首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.  相似文献   

2.
Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The trend of the Sufyan Sub-basin (E-W) is different from the general trend of Muglad Basin (NW-SE) and similar to Baggara basin in the west of Sudan and other basins in east Chad. The unique E-W trend, suggests that this Sub-basin originated by a mechanism different from Muglad Basin that is considered more extensional in origin. Five regional seismic lines are included to illustrate the structural and stratigraphic variation across the Sub-basin. Fault polygons maps for six horizons, four isopach maps, five cross-sections, and two associated kinematic models are presented in this study. Sufyan Sub-basin is characterized by rhombic geometry with three boundary faults; two of those faults exhibit dextral strike slip movement, with two depocenters at the western and eastern segments of the southern fault. Structural interpretation of Sufyan Sub-basin based on 2D seismic data highlights the style of strike-slip related structure. Negative flower structures, en-echelon faults, and rhombic geometry all suggest a significant component of a pull-apart transtensional movement in Sufyan Sub-basin. Other alternative scenarios for evolutionary history and the forming mechanism were introduced such as the oblique extension model. The Sufyan Sub-basin is believed to be highly affected by the Central African Shear Zone (CASZ). In this study, several transtension and oblique rift related features interpreted from Bouguer gravity map and seismic data are briefly described and illustrated. Based on this study, the favorable areas for hydrocarbon accumulation are the areas of flower structure and the areas that near to the two depocenters that controlled by the southern boundary fault.  相似文献   

3.
The Cariaco basin, located ∼40 km off the central part of the coast of Venezuela, is the largest (∼4000 km2) and bathymetrically deepest (1400 m BSL) Neogene fault-bounded basin within the right-lateral strike-slip plate boundary zone that separates the Caribbean and South American plates. Using subsurface geophysical data, we test two previously proposed tectonic models for the age, distribution and nature of east-west-striking, strike-slip faults, and basin-forming mechanism for the two main depocenters of the Cariaco basin. The earliest interpretation for the opening of the twin Cariaco depocenters by Schubert (1982) proposes that both depocenters formed synchronously by extension along transverse (north-south) normal faults at a ∼30-km-wide rhomboidally-shaped pull-apart basin between the right-lateral, east-west-striking, and parallel San Sebastian and El Pilar fault zones. A later model by Ben-Avraham and Zoback (1992) proposes that both depocenters formed synchronously by a process of ”transform-normal parallel extension”, or rifting in a north-south direction orthogonal to the east-west-striking and parallel strike-slip faults.We use more than 4000 km of 2D single- and multi-channel seismic data tied to 11 wells to map 5 tectono-stratigraphic sequences and to produce a series of structural and isopach maps showing how the faults that controlled both Cariaco depocenters evolved from Paleogene to the present. Comparison of fault and isopach maps for dated horizons from Paleogene to late Neogene in age show three main phases in basin development: 1) from middle Miocene to Pliocene, the West Cariaco basin formed as a rhomboidally-shaped pull-apart at a 30-km-wide stepover between the northern branch of the San Sebastian fault and the El Pilar fault zone; 2) during the early Pliocene, a new strike-slip fault transected the West Cariaco basin (southern branch of the San Sebastian fault) and caused extension to cease; and 3) during the early Pliocene to recent, a “lazy-Z” shaped pull-apart formed along the curving connection between the southern branch of the San Sebastian and El Pilar fault zones.  相似文献   

4.
Cenozoic structures in the Bohai Bay basin province can be subdivided into eleven extensional systems and three strike-slip systems. The extensional systems consist of normal faults and transfer faults. The normal faults predominantly trend NNE and NE, and their attitudes vary in different tectonic settings. Paleogene rifting sub-basins were developed in the hanging walls of the normal faults that were most likely growth faults. Neogene–Quaternary sequences were deposited in both the rifting sub-basins and horsts to form a unified basin province. The extensional systems were overprinted by three NNE-trending, right-lateral strike-slip systems (fault zones). Although the principal displacement zones (PDZ) of the strike-slip fault zones are developed only in the basement and lower basin sequences in some cross sections, the structural deformation characteristics of the upper basin sequences also indicate that they are basement-involved, right-lateral strike-slip fault zones. According to the relationships between faults and sedimentary sequences, the extensional systems were mainly developed from the middle Paleocene to the late Oligocene, whereas the strike-slip systems were mainly developed from the Oligocene to the Miocene. Strike-slip deformation was intensified as extensional deformation was weakened. Extensional deformation was derived from horizontal tension induced by upwelling of hot mantle material, whereas strike-slip deformation was probably related to a regional stress field induced by plate movement.  相似文献   

