse and progressive collapse due to accidental local failure of vertical components are the two most common failure modes of reinforced concrete (RC) frame structures. Conventional design methods usually focus on the design requirements of a specific hazard but neglect the interactions between different designs. For example, the progressive collapse design of an RC frame often yields increased reinforcement and flexural strength of the beams. As a result, the seismic design principle of “strong-column-weak-beam” may be violated, which may lead to unfavorable failure modes and weaken the seismic performance. To avoid these adverse effects of the progressive collapse design on the seismic resistance of RC frames, a novel structural detailing is proposed in this study. The proposed detailing technique intends to concurrently improve the seismic and progressive collapse performances of an RC frame by changing the layout of the newly added longitudinal reinforcement against progressive collapse without introducing any additional reinforcement. A six-story RC frame is used as the prototype building for this investigation. Both cyclic and progressive collapse tests are conducted to validate the performance of the proposed structural detailing. Based on the experimental results, detailed finite element (FE) models of the RC frame with different reinforcement layouts are established. The seismic and progressive collapse resistances of different models are compared based on the incremental dynamic analysis (IDA) and nonlinear dynamic alternate path (AP) methods, respectively. The results indicate that the proposed structural detailing can effectively resolve the conflict between the seismic and progressive collapse designs.  相似文献   

18.
This work details the role of fault reactivation in the development of tropical montane lakes by using basin morpho-structural analysis and seismostratigraphic studies. The upland lakes are severely faulted sinkholes, whose faults penetrate the Quaternary sedimentary units. Four main stages are related to the lake formation: (i) an Early Proterozoic tectonic deformation of the rocks along the southern border of the Carajás Structure, where the lake is placed; (ii) differential erosion by – and building of – the formation of the South Carajás Hill; (iii) Fe-rich crust formation by weathering and gravitational collapse faults following the E–W plateau border and the start of Violão Lake formation during the Pliocene–Pleistocene; and (iv) episodic fault-fracture reactivation by gravitational collapse causing pulses of subsidence in the lake and outlining its faulted borders. Dissolution of the lateritic crust and erosion by runoff drainage under wet climate conditions were coeval with fault activities, which allowed the deposition of relatively thick clastic deposits organized in three main seismostratigraphic units associated with major lake-level fluctuations. Initial fault reactivation under low-level water started lacustrine basin development with deposition of prograding fan deltas related to the main drainage. A second fault reactivation by gravitational collapse increased the lake accommodation space and resulted in the deposition of fine-grained sediments from dilute interflows or overflows until 36 000 cal year BP. At about 31 000 cal year BP, rapid decreases in the lake water level under redox conditions at the sediment/water interface allowed widespread siderite formation. A third gravitational collapse episode was responsible for the increase in the lake area and depth and the returning of clastic/organic deposition up to the present. This tropical montane lake can be seen as a representative example for understanding the formation of other upland lakes controlled by fault reactivation. © 2020 John Wiley & Sons, Ltd.  相似文献   

19.
Throughout history, dry-stone masonry structures have been strengthened with different types of metal connectors in order to increase their resistance which enabled their survival, especially in the seismically active area. One such example is the ancient Protiron monument placed in the Peristyle square of the Diocletian's Palace in Split, Croatia. The Protiron was built at the turn of the 3rd century as a stone masonry structure with dowels embedded between its base, columns, capitals and broad gable. The stone blocks in the broad gable were connected by metal clamps during restoration at the beginning of the 20th century. In order to study the seismic performance of the strengthened stone masonry structures, an experimental investigation of seismic behaviour of a physical model of the Protiron was performed on the shaking table. The model was designed as a true replica model in a length scale of 1:4 and exposed to representative earthquake with increasing intensities up to collapse. The tests provided a clear insight into system behaviour, damage mechanism and failure under intensive seismic load, especially into the efficiency of connecting elements, which had a special role in increasing seismic resistance and protection of the structure from collapse. Additionally, this experiment provided valuable data for verification and calibration of numerical models for strengthened stone masonry structures.  相似文献   

20.
Damage investigation of small to medium-span highway bridges in Wenchuan earthquake revealed that typical damage of these bridges included: sliding between laminated-rubber bearings and bridge girders, concrete shear keys failure, excessive girder displacements and even span collapse. However, the bearing sliding could actually act as a seismic isolation for piers, and hence, damage to piers for these bridges was minor during the earthquake. Based on this concept, an innovative solation system for highway bridges with laminated-rubber bearings is developed. The system is comprised of typical laminated-rubber bearings and steel dampers. Bearing sliding is allowed during an earthquake to limit the seismic forces transmitting to piers, and steel dampers are applied to restrict the bearing displacements through hysteretic energy dissipation. As a major part of this research, a quarter-scale, two-span bridge model was constructed and tested on the shake tables to evaluate the performance of this isolation system. The bridge model was subjected to a Northridge and an artificial ground motion in transverse direction. Moreover, numerical analyses were conducted to investigate the seismic performance of the bridge model. Besides the test bridge model, a benchmark model with the superstructure fixed to the substructure in transverse direction was also included in the numerical analyses. Both the experimental and the numerical results showed high effectiveness of this proposed isolation system in the bridge model. The system was found to effectively control the pier-girder relative displacements, and simultaneously, protect the piers from severe damage. Numerical analyses also validated that the existing finite element methods are adequate to estimate the seismic response of bridges with this isolation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号