首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distal Cretaceous–Paleogene (K/Pg) boundary sections in the Central Apennine region (Italy) have been studied: Bottaccione Gorge and Contessa Highway. Geochemical and carbon isotope analyses on the infilling of trace fossils and on the host sedimentary rocks were performed to determine paleoenvironmental conditions during the Cretaceous–Paleogene transition. Major and trace element contents were measured in a 63 cm-thick interval at Bottaccione Gorge (from 22 cm below to 41 cm above the K/Pg boundary) and in a 72 cm-thick interval at Contessa Highway (from 43 cm below to 29 cm above the K/Pg boundary). Even though the K/Pg ejecta layer is now depleted at these sections due to continuous oversampling, the uppermost Maastrichtian and lowermost Danian deposits record the paleoenvironmental conditions prior to and after the K/Pg event. We used redox-sensitive element ratios (V/Al, Cr/Al, Co/Al, Ni/Al Cu/Al, Zn/Al, Mo/Al Pb/Al and U/Mo) and detrital element ratios (K/Al, Rb/Al, Zr/Al and ƩREE/Al) as proxies of certain environmental parameters, used for paleoenvironmental reconstruction. In general, similar values for elemental ratios are registered within Maastrichtian and Danian deposits, which supports similar paleoenvironmental conditions prior to and after the K/Pg event as well as the rapid reestablishment of the pre-impact conditions (i.e., oxygenation, nutrient availability, and/or sedimentary input). An enrichment in certain redox-sensitive elements above the K/Pg at the Bottaccione Gorge section suggests lower oxygenation, as also evidenced by the tracemaker community. Carbon isotope composition data from the infilling material of trace fossils furthermore reveals values similar to those of the host rocks at the corresponding depth, which supports an active infilling by nearly contemporaneous bioturbation during sediment deposition.  相似文献   

2.
The Cretaceous–Palaeogene (K/Pg) boundary interval is often penetrated by burrows, which may obscure stratigraphic and micropalaeontological records, leading to misinterpretations of the sequence of events spanning the K/Pg boundary. Here, we assess the role of burrowing organisms in the redistribution of benthic foraminifera across the boundary at Bidart (France), and report a strong relationship between the behaviour represented by pre‐ and post‐K/Pg trace fossils and their benthic foraminiferal content. We further infer a brief interval of eutrophic conditions at the seafloor, as reported from other locations, which disappeared from the lowermost Danian stratigraphic record and is represented only inside post‐K/Pg trace fossils hosted in Cretaceous strata. The combined study of trace fossils and microfossils is a powerful tool in eco‐stratigraphy and event‐stratigraphy, and can yield important insights into the completeness of the K/Pg record, especially at locations such as Bidart where this interval has traditionally been assumed to be complete.  相似文献   

3.
It is shown that portable X-ray fluorescence (pXRF) is a powerful tool for the identification and geochemical characterization of prospective Cretaceous–Paleogene (K–Pg) boundary sites. Field measurements in two well-known K–Pg boundary sequences, located at Agost and Caravaca, SE Spain, have been performed. A sizable enrichment around the K–Pg horizon of several elements such as K, Ti, Fe, Ni, Cr, Cu, Zn, As or Pb, together with a strong reduction in the Ca content, is found with the pXRF instrument. These observations represent a primary geochemical signature of the K–Pg boundary in distal marine sections such as those of Agost and Caravaca. Also, the intensities of the pXRF peaks correlate well with elemental composition data obtained by inductively coupled plasma-mass spectrometry (ICP-MS) on collected samples. Hence, the pXRF field measurements are shown to provide fast and useful quantitative information about K–Pg boundary sequences.  相似文献   

