首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

2.
Cretaceous melange of the Cordillera de la Costa belt, north–centralVenezuela, there are knockers of eclogite, barroisite-bearingeclogite, and pelitic glaucophane schist. These occur in a metamorphicmelange matrix that locally consists of marble, serpentinite,amphibolite, actinolite schist, feldspathic schist and gneiss,graphitic schist, chloritoid schist, and garnet-bearing micaschist. The protoliths for these various rock types exhibita wide age range (Cambrian to Early Cretaceous?). Recently discoveredknockers of pelitic glaucophane schist contain Mg-glaucophane+ paragonite + kyanite + garnet + talc + graphite + rutile +quartz. The coexistence of kyanite and Mg-glaucophane suggestsminimum P 2000 MPa at T > 600°C. Eclogite knockers fromthe same outcrop contain garnet and clinopyroxene which yield500°C for cores, 700°C for rims, and P 1200 MPa. Theassemblage garnet–biotite–phengite–albitewithin schists of the melange matrix of this locality indicatesmetamorphic conditions of T = 450–520°C at P = 1800MPa. Because all lithologies in this outcrop record high-P conditions,this metamorphic melange formed before or during peak metamorphismin a mid-Cretaceous subduction zone. KEY WORDS: geothermobarometry; high-P pelitic schist; eclogite; Puerto Cabello; Venezuela  相似文献   

3.
The terrane in the Panamint Mountains, California, was regionallymetamorphosed under low-pressure conditions and subsequentlyunderwent retrograde metamorphism. Prograde metamorphic isogradsthat mark the stability of tremolite + calcite, diopside, andsillimanite indicate a westward increase in grade. The studywas undertaken to determine the effects of the addition of Caon the types of assemblages that may occur in pelitic schists,to contribute to the understanding of the stability limits inP – T – aH2O – XFe of the pelitic assemblagechlorite + muscovite + quartz, and to estimate the change inenvironment from prograde to retrograde metamorphism. Peliticassemblages are characterized by andalusite + biotite + stauroliteand andalusite + biotite + cordierite. Within a small changein grade, chlorite breaks down over nearly the entire rangein Mg/(Mg + Fe) to biotite + aluminous mineral. Chlorite withMg/(Mg + Fe) = 0.55 is stable to the highest grade, and thegeneralized terminal reaction is chlorite + muscovite + quartz= andalusite + biotite + cordierite + H2O. Calcic schists arecharacterized by the assemblage epidote + muscovite + quartz+ chlorite + actinolite + biotite + calcite + plagioclase atlow grades and by epidote + muscovite + quartz + garnet + hornblende+ biotite + calcite + plagioclase at high grades. Epidote doesnot coexist with any AFM phase that is more aluminous than garnetor chlorite. Lithostatic pressure ranged from 2.3 kb to 3.0kb. During prograde-metamorphism temperatures ranged from lessthan 400° to nearly 700°C, and XH2O (assuming PH2O +PCO3 = Ptotal) is estimated to be 0.25 in siliceous dolomite,0.8 in pelitic schist, and 1.0 in calcic schist. Temperatureduring retrograde metamorphism was 450° ± 50°C,and all fluid were H2O-rich. A flux of H2O-rich fluid duringfolding is believed to have caused retrograde metamorphism.The petrogenetic grid of Albee (1965b) is modified to positionthe (A, Cd) invariant point relative to the aluminosilicatetriple point, which allows the comparison of facies series thatinvolve different chloritoid-reactions.  相似文献   

