首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Microbial communities inhabiting “subterranean estuaries” along the subsurface freshwater–saltwater continuum determine the fate of nitrogen discharged to coastal waters. Little is known about the microbes that comprise these communities, or what their ecological and biogeochemical responses will be to increased salinity resulting from saltwater intrusion and aquifer salinization. This review covers basic aspects of the nitrogen cycle relevant to the coastal subsurface and provides a framework for predicting the types of microbes and nitrogen transformations that exist in different subterranean estuary systems. Literature concerning the freshwater–saltwater mixing zones of surficial estuaries, where microbial communities are better characterized, is also reviewed to explore what is known about the impact of increasing salinity on both the community composition and biogeochemical function of the microbial assemblage. Collectively, these studies suggest that salinization will alter microbial community composition for all functional groups involved in nitrogen cycling, and may lead to decreases in nitrification and coupled nitrification-denitrification, and increases in dissimilatory nitrate reduction to ammonium (DNRA). Future collaboration between hydrogeologists and microbial ecologists is needed to fully predict the impact of saltwater intrusion on subsurface microbial communities.  相似文献   

2.
3.
This paper explores social, and economic aspects of coastal communities crucial to the management of estuaries in the Pacific Northwest. These aspects include the changing demographics and economies of coastal communities, and the public perceptions, attitudes, and values pertaining to estuarine ecosystems. Information from Willapa Bay and Grays Harbor in Washington and Tillamook, Yaquina, and Coos Bays in Oregon shows that the coastal communities are growing more slowly than the states overall., that the populations are relatively old, and that, although the local economies continue to rely on them, the extractive natural resource industries (fishing, aquaculture, agriculture, forest products) are declining in importance relative to tourism, recreation, and retirement industries. These trends suggest that human uses of the estuaries are changing in character, and altering the management problems. Coastal residents choose to live in these communities to enjoy the views and scenery, to experience rural living, to be near the ocean, and to recreate outdoors. People express coherent perceptions of risks to the estuaries, especially the threats of declining fish habitats, oil spills, shoreline development, invasive species, and logging in upland areas> Residential land values are enhanced by the presence of wetlands and forests and are diminished by the presence of hazardous waste sites. We conclude that, if recent trends in population age structure, income sources, and employment status continue, public attitudes and values will move towards stronger environmental protection. Because ecosystem management involves local public participation and collaboration, estuarine managers will be faced with both increased demands and opportunities.  相似文献   

4.
Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their diverse sources and sinks, as well as their transport and chemical form in the ocean.Much of what is known about past ocean conditions, and therefore about the processes driving global climate change, is derived from trace-element and isotope patterns recorded in marine deposits. Reading the geochemical information archived in marine sediments informs us about past changes in fundamental ocean conditions such as temperature, salinity, pH, carbon chemistry, ocean circulation and biological productivity. These records provide our principal source of information about the ocean's role in past climate change. Understanding this role offers unique insights into the future consequences of global change.The cycle of many trace elements and isotopes has been significantly impacted by human activity. Some of these are harmful to the natural and human environment due to their toxicity and/or radioactivity. Understanding the processes that control the transport and fate of these contaminants is an important aspect of protecting the ocean environment. Such understanding requires accurate knowledge of the natural biogeochemical cycling of these elements so that changes due to human activity can be put in context.Despite the recognised importance of understanding the geochemical cycles of trace elements and isotopes, limited knowledge of their sources and sinks in the ocean and the rates and mechanisms governing their internal cycling, constrains their application to illuminating the problems outlined above. Marine geochemists are poised to make significant progress in trace-element biogeochemistry. Advances in clean sampling protocols and analytical techniques provide unprecedented capability for high-density sampling and measurement of a wide range of trace elements and isotopes which can be combined with new modelling strategies that have evolved from the World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS) programmes. A major new international research programme, GEOTRACES, has now been developed as a result of community input to study the global marine biogeochemical cycles of trace elements and their isotopes. Here, we describe this programme and its rationale.  相似文献   