4.
We present the volcanic ash and tsunami record of the Minoan Late Bronze Age Eruption of Santorini (LBAES) in a distal setting in southwestern Turkey. In one of the drilled cores at the Letoon Hellenic antique site on Eşençay Delta, we encountered a 4 cm thick tephra deposit underlain by 46 cm thick tsunami-deposited sand (tsunamite), and an organic-rich layer that we 14C dated to 3295 ± 30 bp or 1633 bc. The relationship between Santorini distal volcanic ash and underlying tsunamite is described and interpreted. LBAES occurred in four main phases: (1) plinian; (2) phreatomagmatic; (3) phreatomagmatic with mudflows; and (4) ignimbritic flows and co-ignimbrite tephra falls. In this study, we aim to understand which eruptive phases generate distal ash during the Minoan eruptive sequence by examining the 3D surface morphology of ash formed by different fragmentation processes. To that end, we used numerous statistical multivariates, 3D fractal dimension of roughness, and a new textural parameter of surface area-3D/plotted area-2D to characterise the eruption dynamics. Based on ash surface morphologies and the calculated statistical parameters, we propose that that distal ash is represented by a single layer composed of well-mixed (coarse to fine) magmatic and phreatomagmatic ash.  相似文献   

5.
Although it represents but one geographic data point, the uppermost Maastrichtian Hell Creek Formation (HCF), exposed in the upper Great Plains of the North American craton, remains the most studied source for understanding the final ∼1.5 Myr of the Mesozoic Era in the terrestrial realm. Because it lies conformably below the earliest Paleocene Fort Union Formation, and together these two units preserve a rich fauna and flora, much of what is understood about the terrestrial Cretaceous–Paleogene (K–Pg) boundary comes from this sequence.The HCF has been reconstructed as an expansive, fluvially drained, low coastal plain, built out, to the west, against the Laramide Orogen, and to the east, against the ultimate transgression (Cannonball) of the Western Interior Sea. Its meandering rivers and moist soils supported a multi-tiered angiosperm-dominated flora and rich insect and vertebrate faunas, including dinosaurs, crocodilians, squamates, turtles, and mammals. A dramatic facies change representing the initiation of catastrophic flooding is preserved, within available levels precision, at the K–Pg boundary.High-precision stratigraphy has proven difficult in this lenticular fluvial system. Where present, the boundary can be recognized by the bipartite boundary claystone; otherwise, palynostratigraphy has proven a powerful tool. Numerical dates have been successfully obtained from in tonsteins at the boundary and above, in the Fort Union; however, these have proven elusive below the boundary within the HCF. The K–Pg boundary in this region is dated at 66.043 Ma (Renne et al., 2013). Magnetostratigraphic studies have been carried out in the HCF; although all but one have lacked numerical dates, these have been used for correlations of widespread, disjunct exposures and for the estimation of sedimentation rates.The palynoflora is largely homogenous through the HCF; at the K–Pg boundary, it shows an abrupt ∼30% extinction. This makes it a powerful tool for identification of the K–Pg boundary, although because the boundary is identified on absence of Cretaceous taxa rather than presence of earliest Paleocene taxa, several competing methods have been applied to identifying the K–Pg boundary using pollen.The macroflora, consisting largely of leaves, consists of three successive floras, showing increasing diversity through the HCF. The ultimate of these three floras undergoes an abrupt 57% extinction; taken as a whole, however, the macroflora undergoes a 78% extinction at the K–Pg boundary.The best data available for dinosaurs – including archaic Aves – show an abrupt extinction. By contrast, salamanders and other lissamphibians, as well as chelonians, cross the boundary virtually without perturbation. Squamates appear to have suffered significant extinctions at the K–Pg boundary, as did euselachians (elasmobranchs) and insects. Mammals suffered a 75% extinction; however, some of this figure cannot be shown to have occurred in less than the last 500 kyr of the Cretaceous, and thus has been potentially attributable to causes other than a bolide impact. Taken together, the survivorship patterns are concordant with the catastrophic inception of ubiquitous flooding characterizing the K–Pg boundary.While the key K–Pg boundary question in the HCF was once the rate of the biotic extinction, it has moved to the distinction between single-cause scenarios, with the Chicxulub bolide as agent of extinction, and multi-cause scenarios, uniting habitat partitioning, Deccan flood-basalt volcanism, climate change, competition, and bolide impact. Not every potential environmental perturbation need be a mechanism for the extinction: parsimony and the data continue to be concordant with a bolide impact as the single agent of the terrestrial K–Pg mass extinction.  相似文献   