4.
The pressure-temperature-compositional (P-T-X) dependence ofthe solubility of Al2O3 in orthopyroxene coexisting with garnethas been experimentally determined in the P-T range 5–30kilobars and 800–1200 ?C in the system FeO—MgO—Al2O3—SiO2(FMAS). These results have been extended into the CaO—FeO—MgO—Al2O3—SiO2(CFMAS) system in a further set of experiments designed to determinethe effect of the calcium content of garnet on the Al2O3 contentsof coexisting orthopyroxene at near-constant Mg/(Mg + Fe). Startingmaterials were mainly glasses of differing Mg/(Mg + Fe) or Ca/(Ca+ Mg + Fe) values, seeded with garnet and orthopyroxene of knowncomposition, but mineral mixes were also used to demonstratereversible equilibrium. Experiments were performed in a piston-cylinderapparatus using a talc/pyrex medium. Measured orthopyroxene and corrected garnet compositions werefitted by multiple and stepwise regression techniques to anequilibrium relation in the FMAS system, yielding best-fit,model-dependent parameters Goy= –5436 + 2.45T cal mol–1,and WM1FeA1= –920 cal mol–1. The volume change ofreaction, Vo, the entropy change, So970 and the enthalpy changeHo1,970, were calculated from the MAS system data of Perkinset al. (1981) and available heat capacity data for the phases.Data from CFMAS experiments were fitted to an expanded equilibriumrelation to give an estimate of the term WgaCaMg = 1900 ? 400cal/mole cation, using the other parametric values already obtainedin FMAS. The experimental data allow the development of a arnet-orthopyroxenegeobarometer applicable in FMAS and CFMAS: where This geobarometer is applicable to both pelitic and metabasicgranulites containing garnet orthopyroxene, and to garnet peridoditeand garnet pyroxenite assemblages found as xenoliths in diatremesor in peridotite massifs. It is limited, however, by the necessityof an independent temperature estimate, by errors associatedwith analysis of low Al2O3 contents in orthopyroxenes in high-pressureor low-temperature parageneses, and by uncertainties in thecomposition of garnet in equilibrium with orthopyroxene. Ananalysis of errors associated with this formulation of the geobarometersuggests that it is subject to great uncertainty at low pressuresand for Fe-rich compositions. The results of application ofthis geobarometer to natural assemblages are presented in acompanion paper.  相似文献   

5.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

6.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

7.
Systematic changes in the assemblages and compositions of mineralssuggest that the transition from lower to upper sillimanitezone in the Oquossoc area, Maine, is marked by the reaction Staurolite+Sodic Muscovite+QuartzSillimanite+Biotite+K-richerMuscovite+Albite+Garnet+H2O. Moreover, the mineralogic data for the silicates suggest thatH2 O is buffered by some of the assemblages present but PH2O<Ptotal. A consideration of the equilibria among the opaqueminerals enables a calculation of the composition of the fluidphase assuming specific PT conditions and that Pfluid = Ptotal.At several reasonable PT conditions the calculated fluid phaseis reasonable in terms of the model for PH2O based upon thesilicate equilibria. Probable PT conditions for the metamorphism considered in thisstudy range from 575 to 630°C and 3 to 5 kb.  相似文献   