5.
The rift zone??s relief, the spreading kinematics, and the experimental modeling of the Knipovich Ridge??s formation were analyzed. Its rift zone is formed in a transtension environment. Faulting is predominant in its northern part, while strike-slip is characteristic for the south. A system of short extension basins connected by deep strike-slip U-shaped troughs is observed in the south. A system of volcanic rises connected by short shallow basins is observed in the north. The rift valley is V-shaped. According to the experimental modeling data, these extension kinematics provide the formation of short extension basins connected by strike-slips and transtension faults. Their length and orientation depend on the spreading obliquity of each segment.  相似文献   

6.
This study analyzes the structural development of the Gunsan Basin in the central Yellow Sea, based on multi-channel seismic reflection profiles and exploratory well data. The basin comprises three depressions (the western, central, and eastern subbasins) filled with a thick (ca. 6000 m) Cretaceous to Paleogene nonmarine succession. It was initiated in the early Cretaceous due to intracontinental extension caused by oblique subduction of the Izanagi plate under the Eurasian plate and sinistral movement of the Tan-Lu fault. The basin appears to have undergone transtension in the late Cretaceous–Eocene, caused by dextral movement of the Tan-Lu and its branching faults. The transtension was accommodated by oblique intra-basinal normal faults and strike-slip (or oblique-slip) movement of a NE-trending bounding fault in the northern margin of the central subbasin. The entire basin was deformed (NE–SW contraction) in the Oligocene when tectonic inversion occurred, possibly due to the changes in strike-slip motion, from right- to left-lateral, of the Tan-Lu fault. During the early Miocene, extension resumed by reactivation of the pre-existing normal and transpressional faults. A combination of extension, uplift, and erosion resulted in differential preservation of the early Miocene succession. At the end of the early Miocene, extension ceased with mild contraction and then the basin thermally subsided with ensued rise in sea level.  相似文献   

7.
The evolution of the North Aegean Sea is studied through the development of three deep basins: the North Aegean Trough, the North Skyros Basin and the Ikaria Basin. Bathymetric data, a 2D seismic dataset and the well-investigated stratigraphic records of the onshore deep basins of northern Greece and Western Turkey were used to make structural and seismic stratigraphic interpretations. The study area shows two sharp unconformities that correspond to the Eocene-Oligocene transition and the Miocene-Pliocene shift. These discontinuities were used as marker horizons for a more detailed structural and seismic stratigraphic interpretation resulting in the identification of several seismic units. A general seismic signature chart was established using onshore basin stratigraphy and well data, which was then used to constrain the ages of the different seismic units. The main features observed in the basins are interpreted as: 1) trans-tensional growth patterns in Pliocene and Quaternary sediments that combine NE–SW trending and steeply dipping fault zones that likely correspond to strike-slip corridors and E-W/WNW-ESE trending normal faults, 2) regional erosional truncations of Miocene sediments, likely related to the Messinian Salinity Crisis (MSC), 3) thick delta-turbidite deposits of Neogene age. Only the North Aegean Trough shows evidence of earlier development and polyphase deformation through inversion structures, and additional seismic units. Extension processes in the Aegean region have been driven by the Hellenic slab rollback since the middle Eocene. The widespread development of Neogene basins at the whole Aegean scale attests to a major tectonic change due to an acceleration of the trench retreat in the middle Miocene. The present study shows that the Neogene basins of the North Aegean Sea developed in dextral transtension with the northward migration of the associated NE-SW trending strike-slip faults. At regional scale, this tectonic pattern indicates that the westward escape of Anatolia started to interact with the trench retreat in the middle Miocene, around 10 Myr before the arrival of the North Anatolian Fault in the North Aegean Sea.  相似文献   