6.
Located to the north of the Stevns Klint Peninsula (Denmark), Kulstirenden shows the transition from Cretaceous chalks to Danian carbonates across the Cretaceous - Paleogene (K/Pg) boundary. The K/Pg boundary at Kulstirenden is represented by the Fiskeler Member (Fish Clay), a streaked marl interval with a smectite rich, red oxidised layer at its base marking the boundary. The Fiskeler Member is important as it includes the iridium concentration linked to the bolide impact which may have caused the end-Cretaceous mass extinction and is at its maximum thickness at Kulstirenden (c.45 cm). Calcareous dinoflagellate cysts (Calciodinelloideae) have been investigated from within the fine fraction (45-125 μm) at Kulstirenden in order to understand the ecological implications of these enigmatic microfossils. Several species were found within the Fiskeler Member, including Orthopithonella collarisWendler et al. (2001, Rev. Palaeobot. Palynol. 115, 69-77). This species is of particular interest as it demonstrates reduced paratabulation and may indicate a transgressive period immediately after the K/Pg boundary event. O. collaris has been described as a morphotype formed under post-K/Pg environmental conditions and is, therefore, described as a “disaster” taxon that marks the K/Pg boundary at Stevns Klint. The distribution of this taxon is more extensive than previously documented, disappearing as carbonate sedimentation returned in the Cerithium Limestone Member of the Danian. Several calcareous microfossil specimens that were found cannot be associated with the dinoflagellates and display Bolboforma-like features. While the origins of Bolboforma are enigmatic, the current finding expands their stratigraphic range and suggests an appearance of this group of organisms found at Stevns Klint may give an insight into the inception of this group into the earliest Danian.  相似文献   

7.
Large igneous provinces (LIPs) have been temporally correlated to mass extinctions throughout the Phanerozoic, including the emplacement of the Deccan Volcanic Province (DVP; 66.3–65.6 Ma) in western and central India, which has been invoked as either a cause or exacerbating factor in the Cretaceous-Paleogene (K-Pg) extinction. However, relatively little is known about local paleoclimatic and paleoenvironmental responses to volcanism. To investigate the DVP's role as a driver of local environmental change and to provide climatic background for known ecological shifts, new inter-basaltic paleosol profiles at the eastern edge of the DVP are used in conjunction with profiles from the literature to reconstruct paleoclimate and terrestrial environments before and after the K–Pg. These profiles provide a novel opportunity to study the sediments within basalt flows before, during, and after a mass extinction event and in the midst of a LIP emplacement event. Paleoclimate proxies and the Floral Humidity Province proxy reflect little long-term change in either climate or environment across the K–Pg, with stable precipitation values and temperatures accompanied by a constant forest signal. These interpretations are corroborated by macrofloral records and sedimentology from India, which suggest some environmental turnover but generally support a forested, fluvio-lacustrine environment throughout the duration of volcanism. Our results support the possibility of rapid recovery times for terrestrial ecosystems during volcanism and suggest that while DVP eruptions may have exacerbated long-term environmental perturbation, the emplacement of the DVP is not likely to have caused the terrestrial mass extinction at the K–Pg boundary.  相似文献   

8.
In the present paper, the fossil record of the archosaurs (dinosaurs, crocodylomorphs and pterosaurs) of the southern Pyrenees before the Cretaceous–Palaeogene (K–Pg) transition is revised. On the basis of this fossil record, a well-dated succession of dinosaurs and other archosaurs is established within polarity magnetochrons C30 and C29r. Almost 150 sites with dinosaur remains have been identified, containing hadrosauroid ornithopods, titanosaur sauropods and theropods, as well as egg sites and tracks. Fossil remains of dinosaurs and other archosaurs are abundant in C29r, disappearing abruptly near the top of the “Lower Red Garumnian” unit of the Tremp Formation. Thus this should be located very close to, or coinciding with the K–Pg boundary. These data suggest that the disappearance of the dinosaurs and other archosaurs was geologically abrupt in the southern Pyrenees, but to date there is no incontrovertible evidence of the presence of the impact level that marks the Cretaceous–Palaeogene boundary. Interestingly, what is highlighted in the southern Pyrenees is that the vertebrate-rich upper Maastrichtian continental sites were replaced by similar sedimentological facies characterized by the virtual absence not only of dinosaurs but also of any vertebrate remain throughout the lower Palaeocene. This could mean that the Danian terrestrial ecosystems of the southern Pyrenees took longer than other areas of the world to recover their biodiversity after the K−Pg extinction event.  相似文献   