8.
Significant petrogenetic processes governing the geochemicalevolution of magma bodies include magma Recharge (includingformation of ‘quenched inclusions’ or enclaves),heating and concomitant partial melting of country rock withpossible ‘contamination’ of the evolving magma body(Assimilation), and formation and separation of cumulates byFractional Crystallization (RAFC). Although the importance ofmodeling such open-system magma chambers subject to energy conservationhas been demonstrated, the effects of concurrent removal ofmagma by eruption and/or variable assimilation (involving imperfectextraction of anatectic melt from wall rock) have not been considered.In this study, we extend the EC-RAFC model to include the effectsof Eruption and variable amounts of assimilation, A. This model,called EC-E'RAFC, tracks the compositions (trace elements andisotopes), temperatures, and masses of magma body liquid (melt),eruptive magma, cumulates and enclaves within a composite magmaticsystem undergoing simultaneous eruption, recharge, assimilationand fractional crystallization. The model is formulated as aset of 4 + t + i + s coupled nonlinear differential equations,where the number of trace elements, radiogenic and stable isotoperatios modeled are t, i and s, respectively. Solution of theEC-E'RAFC equations provides values for the average temperatureof wall rock (Ta), mass of melt within the magma body (Mm),masses of cumulates (Mct), enclaves (Men) and wall rock () and the masses of anatectic melt generated () and assimilated (). In addition, t trace element concentrations and i + s isotopic ratios inmelt and eruptive magma (Cm, m, m), cumulates (Cct, m, m), enclaves(Cen, , ) and anatectic melt (Ca, , ) as a function of magma temperature (Tm) are also computed. Input parametersinclude the (user-defined) equilibration temperature (Teq),a factor describing the efficiency of addition of anatecticmelt () from country rock to host magma, the initial temperatureand composition of pristine host melt (, , , ), recharge melt (, , , ) and wall rock (, , , ), distribution coefficients (Dm, Dr, Da) and their temperaturedependences (Hm, Hr, Ha), latent heats of transition (meltingor crystallization) for wall rock (ha), pristine magma (hm)and recharge magma (hr) as well as the isobaric specific heatcapacity of assimilant (Cp,a), pristine (Cp,m) and recharge(Cp,r) melts. The magma recharge mass and eruptive magma massfunctions, Mr(Tm) and Me(Tm), respectively, are specified apriori. Mr(Tm) and Me(Tm) are modeled as either continuous orepisodic (step-like) processes. Melt productivity functions,which prescribe the relationship between melt mass fractionand temperature, are defined for end-member bulk compositionscharacterizing the local geologic site. EC-E'RAFC has potentialfor addressing fundamental questions in igneous petrology suchas: What are intrusive to extrusive ratios (I/E) for particularmagmatic systems, and how does this factor relate to rates ofcrustal growth? How does I/E vary temporally at single, long-livedmagmatic centers? What system characteristics are most profoundlyinfluenced by eruption? What is the quantitative relationshipbetween recharge and assimilation? In cases where the extractionefficiency can be shown to be less than unity, what geologiccriteria are important and can these criteria be linked to fieldobservations? A critical aspect of the energy-constrained approachis that it requires integration of field, geochronological,petrologic, and geochemical data, and, thus, the EC-ERAFC ‘systems’approach provides a means for answering broad questions whileunifying observations from a number of disciplines relevantto the study of igneous rocks. KEY WORDS: assimilation; energy conservation; eruption; open system; recharge  相似文献   

9.
The Aravalli–Delhi Mobile Belt in the northwestern partof India demonstrates how granulite enclaves and their hostgneisses can be utilized to unravel multistage metamorphic historiesof orogenic belts, using three suites of metamorphic rocks:(1) an enclave of pelitic migmatite gneiss–leptynite gneiss;(2) metamorphosed megacrystic granitoids, intrusive into theenclave; (3) host tonalite–trondhjemite–granodiorite(TTG) gneisses associated with an interlayered sequence of garnetiferousmetabasite and psammo-pelitic schist, locally migmatitic. Basedon integrated structural, petrographic, mineral compositional,geothermobarometric studies and P–T pseudosection modellingin the systems NCKFMASH and NCFMASH, we record three distincttectonothermal events: an older, medium-pressure granulite-faciesmetamorphic event (M1) in the sillimanite stability field, whichis registered only in the enclave, a younger, kyanite-gradehigh-pressure granulite-facies event (M2), common to all thethree litho-associations, and a terminal amphibolite-faciesmetamorphic overprint (M3). The high-P granulite facies eventhas a clockwise P–T loop with a well-constrained prograde,peak (M2, P 12–15 kbar, T 815°C) and retrograde (M2R,6·1 kbar, T 625°C) metamorphic history. M3 is recordedparticularly in late shear zones. When collated with availablegeochronological data, the metamorphic P–T conditionsprovide the first constraint of crustal thickening in this belt,leading to the amalgamation of two crustal blocks during a collisionalorogeny of possible Early Mesoproterozoic age. M3 reactivationis inferred to be of Grenvillian age. KEY WORDS: Northwestern India; polycyclic granulite enclave; pseudosection; high-pressure metamorphism; P–T path  相似文献   