8.
Tectonic evolution of the Cape and Karoo basins of South Africa   总被引:1,自引:0,他引:1  
The Cape and Karoo basins formed within the continental interior of Gondwana. Subsidence resulted from the vertical motion of rigid basement blocks and intervening crustal faults. Each basin episode records a three-stage evolution consisting of crustal uplift, fault-controlled subsidence, and long periods of regional subsidence largely unaccompanied by faulting or erosional truncation. The large-scale episodes of subsidence were probably the result of lithospheric deflection due to subduction-driven mantle flow. The early Paleozoic Cape basin records the combined effects of a north-dipping intra-crustal décollement (a late Neoproterozoic suture) and a right-stepping offset between thick Rio de la Plata craton and Namaqua basement. Following the Saldanian orogeny, a suite of small rift basins and their post-rift drape formed at this releasing stepover. Great thicknesses of quartz sandstone (Ordovician–Silurian) and mudstone (Devonian) accumulation are attributed to subsidence by rheological weakening and mantle flow. In contrast, the Karoo basin is a cratonic cover that mimics the underlying basement blocks. The Permian Ecca and lower Beaufort groups were deposited in a southward-deepening ramp syncline by extensional decoupling on the intra-crustal décollement. Reflection seismic and deep-burial diagenetic studies indicate that the Cape orogeny started in the Early Triassic. Deformation was partitioned into basement-involved strike-slip faults and thin-skinned thrusting. Uplift of the Namaqua basement resulted in erosion of the Beaufort cover. East of the Cape fold belt, contemporaneous subsidence and tilting of the Natal basement created a late Karoo transtensional foreland basin, the Stormberg depocentre. Early Jurassic tectonic resetting and continental flood basalts terminated the Karoo basin.  相似文献   

9.
During basin burial, interstitial fluids initially trapped within the sedimentary pile easily move under thermal and pressure gradients. As the main mechanism is linked to fluid overpressure, such fluids play a significant role on frictional mechanics for fault reactivation and sediment deformation.The Lodève Permian Basin (Hérault, France) is an exhumed half-graben with exceptional outcrop conditions providing access to barite-sulfide mineralized systems and hydrocarbon trapped into syn-rift roll-over faults. Architectural studies show a cyclic infilling of fault zone and associated bedding-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfur isotope geothermometer. We conclude that a polyphase history of trapping occurred during Permian syn-rift formation of the basin.The first stage is characterized by an implosion breccia cemented by silicifications and barite during an abrupt pressure drop within fault zone. This mechanism is linked to the dextral strike-slip motion on faults and leads to a first sealing of the fault zone by basinal fluid mineralization.The second stage consists of a succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action. This corresponds to periodic reactivations of fault planes and bedding-controlled opening localized at sulphide-rich micro-shearing structures showing a normal movement. This process formed the main mineralized ore bodies by the single action of fluid overpressure fluctuations undergoing changes in local stress distribution.The last stage is associated with the formation of dextral strike-slip pull-apart infilled by large barite and contemporaneous hydrocarbons under suprahydrostatic pressure values. This final tectonic activation of fault is linked to late basinal fluids and hydrocarbon migration during which shear stress restoration on the fault plane is faster than fluid pressure build-up.This integrated study shows the interplay action between tectonic stress and fluid overpressure in fault reactivation during basin burial that clearly impact potential economic reservoirs.  相似文献   

10.
南海北部琼东南盆地中央峡谷成因新认识   总被引:3,自引:0,他引:3  
通过对区域构造断裂体系和逐渐连片的高分辨率三维地震资料的精细解析,认识到琼东南盆地中央峡谷的形成机制除了与晚中新世区域构造变动、大规模海平面下降、充足物源供给以及凹槽型古地形特征等因素相关之外,还存在另外一个非常重要因素:峡谷底部早期隐伏断裂带的存在。研究表明:琼东南盆地中央坳陷带发育平行于陆架坡折的大规模深水峡谷,峡谷底部发育大型走滑断层以及走滑断层派生出一系列次级断层形成的地层破碎带,认识到峡谷的形成、规模以及展布方向均受断裂带影响;相应地峡谷的充填及演化亦是受物源、海平面变化、重力流作用等多种因素共同作用和相互叠加的过程。从而为研究经历了裂陷期和坳陷期盆地演化过程形成的大型峡谷提供了科学依据。  相似文献   