5.
生态模型在河口管理中的应用研究综述   总被引:1,自引:0,他引:1  
河口作为河流和海洋的交汇地,具有生态交错带特性,其在自然和人类活动双重压力下发生着演变.生态模型是研究生态系统结构、功能及其时空演变规律以及生物过程对于生态系统的影响及其反馈机制的重要手段.采用不同方法对生态模型进行分类,综述各类生态模型的特性、优缺点及应用领域.讨论建模过程中模型变量与函数、模型整合及时空尺度、模型参数取值及不确定等关键技术问题.分析各类生态模型在河口生态工程设计、生态系统修复、生态系统评价、系统决策支持等管理领域的应用.尽管中国河口生态模型构建及应用已有一些成果,但与国外相比,在理论生态学及数据积累方面仍有一定差距.  相似文献   

6.
生物地球化学循环是地球系统物质循环的核心,是维系地表生态系统稳定和人类社会可持续发展的重要基础。然而,气候变化以及人类的过度干扰可能会显著改变表层地球系统中的生物地球化学循环过程,尤其是脆弱的喀斯特生态系统。特殊的多孔隙关键带结构也加速了喀斯特地区物质循环及其对外界环境变化的响应,影响了不同尺度的物质循环和生物地球化学过程。本研究主要综述了宏观尺度(气候变化)、中尺度(人类活动)和微观尺度(微生物活动)的环境变化对喀斯特地区生物地球化学循环的影响。结果表明多要素变化导致喀斯特地区物质循环受到强烈影响,气候变化、人类活动和微生物活动及其耦合关系对喀斯特地区生物地球化学循环的调控作用具有重要意义。最后,本研究强调了现有研究的局限性并指出未来研究的挑战与方向,即未来应从系统研究(如地球关键带)的视角出发,将多尺度观测-分析与综合模型集成研究并举,从而构建多源多尺度耦合的过程和系统模型,进而为阐明喀斯特系统的演变规律和动力学机制、实现喀斯特地区的生态保护和高质量发展提供理论基础。   相似文献   

7.
Estuaries are complex sedimentary and ecological systems, where controlling factors are variable largely depending on wave vs. tidal dominance and fluvial processes. Paleoenvironmental reconstruction of their ancient counterparts in the form of coastal valley deposits in the subsurface or outcrop requires a multidisciplinary approach. Microfossils can play an integral part in identifying estuarine subenvironments. Foraminifera can be abundant in modern estuaries and resemble characteristics of brackish ichnofaunal communities in featuring low species diversity, but high abundances of opportunistic species, different feeding strategies and common infaunal species. Whereas sediment distribution is highly controlled by energy regimes, foraminifera seem to respond to salinities and tidal exposure. Whereas individual taxa can widely range bathymetrically, the combination of certain taxa becomes diagnostic for estuarine environments. Fossil marginal marine assemblages are dominated by agglutinated species due to taphonomic loss of the calcareous component that is often dominant in modern estuaries. When comparisons between fossil and modern assemblages are undertaken it is advisable to compare with Recent subsurface or remnant assemblages for a more accurate basis of paleoenvironmental interpretation. More integrated research with detailed taphonomic observations is needed on ancient coastal valley deposits to find the paleoecological requirements of extinct taxa and their link to sedimentary facies and ichnofacies.  相似文献   