10.
PARSONS  IAN 《Journal of Petrology》1981,22(2):233-260
The layered syenite series in the Klokken stock formed by continuousin situ fractionation of a trachytic magma in a chamber linedby gabbro with 3000 m of cover rocks. The following mineralsand reactions are assessed as geothermometers and barometers:two feldspars; hypersolvus ternary feldspars; ferrohedenbergite-ß-wollastonite;clinopyroxene-olivine Fe-Mg exchange; Fe-Ti oxides; sanidine-magnetite-annite;ferroedenite stability. Estimates of silica activity are obtainedfrom the silica-magnetite-fayalite assemblage. The gabbros ended magmatic crystallization at > 1000–1050°C.The less fractionated members of the syenite range probablycrystallized with PH2O < Ptotal, at T > 870°C and,PH2O 800 bars. In the more fractionated syenites PH2O = Ptotalduring intercumulus feldspar growth, and all magmatic phasescrystallized within the interval 940–830°C and PH2O< 1100 bars. Magmatic fO2 (bars) was 1 log unit below theQFM buffer. aSIO2 in gabbros was slightly above the albite-nephelinebuffer, but rose suddenly to just <1 in the syenites, a jumpmirrored by minor elements in pyroxenes and opaque oxides. Biotitegrew subsolidus in most rocks, at fO2 < QFM, except in intermediaterocks when fO2 > QFM and was defined by the sanidine-magnetite-biotiteassemblage. In these rocks PH2O of 450 bars at 760°C isobtained using existing experimental data, but application ofthis data to Fe-rich biotites in the layered series (where biotiteis an intercumulus phase) requires P > 10 kb at magmatictemperatures. High TiO2 or F: OH probably accounts for increasedT stability of natural annites at low P. The syenitic liquid fractionated down a low temperature zonein a multicomponent system precipitating alk fsp + ol + cpx+ mt and the more fractionated members of the layered serieshad a negligible crystallization interval, a prerequisite forthe development of the unique Klokken-type inversely gradedmineral layering.  相似文献   

11.
The system peridotite-H2O–CO2 serves as a simplified modelfor the phase relations of mantle peridotite involving morethan one volatile component. Run products obtained in a studyof phase relations of four mantle peridotites in the presenceof H2O- and (H2O+CO2)- bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2 from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0-85 to approximately0.50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite. Liquids formed by anatexis of mantle peridotite are andesiticunder conditions of XH2Ov > 0.6 to at least 25 kb total pressureand to more than 200?C above the peridotite solidus. This observationsupports numerous suggestions that andesite genesis in islandarcs may result from partial melting of underlying peridotitemantle. In contrast to basaltic rocks, the absence of amphibole(paragasitic hornblende) does not affect the silica-saturatednature of the liquids. Increasing K2O content of the startingmaterial (up to 1 wt. per cent K2O) results in increasing potassiumcontent of the amphibole (1 wt. per cent K2O) as well as theappearance of phlogopite. The liquid under these conditionsis relatively K20-poor (less than 1 wt. per cent K2O). Partial melts are olivine normative with XH2O 0.5, and initialliquids contain normative ol and ne at XH2O 0.4. The alkalinityof these liquids increases with decreasing XH2O below valuesof 0.5. The (ol+opx)-normative liquids resemble oceanic basaltswhereas (ol+ne)-normative liquids resemble olivine nepheliniteand melilite basalt. Low aHlo and high aCo2 conditions may bethose under which kimberlites and related rocks are formed inthe mantle.  相似文献   