11.
Bone Gulf is one of the inter-arm basins of the unusual K-shaped island of Sulawesi. Its age, character and origin are disputed. This study is based on recently acquired 2D seismic lines, seabed multibeam mapping and limited well data, and is linked to stratigraphy on land. The gulf is probably underlain by pre-Neogene volcanogenic, sedimentary, metamorphic and ultramafic rocks, and includes crust of Australian origin. We favour basin initiation in the Miocene rather than Eocene, by extension associated with strike-slip deformation. The main basin trends N–S and is divided into several sub-basins and highs. The highs segment the gulf and their WNW–ESE orientations reflect pre-Neogene basement structures. They are interpreted as strike-slip fault zones active at different times in the Neogene. A southern high was active relatively early, whereas further north there is evidence of young displacements during the Late Neogene. These are visible on the seabed above a high linked to the Kolaka Fault on land. Early basin-bounding faults are oriented NNW–SSE and record extension and strike-slip movements, like the sub-parallel Walanae Fault of South Sulawesi which can be traced offshore into extensional faults bounding the young and narrow Selayar Trough. Sediment in the basins came mainly from the north with contributions from both west and east. Carbonate deposits formed at the margins while deeper marine sediments were deposited in the axial parts of the gulf. An Early Pliocene unconformity can be mapped across the study area marking major uplift of Sulawesi and subsidence of Bone Gulf. This regional event caused major influx of clastic sediments from the north, development of a southward-flowing canyon system, and back-stepping and drowning of carbonates at the basin margins. Hydrocarbons are indicated by seeps, and Bone Gulf has potential sources, reservoirs and seals, but the complex faulting history is a risk.  相似文献   

12.
The Cenozoic East African Rift System (EARS) is an exceptional example of active continental extension, providing opportunities for furthering our understanding of hydrocarbon plays within rifts. It is divided into structurally distinct western and eastern branches. The western branch comprises deep rift basins separated by transfer zones, commonly localised onto pre-existing structures, offering good regional scale hydrocarbon traps. At a basin-scale, local discrete inherited structures might also play an important role on fault localisation and hydrocarbon distribution. Here, we consider the evolution of the Central basin of the Malawi Rift, in particular the influence of pre-existing structural fabrics.Integrating basin-scale multichannel 2D, and high resolution seismic datasets we constrain the border, Mlowe-Nkhata, fault system (MNF) to the west of the basin and smaller Mbamba fault (MF) to the east and document their evolution. Intra basin structures define a series of horsts, which initiated as convergent transfers, along the basin axis. The horsts are offset along a NE–SW striking transfer fault parallel to and along strike of the onshore Karoo (Permo-Triassic) Ruhuhu graben. Discrete pre-existing structures probably determined its location and, oriented obliquely to the extension orientation it accommodated predominantly strike-slip deformation, with more slowly accrued dip-slip.To the north of this transfer fault, the overall basin architecture is asymmetric, thickening to the west throughout; while to the south, an initially symmetric graben architecture became increasingly asymmetric in sediment distribution as strain localised onto the western MNF. The presence of the axial horst increasingly focussed sediment supply to the west. As the transfer fault increased its displacement, so this axial supply was interrupted, effectively starving the south-east while ponding sediments between the western horst margin and the transfer fault. This asymmetric bathymetry and partitioned sedimentation continues to the present-day, overprinting the early basin symmetry and configuration. Sediments deposited earlier become increasingly dissected and fault juxtapositions changed at a small (10–100 m) scale. The observed influence of basin-scale transfer faults on sediment dispersal and fault compartmentalization due to pre-existing structures oblique to the extension orientation is relevant to analogous exploration settings.  相似文献   