9.
The pattern, pace and extent of the evolutionary radiation of modern birds (Neornithes) by the end‐Cretaceous (65 Ma) has long been debated. Well‐dated, taphonomically understood and phylogenetically constrained fossil birds from both sides of the Cretaceous–Paleogene (K–Pg) boundary are required to quantify the shape of this radiation, but have largely been lacking. Here we report on a large collection of fossil birds from the Lower Eocene of Denmark (ca. 54 Ma) that includes three‐dimensionally preserved, articulated specimens from carbonate concretions as well as skeletal imprints and feathers. These birds are from a marine diatomite sequence (the Fur Formation), a low‐energy deep‐water preservational environment unique to the Cretaceous and Paleogene avian fossil record. We present taphonomic and palaeoecological information gleaned from these birds that in combination with phylogenetic data have implications for unravelling avian survivorship across the K–Pg boundary as well as for the pattern of the neornithine evolutionary radiation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A continuous, shallow marine succession of the Um-Sohryngkew River section is distinct as it contains late Maastrichtian-early Danian planktonic foraminiferal zones and the K/Pg boundary, although K/Pg transition events remain inconclusive. Physils divide entire succession in to lower, middle and upper sub-divisions and represent anomalous values of redox-sensitive elements (δCe, La/Yb and Gd/Yb) in biozone CF3. Organic matter when analyzed show TOC and C spikes in biozone CF3. Illite thermometry also revealed sudden increase in the palaeo-temperature (>140 °C) for yellowish brown 1–2 mm thick organic rich clay layer in biozone CF3. Interestingly, conspicuous increase in the short chain n-alkanes and fatty acids is observed in the biozone CF3, although, long chain n-alkanes (C27–C33) derived from terrestrial plants show low abundance throughout the succession.High amount of combustion derived fluoranthene, pyrene, chrysene, benzo(a) anthracene PAH compounds found in the biozone CF3 are analogous to those reported from the K/T boundary sections of Stevns Klint, Gubbio, Woodside Creek and Arroyo el Mimbral. The pyrolitic signatures of these organic macro-molecules reflect global fire, caused distress to biota (during the deposition of biozone CF3 layer) which is coincidental with the well documented Ce anomaly layer, but, preceded by planktonic foraminiferal change in biozone P0 and PGE anomaly bearing layer in the biozone CF2. These organic macro-molecules reflect global fire, induced by the heat supplied by the late Cretaceous Abor and/or Deccan extrusions perhaps linked with the K/T transition events as later initiated prior to the K/Pg boundary, however, the main episode of Deccan volcanic activity occurred ∼300 ky earlier or at the K/Pg boundary itself. The deposition of 1–2 mm thick, yellowish brown, smooth (with conchoidal fracture) pyrite nodules and micro-spherules bearing organic rich clay layer marked with the decrease in the carbonate content (2.43%) that lies at the contact between the silty mudstone and grey calcareous shale located in the biozone CF3 of this succession coincides with the first appearance of Pseudoguembelina hariaensis representing age of 66.83–65.45 Ma is also related to the India’s collision with the Eurasia and Burma andextrusion of Abor volcanic.These events also endorse succeeding events such as anomalous concentration of platinum group of elements and concentration of spherules during biozone CF2, which are other end Cretaceous events before the advent of the K/Pg boundary.  相似文献   