12.
Isotopic results (Sr, Nd, Pb), as well as concentrations ofmajor and trace elements (REE) are reported for whole-rock samplesand mineral separates from the onland alkaline complex of Serrade Monchique (South Portugal) and the offshore alkali basaltvolcanic suite of Mount Ormonde (Gorringe Bank). These two geneticallyrelated alkaline complexes were emplaced at the east Atlanticcontinent–ocean boundary during the Upper Cretaceous,i.e. 66–72 m.y. ago. Taken together, Serra de Monchiqueand Mount Ormonde may be seen as one of the few examples ofwithin-plate magmatism that straddles the continent–oceanboundary. Major and trace element compositions fail to revealany significant differences between onland and offshore complexes.This is particularly true regarding less differentiated samples(mg-number 0.40) which show the same progressive and continuousenrichment of their trace element patterns, with no specificanomaly (e.g. negative Nb anomaly) being present in samplesfrom the onland complex. Initial Pb and Sr isotopic compositionsalso do not allow any distinction to be made between Serra deMonchique and Mount Ormonde samples. Initial Pb isotope ratiosare moderately high (19.1 < 206Pb/204Pb < 19.8; 207Pb/204Pb= 15.6) in both cases. Moreover, once the effects of Sr contaminationby seawater are taken into account and the most contaminatedsamples discarded using data from fresh clinopyroxene separatesand results of leaching experiments, the initial Sr isotopiccompositions of Mount Ormonde samples are found to be unradiogenic(87Sr/86Sr = 0.7031±1) and identical to those obtainedat Serra de Monchique (87Sr/86Sr = 0.7032±1). In contrast,a systematic mean difference of 2 Nd units is observed betweenSerra de Monchique [Nd(T) = +4.8] and Mount Ormonde [Nd(T) =+6.6] whole-rock samples. Surprisingly, a variation is alsoobserved at Mount Ormonde between the whole-rock samples andone of the two analysed clinopyroxene separates. Whereas MountOrmonde whole-rock samples invariably yielded Nd(T) = +6.6 (meanvalue), a value of +0.5 is obtained for one clinopyroxene separate,whereas another gives +6.0. The above geochemical and isotopicresults make it possible to assign respective roles to the asthenosphere,lithosphere and crust in the petrogenesis of Serra de Monchiqueand Mount Ormonde complexes. We propose that both complexesshare a common mantle source whose isotopic characteristicsare very similar to the source of oceanic island basalts. Continentalmantle lithosphere, already characterized isotopically by studiesof peridotite massifs within the Iberian peninsula, acts asa contaminant which is evident onland on the whole-rock scale,and also present offshore as discrete clinopyroxene xenocrysts.The continental crust appears to play no role in the petrogenesisof the Serra de Monchique alkaline rocks. KEY WORDS: alkaline complexes; continental lithosphere; isotope geochemistry; passive continental margin; within-plate volcanics  相似文献   

13.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

14.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

15.
The granulite complex at Anakapalle, which was metamorphosedat 1000 Ma, comprises orthopyroxene granulites, leptynite, khondalite,mafic granulites, calc-silicate rock, spinel granulites, andtwo types of sapphirine granulites—one quartz-bearingand migmatitic and the other devoid of quartz and massive. Reactiontextures in conjunction with mineral-chemical data suggest severalcontinuous and discontinuous equilibria in these rocks. In orthopyroxenegranulites, dehydration-melting of biotite in the presence ofquartz occurred according to the reaction biotite+quartz= garnet (Py37)+K-feldspar+orthopyroxene + liquid. Later, this garnet broke down by the reaction garnet (Py37)+quartz= orthopyroxene + plagioclase. Subsequently, coronal garnet (Py30) and quartz were producedby the same reaction but proceeding in the opposite direction.In spinel granulites, garnet (Py42) and sillimanite were producedby the breakdown of spinel in the presence of quartz. In thetwo types of sapphirine granulites, garnet with variable pyropecontent broke down according to the reaction garnet = sapphirine + sillimanite + orthopyroxene. The highest pyrope content (59 mol %) was noted in garnets fromquartz-free sapphirine granulites compared with the quartz-bearingone (53 mol % pyrope). The calculated positions of the mineralreactions and diserete P-T points obtained by thermobarometrydefine a retrograde P-T trajectory during which a steep decompressionof 1.5 kbar from P-Tmax of 8 kbar and 900C was followed bynear-isobaric cooling of 300C. During this decompression, garnetwith variable pyrope contents in different rocks broke downon intersection with various divariant equilibria. Near-isobariccooling resulted in the formation of coronal garnet around second-generationorthopyroxene and plagioclase replacing earlier porphyroblasticgarnet in orthopyroxene granulites. It has been argued thatthe deduced P-T trajectory originated in an extensional regimeinvolving either a crust of near-normal thickness of a slightlyoverthickened crust owing to magmatic underaccretion.  相似文献   