13.
Previous GPS-based geodetic studies and onland paleoseismologic studies in Trinidad have shown that the 50-km-long, linear, onland segment of the Central Range fault zone (CRFZ) accommodates at least 60% of the total rate of right-lateral displacement (∼20 mm/yr) between the Caribbean and South American plates. 2D and 3D seismic reflection data from a 60-km-long and 30-km-wide swath of the eastern shelf of Trinidad (block 2AB) were used to map the eastern offshore extension of this potentially seismogenic and hazardous fault system and to document its deeper structure and tectonic controls on middle Miocene to recent clastic stratigraphy. Two unconformity surfaces and seafloor were mapped using 3D seismic data to generate isochron maps and to illustrate the close control of the CRFZ and associated secondary faults on small, clastic basins formed along its anastomosing strands and the east-west-striking North Darien Ridge fault zone (NDRFZ) that exhibits a down-to-the-north normal throw. Mapped surfaces include: 1) the middle Miocene angular unconformity, a prominent, regional unconformity surface separating underlying thrust-deformed rocks from a much less deformed overlying section; this regional unconformity is well studied from onland outcrops in Trinidad and in other offshore areas around Trinidad; 2) a Late Neogene angular unconformity developed locally within block 2AB that is not recognized in Trinidad; and 3) the seafloor of the eastern Trinidad shelf which exhibits linear scarps for both the CRFZ and the east-west-striking North Darien Ridge fault zone. Clastic sedimentary fill patterns identified on these isochron maps indicate a combined effect of strike-slip and reverse faulting (i.e., tectonic transpression) produced by active right-lateral shear on the CRFZ, which is consistent with the obliquity of the strike of the fault to the interplate slip vector known from GPS studies in onland Trinidad. The NDRFZ and a sub-parallel and linear family of east-west-striking faults with normal and possibly transtensional motions also contributed to the creation of accommodation space within localized, post-middle Miocene clastic depocenters south of the CRFZ.  相似文献   

14.
Although there are many research studies on the northern and southern branches of the North Anatolian fault, cutting through the deep basins of the Sea of Marmara in the north and creating a series of pull-apart basins on the southern mainland, little data is available about the geometrical and kinematical characteristics of the middle strand of the North Anatolian fault. The first detailed geometry of the middle strand of the North Anatolian fault along the southern Marmara shelf, including the Gemlik and Band?rma Bay, will be given in this study, by a combined interpretation of different seismic data sets. The characteristic features of its segments and their importance on the paleogeographic evolution of the southern shelf sub-basins were defined. The longest one of these faults, the Armutlu-Band?rma segment, is a 75-km long dextral strike-slip fault which connects the W–E trending Gençali segment in the east and NE–SW trending Kap?da?-Edincik segment in the west. In this context, the Gemlik Bay opened as a pull-apart basin under the control of the middle strand whilst a new fault segment developed during the late Pleistocene, cutting through the eastern rim of the bay. In this region, a delta front forming the paleoshoreline of the Gemlik paleolake was cut and shifted approximately 60 ± 5 m by the new segment. The same offset on this fault was also measured on a natural scarp of acoustic basement to the west and integrated with this paleoshoreline forming the slightly descending topset–foreset reflections of the delta front. Therefore the new segment is believed to be active at least for the last 30,000 years. The annual lateral slip rate representing this period of time will be 2 mm, which is quite consistent with modern GPS measurements. Towards the west, the Band?rma Bay is a rectangular transpressional basin whilst the Erdek Bay is a passive basin under the control of NW–SE trending faults. When the water level of the paleo-Marmara lake dropped down to ?90 m, the water levels of the suspended paleolakes of Band?rma and Gemlik on the southern shelf were ?50.3 (?3.3 Global Isostatic Adjustment—GIA) and ?60.5 (?3.3 GIA) m below the present mean sea level, respectively. As of today a similar example can be seen between the Sea of Marmara and the shallow freshwater lakes of Manyas and Uluabat. Similarly, the paleolakes of Gemlik and Bandirma were affected by the water level fluctuations at different time periods, even though both lakes were isolated from the Sea of Marmara during the glacial periods.  相似文献   