11.
The discovery of a new Cretaceous/Palaeogene (K/Pg) bathyal marine sequence on Gorgonilla Island, SW Colombia, extends the presence of Chicxulub impact spherule deposits to the Pacific region of northern South America and to the Eastern Pacific Ocean. The Gorgonilla spherule layer is approximately 20 mm thick and consists of extraordinarily well‐preserved glass spherules up to 1.1 mm in diameter. About 70–90% of the spherules are vitrified, and their chemical composition is consistent with Haiti (Beloc) impact glass spherules. Normal size‐grading, delicate spherule textures, welded melt components and an absence of bioturbation or traction transport suggest that the Gorgonilla spherule layer represents an almost undisturbed settling deposit.  相似文献   

12.
A metamorphic field gradient has been investigated in the Moldanubian zone of the central European Variscides encompassing, from base to the top, a staurolite–kyanite zone, a muscovite–sillimanite zone, a K‐feldspar–sillimanite zone, and a K‐feldspar–cordierite zone, respectively. The observed reaction textures in the anatectic metapsammopelites of the higher grade zones are fully compatible with experimental data and petrogenetic grids that are based on fluid‐absent melting reactions. From structural and microstructural observations it can be concluded that the boundary between the kyanite–staurolite zone and the muscovite‐ and K‐feldspar–sillimanite zones coincides with an important switch in deformation mechanism(s). Besides minor syn‐anatectic shearing (melt‐enhanced deformation), microstructural criteria point (a) to a switch in deformation mechanism from rotation recrystallization (climb‐accommodated dislocation creep) to prism slip and high‐temperature (fast) grain boundary migration in quartz (b) to the activity of diffusion creep in quartz–feldspar layers, and (c) to accommodation of strain by intense shearing in fibrolite–biotite layers. It is suggested that any combination of these deformation mechanisms will profoundly affect the rheological characteristics of high‐grade metamorphic rocks and significantly lower rock strength. Hence, the boundary between these zones marks a major rheological barrier in the investigated cross section and probably also in other low‐ to medium‐pressure/high‐temperature areas. At still higher metamorphic grades (K‐feldspar‐cordierite zone), where the rheologically critical melt percentage is reached, rock rheology is mainly governed by the melt and other deformation mechanisms are of minor importance. In the study area, the switch in deformation mechanism(s) is responsible for large‐scale strain partitioning and concentration of deformation within the higher‐temperature hanging wall during top‐to‐the‐S thrusting, thus preserving a more complete petrostructural record within the rocks of the footwall including indications for a ?Devonian high‐ to medium‐pressure/medium‐temperature metamorphic event. Thrusting is accompanied by diapiric ascent of diatexites of the K‐feldspar‐cordierite zone and infolding of the footwall, suggesting local crustal overturn in this part of the Moldanubian zone.  相似文献   