16.
McMURRY  J. 《Journal of Petrology》2001,42(2):251-276
The Bodocó pluton, typical of numerous felsic intrusionsin northeastern Brazil that are characterized by blocky megacrystsof K-feldspar, consists mainly of porphyritic coarse-grainedquartz monzonite (SiO2 58–70 wt %) and is reversely zonedfrom a granitic margin to a quartz monzodioritic core. Thereis little variation in mineral composition throughout the pluton,despite a range of variation in mineral proportions. Isotopiccharacteristics also are homogeneous, with 18Oquartz between+9·3 and +9·8 and initial 87Sr/86Sr within limitsof 0·7056–0·7063. Petrogenetic modellingindicates that in situ crystal accumulation processes, accompaniedby the upward migration of a crystal-poor felsic melt, can accountfor many of the observed chemical and isotopic features, petrographictextures, and spatial relationships of rock types. Localizedshearing associated with regional ductile deformation producedextensive kilometre-wide bands of strongly foliated megacrysticquartz monzonite intruded by mafic dykes. Shear-related magmamingling and/or mixing were localized post-emplacement differentiationprocesses, particularly at the upper level of the intrusionand in quartz monzonite border units along the southeast margin. KEY WORDS: accumulation; Brazil; megacryst; petrogenesis; shearing  相似文献   

17.
The results of recent investigations on the stability limitsof staurolite have been combined together with those of thepresent study to develop a semi-quantitative model of the P–T–fo2–Xrelations of staurolite±quartz±magnetite. Theproblem with respect to the hydroxyl content of staurolite hasbeen analysed; it is concluded that no evidence has yet beenmustered to discount the idealised stoichiometry proposed byNaray-Szabó & Sasvari (1958), at least as a limitingcomposition. The stability limits of staurolite±magnetitehave been calculated from the experimental data for the equilibriainvolving quartz. Also the conditions over which the assemblagecordierite+magnetite+quartz could be stable, as well as a quantitativemodel for the fo2-P stability of almandine ± quartz havebeen deduced theoretically. An analysis is presented of the paragenetic relations of staurolitein common pelitic schists. It is suggested that the formationof staurolite at the expense of either chloritoid or chlorite,rather than the unqualified first appearance of staurolite asproposed by Winkler (1970), should define a ‘staurolite-in’isograd in the range of 500–575 °C. In regional metamorphism,chloritoid, staurolite, and aluminum silicates should, underequilibrium conditions, be unstable relative to almandine ingraphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartzalmandine+O2+H2O).The limits of P-T conditions over which staurolite and cordieritemay coexist in natural assemblages have been deduced; it isrestricted, almost entirely within the field of andalusite,between 500–700 °C, and 2–6 kbars, thus definingthe range of P-T conditions for the ‘low-pressure intermediate’—or ‘Buchan’–type amphibolite facies discussedby Miyashiro (1961). In assemblages involving staurolite andandalusite, cordierite rather than almandine should usuallybe stable; the reverse holds for assemblages involving stauroliteand sillimanite.  相似文献   