15.
The Quaternary evolution of the Gulf of İzmit, situated on the tectonically active North Anatolian Fault Zone (NAFZ), was investigated using seismic reflection, paleontologic, and sediment textural data. On the basis of seismic stratigraphic and sedimentologic-paleontologic interpretations, four depositional units were distinguished within the Plio-Quaternary sequence of the Gulf of İzmit. According to these data, Plio-Quaternary deposits supplied from the northern terrestrial area started to accumulate during a progradational phase, in a south-facing half-graben. A coarse-grained sedimentary unit prograding into the gulf from the south since 200 ka b.p. indicates a dramatic variation in the evolution of the gulf, with the initiation of a new strike-slip fault of the NAFZ and a corresponding uplift of the Armutlu Peninsula in the south of the gulf. During the evolution of this fault from a wide shear zone consisting of right-stepped strike-slip faults and pull-apart basins to a localized principal fault zone, sediments were deposited under the influence of northerly prograding terrestrial and shallow-marine conditions due to relative sea-level fluctuations in the Marmara Sea. During this period, the Gulf of İzmit was invaded mainly by Mediterranean and partly by Black Sea waters. In the latest glacial period, shallow areas in the gulf became subaerially exposed, whereas the central and western sub-basins of the gulf turned into lakes. The present evolution of the Gulf of İzmit is controlled by the after effects of the new rupture of the NAFZ and the estuarine nature of the gulf environment.  相似文献   

16.
The right-lateral Blanco Transform Fault Zone (BTFZ) offsets the Gorda and the Juan de Fuca Ridges along a 350 km long complex zone of ridges and right-stepping depressions. The overall geometry of the BTFZ is similar to several other oceanic transform fault zones located along the East Pacific Rise (e.g., Siquieros) and to divergent wrench faults on continents; i.e., long strike-slip master faults offset by extensional basins. These depressions have formed over the past 5 Ma as the result of continual reorientation of the BTFZ in response to changes in plate motion. The central depression (Cascadia Depression) is flanked by symmetrically distributed, inward-facing back-tilted fault blocks. It is probably a short seafloor spreading center that has been operating since about 5 Ma, when a southward propagating rift failed to kill the last remnant of a ridge segment. The Gorda Depression on the eastern end of the BTFZ may have initially formed as the result of a similar occurrence involving a northward propagating rift on the Gorda ridge system. Several of the smaller basins (East Blanco, Surveyor and Gorda) morphologically appear to be oceanic analogues of continental pull-apart basins. This would imply diffuse extension rather than the discrete neovolcanic zone associated with a typical seafloor spreading center. The basins along the western half of the BTFZ have probably formed within the last few hundred thousands years, possibly as the result of a minor change in the Juan de Fuca/Pacific relative motion.  相似文献   

17.
1IntroductionThe South China Sea(SCS)is one of the lar-gest marginal seas of the West Pacific.A complexstrike-slip faultsystemdeveloped in the westof SCS,which is trending NW to nearly SN.This fault sys-tem is the strike-slip boundary of Indo-China blockm…  相似文献   

18.
The Baiyun Sag, situated at the north continental slope of the South China Sea, is a main sub-unit in the Southern Depression Belt of the Pearl River Mouth Basin. In this Sag, the middle Eocene Wenchang and upper Eocene–lower Oligocene Enping Formations had developed in the evolution stage of continental faulted basin. Seismic stratigraphic sequences and fault structures revealed that the Baiyun Sag was short of long-reaching boundary faults, and that it was a rifted basin greatly influenced by basement faults rather than a typical half-graben. Different from the sags in Northern Depression Belt of the Pearl River Mouth Basin which controlled by large-scale NEE-strike faults, the Baiyun Sag had been controlled by two groups of NWW-strike en echelon fault belts with approximate opposite dips, which developed in the southwest and northeast of this Sag respectively and had played the roles of boundary faults. These en echelon faults, together with narrow synclines, partial flower structures and fluid diapirs, indicated the left-lateral transtensional activities, which had resulted in subsidence center departing to main faults and stretching S-shaped. Moreover, the en echelon faults had constructed many composite transfer zones of relay ramps, and controlled the distribution of sandbodies. The en echelon fault belts are located in accordance with Nw-striking Mesozoic basement faults. Hence the left-lateral transtensional activities were responsible for the Western Pacific Plate subducting and strike slip reactivation of the basement faults. Significantly, NW-striking basement faults had forcefully determined the development of not only the Baiyun Sag but also the Xingning Sag.  相似文献   