13.
The chronostratigraphy of a long, onshore Early–Middle Pleistocene marine sedimentary sequence on the south‐east part of Zakynthos island, Greece, is presented. Correlation of the succession with the isotope record of Ocean Drilling Program Site 963 reveals the combined influence of tectonics and eustacy in this area. The sequence is divided into three formations by two main unconformities that apparently relate to sea‐level lowstands associated with two major northern hemisphere glaciations, those of marine isotope stages (MIS) 22 and 12. The Zakynthos sequence in many ways is comparable with the Italian Valle di Manche section. Magnetostratigraphic and rock magnetic analyses, supported by biostratigraphy, document the position of the Matuyama/Brunhes Chron boundary (0.77 Ma), the top and base of the Jaramillo Subchron (0.99–1.07 Ma), the Cobb Mountain Subchron (1.173–1.185 Ma) and the top of the Olduvai Subchron (1.78 Ma). The underlying strata are constrained exclusively by detailed nannofossil biostratigraphy extending at least to the lowermost Pleistocene at around 2.54 Ma and therefore certainly incorporating the base of the Olduvai Subchron (1.95 Ma) and possibly the Gauss/Matuyama Chron boundary (2.58 Ma). In addition, a remarkable increase in sedimentation rate (from 3.2 and 28 cm ka?1 to 167 cm ka?1) and hence resolution above the Matuyama/Brunhes boundary (Middle Pleistocene) reveals one short‐lived magnetic excursion, possibly 17a (0.66 Ma), within the normal polarity Brunhes Chron. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The Ebisutoge–Fukuda tephra (Plio‐Pleistocene boundary, central Japan) has a well‐recorded eruptive style, history, magnitude and resedimentation styles, despite the absence of a correlative volcanic edifice. This tephra was ejected by an extremely large‐magnitude and complex volcanic eruption producing more than 400 km3 total volume of volcanic materials (volcanic explosivity index=7), which extended more than 300 km away from the probable eruption centre. Remobilization of these ejecta occurred progressively after the completion of a series of eruptions, resulting in thick resedimented volcaniclastic deposits in spatially separated fluvial basins, more than 100 km from the source. Facies analysis of resedimented volcaniclastic deposits was carried out in distal fluvial basins. The distal tephra (≈100–300 km from the source) comprises two different lithofacies, primary pyroclastic‐fall deposits and reworked volcaniclastic deposits. The resedimented volcaniclastic succession shows five distinct sedimentary facies, interpreted as debris‐flow deposits (facies A), hyperconcentrated flow deposits (facies B), channel‐fill deposits (facies C), floodplain deposits with abundant flood‐flow deposits (facies D) and floodplain deposits with rare flood deposits (facies E). Resedimented volcaniclastic materials at distal locations originated from unconsolidated deposits of a climactic, large ignimbrite‐forming eruption. Factors controlling inter‐ and intrabasinal facies changes are (1) temporal change of introduced volcaniclastic materials into the basin; (2) proximal–distal relationship; and (3) distribution pattern of pyroclastic‐flow deposits relative to drainage basins. Thus, studies of the Ebisutoge–Fukuda tephra have led to a depositional model of volcaniclastic resedimentation in distal areas after extremely large‐magnitude eruptions, an aspect of volcaniclastic deposits that has often been ignored or poorly understood.  相似文献   

15.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

16.
Hybrid event beds comprising clay‐poor and clay‐rich sandstone are abundant in Maastrichtian‐aged sandstones of the Springar Formation in the north‐west Vøring Basin, Norwegian Sea. This study focuses on an interval, informally referred to as the Lower Sandstone, which has been penetrated in five wells that are distributed along a 140 km downstream transect. Systematic variations in bed style within this stratigraphic interval are used to infer variation in flow behaviour in relatively proximal and distal settings, although individual beds were not correlated. The Lower Sandstone shows an overall reduction in total thickness, bed amalgamation, sand to mud ratio and grain size in distal wells. Turbidites dominated by clay‐poor sandstone are at their most common in relatively proximal wells, whereas hybrid event beds are at their most common in distal wells. Hybrid event beds typically comprise a basal clay‐poor sandstone (non‐stratified or stratified) overlain by banded sandstone, with clay‐rich non‐stratified sandstone at the bed top. The dominant type of clay‐poor sandstone at the base of these beds varies spatially; non‐stratified sandstone is thickest and most common proximally, whereas stratified sandstone becomes dominant in distal wells. Stratified and banded sandstone record progressive deposition of the hybrid event bed. Thus, the facies succession within hybrid event beds records the longitudinal heterogeneity of flow behaviour within the depositional boundary layer; this layer changed from non‐cohesive at the front, through a region of transitional behaviour (fluctuating non‐cohesive and cohesive flow), to cohesive behaviour at the rear. Spatial variation in the dominant type of clay‐poor sandstone at the bed base suggests that the front of the flow remained non‐cohesive, and evolved from high‐concentration and turbulence‐suppressed to increasingly turbulent flow; this is thought to occur in response to deposition and declining sediment fallout. This research may be applicable to other hybrid event bed prone systems, and emphasizes the dynamic nature of hybrid flows.  相似文献   