18.
Synthesis and Stability Relations of Epidote, Ca2Al2FeSi3O12 (OH)   总被引:2,自引:0,他引:2  
LIOU  J. G. 《Journal of Petrology》1973,14(3):381-413
Hydrothermal investigation of the bulk composition 2CaO·Al2O3·l/2Fe2O2·3SiO2+excessH2O (Ps 33 +excess H2O) has been conducted using conventionalapparatus and solid oxygen buffer techniques. Coarse-grainedepidotes (over 150 microns in some cases) were readily synthesizedfrom oxide mixtures with a 98 per cent yield as well as fromtheir high temperature equivalents at 600–700 °C and5 kb Pfluid and over a range of oxygen fugacities. Electronmicroprobe analyses show that maximum Fe+3 content of syntheticepidotes varies as a function of fo2. Epidote is most iron-rich(Ps 33 ± 2) at high (HM and CCO) oxygen buffers and becomesprogressively more aluminous (Ps 25 ± 3) with decreasingfo2 values and temperatures. Such variation is consistent withthe change of refractive indices and cell dimensions. The meanrefractive indices and cell dimensions for synthetic epidote(Ps 33) are N = 1.745 ± 0.005, N = l.786±0.005,a = 8.920±0.005 Å, b = 5.645±0.004 Å,c = 10.190 ű0.006 Å, and ß = 115°31'±4' and for epidote (Ps 25) are N = 1.735±0.005,N = 1.775±0.005, a = 8.891±0.005 Å, b =5.625±0.004 Å, c = 10.177±0.006 Å,and ß = 115° 30'±3'. Mössbauer spectraindicate synthetic epidotes are relatively disordered. Garnets of intermediate composition in the grossular-andraditeseries were synthesized and the cell dimensions and refractiveindices vary linearly with composition. With successive decreasein fo2, garnet synthesized on the Ps 33 bulk composition movestoward the grossular end member with simultaneously increasingalmandine component; concomitantly the hercynite component ofthe coexistent magnetite increases. The fo2-T-Pfluid relations were determined by employing mineralmixtures of synthetic epidote and its high temperature equivalentin subequal proportions. Equilibrium was demonstrated for thereactions (1) epidote (Ps 33) = anorthite+grandite+FeOx+quartz+ fluid, and (2) epidote (Ps 25) (+quartz) = garnet38+anorthite+magnetitc+fluid.With fo2 defined by the HM buffer, epidote (Ps 33) is stableup to 748 °C, 5 kb, 678 °C, 3 kb, and 635 °C, 2kb Pfluid. With fo2 defined by the NNO buffer, the epidote (Ps25) high temperature stability limit is reduced about 100 °Cat 5kb Pfluid. At slightly lower fo2, than defined by the QFMbuffer, epidote is not stable at any temperatures; the assemblagehedenbergite+anorthite+garnet38+fluid replaces epidote in thepresence of excess quartz. Combined with previously determined equilibria for prehnite,andradite, and hedenbergite, isobaric fo,-T relations were furtherinvestigated by chemographic analysis interrelating the phasesprehnite, epidote, grandite, hedenbergite, wollastonite, anorthite,and magnetite in the system CaO-Fe2O3-Al2O3-SiO2-H20. Such analysisallowed the construction of a semi-quantitative petrogeneticgrid applicable to natural parageneses in low µCO2 environments,and the delineation of the low temperature stability limit ofepidote as a function of fo2. Enlargement of the epidote stabilityrange toward both high and low temperatures with increasingfo2, is consistent with widespread occurrences of epidote inlow- and mediumgrade metamorphic rocks.  相似文献   

19.
Reversed Na-K exchange data between mica and a 2 molal aqueous(Na,K)Cl fluid (Flux & Chatterjee, 1986) have been employedto model the thermodynamic mixing behaviour of muscovite-paragonitecrystalline solutions on the basis of the Redlich-Kister equation.For these binary micas, Gexm may be expressed as where A=11222+1.389 T+0.2359 P, B=–1134+6.806 T–0.0840 P, and C=–7305+9.043 T, with T in K, P in b, Gexm, A, B, and C in joules/mol. Gmex is well constrained between 450 and 620?C, and may be extrapolatedbeyond that range with caution. The calculated solvi are skewedtoward the paragonite end member. In the range up to 15 kb,the critical temperature, Tc and the critical composition, Xcmay be expressed as a function of P by the relations: and with P indicated in bars. Calculated phase relations of muscovite-paragonite crystallinesolutions have been depicted in terms of the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O.These data may be applied to appropriate assemblages involvingmica, alkali feldspar, an Al2 polymorph, and quartz to estimateP, T and aH2O conditions of their equilibration. In principle,the muscovite limb of the solvus may be used to obtain geothermometricdata for coexisting muscovite-paragonite pairs, provided theequilibrium pressure is independently known. However, such applicationmust be restricted for the present to micas on the ideal muscovite-paragonitejoin. Mica-alkali feldspar-Al2SiO5-quartz or mica-plagioclase-Al2SiO5-quartzassemblages may be used to deduce aH2O in the coexisting fluid,if P, and T of equilibrium are independently known. Examplesof such geological applications are given.  相似文献   

20.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号