19.
The Anegada Passage (sensu lato) includes several basins and ridges from Southeast of Puerto Rico to the corner of the Virgin Islands Platform. Seabeam (Seacarib I) and Gloria long-range sidescan sonar surveys were carried out in this area. These new data allow us to propose an interpretation of the Anegada Passage.Most of the features described are related to wrench faulting:
(a)  St Croix and Virgin Islands Basins are pull-apart basins created in a right-lateral strike-slip environment based on their rhomboidal shape and seismic data (e.g. the flower structure). These two pull-aparts are divided into two sub-basins by a curvilinear normal fault in the Virgin Islands Basin and a right-lateral strike-slip fault in the St Croix Basin.
(b)  Tortola Ridge and a dog's leg shaped structure are inferred to be restraining bends between two right-lateral strike-slip faults.
(c)  We identified two ENE-WSW volcanic lineaments in the eastern area and one volcano lying between Virgin Islands and St Croix Basins.
(d)  As shown by the seismic activity main wrench motion occurs along the north slope of Virgin Islands Basin and through Anegada Passage. A branching of this main fault transmits the transtensional motion to St Croix Basin.
  相似文献   

20.
In 1989–1990 the SeaMARC II side-looking sonar and swath bathymetric system imaged more than 80 000 km2 of the seafloor in the Norwegian-Greenland Sea and southern Arctic Ocean. One of our main goals was to investigate the morphotectonic evolution of the ultra-slow spreading Knipovich Ridge from its oblique (115° ) intersection with the Mohns Ridge in the south to its boundary with the Molloy Transform Fault in the north, and to determine whether or not the ancient Spitsbergen Shear Zone continued to play any involvement in the rise axis evolution and segmentation. Structural evidence for ongoing northward rift propagation of the Mohns Ridge into the ancient Spitsbergen Shear Zone (forming the Knipovich Ridge in the process) includes ancient deactivated and migrated transforms, subtle V-shaped-oriented flank faults which have their apex at the present day Molloy Transform, and rift related faults that extend north of the present Molloy Transform Fault. The Knipovich Ridge is segmented into distinct elongate basins; the bathymetric inverse of the very-slow spreading Reykjanes Ridge to the south. Three major fault directions are detected: the N-S oriented rift walls, the highly oblique en-echelon faults, which reside in the rift valley, and the structures, defining the orientation of many of the axial highs, which are oblique to both the rift walls and the faults in the axial rift valley. The segmentation of this slow spreading center is dominated by quasi stationary, focused magma centers creating (axial highs) located between long oblique rift basins. Present day segment discontinuities on the Knipovich Ridge are aligned along highly oblique, probably strike-slip faults, which could have been created in response to rotating shear couples within zones of transtension across the multiple faults of the Spitsbergen Shear Zone. Fault interaction between major strike slip shears may have lead to the formation of en-echelon pull apart basins. The curved stress trajectories create arcuate faults and subsiding elongate basins while focusing most of the volcanism through the boundary faults. As a result, the Knipovich Ridge is characterized by Underlapping magma centers, with long oblique rifts. This style of basin-dominated segmentation probably evolved in a simple shear detachment fault environment which led to the extreme morphotectonic and geophysical asymmetries across the rise axis. The influence of the Spitsbergen Shear Zone on the evolution of the Knipovich Ridge is the primary reason that the segment discontinuities are predominantly volcanic. Fault orientation data suggest that different extension directions along the Knipovich Ridge and Mohns Ridge (280° vs. 330°, respectively) cause the crust on the western side of the intersection of these two ridges to buckle and uplift via compression as is evidenced by the uplifted western wall province and the large 60 mGal free air gravity anomalies in this area. In addition, the structural data suggest that the northwards propagation of the spreading center is ongoing and that a `normal' pure shear spreading regime has not evolved along this ridge. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号