17.
The La Popa Basin in north‐eastern Mexico features outstanding, continuous three‐dimensional exposures of the Cretaceous–Palaeogene boundary event deposit in shallow shelf environments pierced by salt stocks. In the area to the south‐east of the El Papalote diapir, the Cretaceous–Palaeogene deposit consists of two superimposed sedimentary units and erosively overlies upper Maastrichtian sand‐siltstones with soft‐sediment deformation and liquefaction structures. The basal unit 1 is an up to 8 m thick chaotic, carbonate‐rich bed that discontinuously fills incised gutters and channels. Besides abundant silicic and carbonate ejecta spherules from the Chicxulub impact, unit 1 includes large sandstone boulders and abundant shallow‐water debris (for example, mud clasts, algae, bivalve shells, gastropod shells and vertebrate remains). Unit 1 is conformably overlain by unit 2. Distal to the diapir, unit 2 consists of a centimetre to decimetre‐thick conglomeratic, coarse bioclast and spherule‐bearing sandstone bed. Closer to the diapir, unit 2 becomes a metre‐thick series of four to eight conglomeratic to fine‐grained graded sandstone beds rich in shell debris and ejecta spherules. Unit 2 is conformably overlain by structureless to parallel laminated sandstone beds that may mark the return to the pre‐event depositional regime. The sedimentary characteristics of the Cretaceous–Palaeogene deposit, including its erosive base, its sheet‐like geometry, the presence of multiple, graded beds, evidence for upper flow regime conditions and the absence of bioturbation, support an origin by a short‐term multiphase depositional event. The occurrence of soft‐sediment deformation structures (for example, liquefaction) below the Cretaceous–Palaeogene deposit suggests that earthquakes were the first to occur at La Popa. Then, shelf collapse and strong backflow from the first tsunami waves may have triggered erosion and deposition by violent ejecta‐rich hyperconcentrated density flows (unit 1). Subsequently, a series of concentrated density flows resulting from tsunami backwash surges may have deposited the multiple‐graded bedding structures of unit 2. The specific depositional sequence and the Fe‐Mg‐rich as well as Si‐K‐rich composition of the ejecta spherules both provide a critical link to the well‐known deep marine Cretaceous–Palaeogene boundary sites in the adjacent Burgos basin in north‐eastern Mexico. Moreover, the pulse‐like input of Chicxulub ejecta material at the base of the event deposit allows for correlation with other Cretaceous–Palaeogene boundary sites in the Gulf of Mexico and the Atlantic, as well as in Central and Northern America. The presence of diverse dinosaur and mosasur bones and teeth in the event deposit is the first observation of such remains together with Chicxulub ejecta material. These findings indicate that dinosaurs lived in the area during the latest Maastrichtian and suggest that the tsunami waves not only eroded deltas and estuaries but the coastal plain as well.  相似文献   

18.
Ocean‐wide anoxic events represent intensively investigated anomalies in the global carbon cycle. Most previous research has focussed on hemipelagic and pelagic settings and on the relationship between black‐shale deposition and carbon‐isotope excursions. The study of ocean‐wide anoxic events and coeval shallow‐water settings is now increasingly seen as an interesting complementary approach, but one that is not without problems. Whereas platform drowning characterizes the Early Aptian of the northern Tethyan margin, LithocodiumBacinella‐rich facies and ongoing shoal‐water sedimentation at the southern Tethyan margin (Oman) bears important information on potential causes of carbon‐cycle perturbations. The present paper seeks to test the supra‐regional relevance of the Oman data by investigating coeval central Tethyan limestones. Three Lower Aptian shoal‐water sections in Istria (Croatia), deposited on the isolated Adriatic Carbonate Platform, are investigated applying chemostratigraphy (carbon and strontium) and detailed sedimentological analysis. The focus is on peritidal to lagoonal facies characterized by mass occurrences of LithocodiumBacinella, an enigmatic microencruster community. LithocodiumBacinella facies occurs predominantly in layers ranging from one to several centimetres in stratigraphic thickness, with several layers merging to metre‐thick packages. Growth fabrics within the layers include oncoidal morphotypes, lumps, interconnected patches and columns, layers and rare nodular to massive bindstone facies. These growth patterns show a remarkable regional extent and consistency over study sites distributed several kilometres apart. This widespread distribution suggests that specific LithocodiumBacinella morphotypes might serve as regional stratigraphic markers. The high‐resolution carbon‐isotope chemostratigraphy presented here is based on pristine rudist shells and matrix micrite samples and calibrated against strontium‐isotope data obtained from screened rudist low‐Mg calcite. The chemostratigraphic data are consistent with existing biostratigraphic data and place the studied strata at the onset of Early Aptian oceanic anoxic event 1a. Moreover, results indicate the near‐coeval nature of LithocodiumBacinella bloom facies in Istria and Oman. The outcomes of this study point to latitudinally different responses of Tethyan shoal‐water carbonate systems (platform drowning versus LithocodiumBacinella blooms) to the ocean‐wide anoxic event 1a.  相似文献   

19.
Eclogite facies cataclasite is recognized at Yangkou in the Chinese Su‐Lu ultrahigh‐P metamorphic belt. The cataclasite dykes (5?15 cm wide) are bounded by mylonite/ultramylonite zones, cutting through unfoliated metagabbro and/or eclogite. The cataclasite veins (generally 2–4 cm wide) are free of mylonite boundary zones, cutting through the foliation of the high‐P host rock. The dykes and veins are dominated by eclogite fragments consisting of debris of omphacite, garnet, quartz, phengite and kyanite, in a matrix of variable amounts of a schist rich in quartz, phengite and kyanite. Garnet clasts in the fragments are welded and overgrown by more Ca‐rich garnet containing mineral inclusions different from those in the garnet cores. The micropoikilitic texture of garnet is typical of eclogitic pseudotachylytes. Crack‐sealing K‐feldspar veinlets in the cataclasite dykes also imply frictional or shock‐induced melting of K‐mica. The modal abundances in the cataclasite and the schist imply that the dykes formed by flow of the omphacite and garnet‐dominated cataclasites into the fractures during seismic faulting, while the lower density minerals (quartz, phengite and kyanite) were largely left in the ultramylonite boundary zones. The dykes have the same composition as their host rocks, except for slightly lower Si and large ion lithophile elements and higher Mg, Ca, Cr, Co and Ni. Chromite, probably spurted from the nearby ultramafic rock, is found as rare particles in the cataclasite fragments. This indicates that material exchange occurred by mechanical mixing between the dykes and the ultramafic rock during seismic faulting. The Cr‐rich eclogite minerals grown on the chromite are evidence for coseismic high‐P crystallization. Short‐lived crystal growth is implied by the fine grain sizes of the eclogite minerals and very limited element diffusion between the garnet clasts and their overgrowths. The fact that the host rocks are more hydrated implies that the dyke formation was not related to fluid infiltration. It appears, therefore, that stress was the key factor inducing the high‐P phase transformation in the dykes. Both stress and temperature were only transiently high in the dykes, which have been metastable since they were formed.  相似文献   

20.
A potential zircon reference material (BB zircon) for laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) U‐Pb geochronology and Hf isotope geochemistry is described. A batch of twenty zircon megacrysts (0.5–1.5 cm3) from Sri Lanka was studied. Within‐grain rare earth element (REE) compositions are largely homogeneous, albeit with some variation seen between fractured and homogeneous domains. Excluding fractured cathodoluminescence bright domains, the variation in U content for all analysed crystals ranged from 227 to 368 μg g?1 and the average Th/U ratios were between 0.20 and 0.47. The Hf isotope composition (0.56–0.84 g/100 g Hf) is homogeneous within and between the grains – mean 176Hf/177Hf of 0.281674 ± 0.000018 (2s). The calculated alpha dose of 0.59 × 1018 g?1 for a number of BB grains falls within the trend of previously studied, untreated zircon samples from Sri Lanka. Aliquots of the same crystal (analysed by ID‐TIMS in four different laboratories) gave consistent U‐Pb ages with excellent measurement reproducibility (0.1–0.4% RSD). Interlaboratory assessment (by LA‐ICP‐MS) from individual crystals returned results that are within uncertainty equivalent to the TIMS ages. Finally, we report on within‐ and between‐grain homogeneity of the oxygen isotope systematic of four BB crystals (13.16‰ VSMOW).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号