8.
Spatial patterns of estuarine biota suggest that some nearshore ecosystems are functionally linked to interacting processes of the ocean, watershed, and coastal geomorphology. The classification of estuaries can therefore provide important information for distribution studies of nearshore biodiversity. However, many existing classifications are too coarse-scaled to resolve subtle environmental differences that may significantly alter biological structure. We developed an objective three-tier spatially nested classification, then conducted a case study in the Alexander Archipelago of Southeast Alaska, USA, and tested the statistical association of observed biota to changes in estuarine classes. At level 1, the coarsest scale (100–1000’s km2), we used patterns of sea surface temperature and salinity to identify marine domains. At level 2, within each marine domain, fjordal land masses were subdivided into coastal watersheds (10–100’s km2), and 17 estuary classes were identified based on similar marine exposure, river discharge, glacier volume, and snow accumulation. At level 3, the finest scale (1–10’s km2), homogeneous nearshore (depths <10 m) segments were characterized by one of 35 benthic habitat types of the ShoreZone mapping system. The aerial ShoreZone surveys and imagery also provided spatially comprehensive inventories of 19 benthic taxa. These were combined with six anadromous species for a relative measure of estuarine biodiversity. Results suggest that (1) estuaries with similar environmental attributes have similar biological communities, and (2) relative biodiversity increases predictably with increasing habitat complexity, marine exposure, and decreasing freshwater. These results have important implications for the management of ecologically sensitive estuaries.  相似文献   

9.
河流可溶性有机氮研究进展   总被引:3,自引:0,他引:3  
河流DON不但记录了流域侵蚀的过程,还记录着DON的生物地球化学信息,河流可溶性有机氮其流动是流域生态系统氮循环的重要组成部分。本文综述了河流可溶性有机氮的性质、来源、环境效应、时空变化以及同位素技术应用的最新研究进展,并指出今后河流DON的研究方向。  相似文献   

10.
Understanding ecosystem processes from a functional point of view is essential to study relationships among climate variability, biogeochemical cycles, and surface-atmosphere interactions. Increasingly during the last decades, the eddy covariance (EC) method has been applied in terrestrial, marine and urban ecosystems to quantify fluxes of greenhouse gases (e.g., CO2, H2O) and energy (e.g., sensible and latent heat). Networks of EC systems have been established in different regions and have provided scientific information that has been used for designing environmental and adaptation policies. In this context, this article outlines the conceptual and technical framework for the establishment of an EC regional network (i.e., MexFlux) to measure the surface-atmosphere exchange of heat and greenhouse gases in Mexico. The goal of the network is to improve our understanding of how climate variability and environmental change influence the dynamics of Mexican ecosystems. First, we discuss the relevance of CO2 and water vapor exchange between terrestrial ecosystems and the atmosphere. Second, we briefly describe the EC basis and present examples of measurements in terrestrial and urban ecosystems of Mexico. Finally, we describe the conceptual and operational goals at short-, medium-, and long-term scales for continuity of the MexFlux network.  相似文献   

11.
We reviewed the scale and intensity of disturbance, and the response of benthic and epibenthic communities, to intertidal aquaculture activities in Pacific Northwest estuaries. Available data indicate a spectrum of influences on the ability of estuaries to sustain biota unrelated to the cultured species. Certain disturbances, such as adding gravel to mudflats and sandflats to enhance clam production, may subtly impact certain benthic and epibenthic invertebrates without changing the carrying capacity for estuarine-dependent taxa, such as juvenile Pacific salmon (Oncorhynchus spp.). However, habitat shifts might alter the relative suitability for different salmon species. In contrast, acute disturbances that produce large-scale changes in community dominants, such as manipulation of burrowing shrimp or eelgrass with pesticides or mechanical harvesting and manipulation of oyster grounds, strongly influence the carrying capacity for many fish and macroinvertebrates. Ensuring that estuarine ecosystems are sustainable for the breadth of processes and resources requires a comprehensive assessment of both natural and anthropogenic disturbance regimes, landscape influences, and the effects of local management for particular species on other resources.  相似文献   

12.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   

13.
Many types of anthropogenic stress to estuaries lead to destruction and conversion of habitats, thus altering habitat landscapes and changing the “arena” in which the life history interactions of native fauna take place. This can lead to decreased populations of valued fauna and other negative consequences. The Tampa Bay Estuary Program (TBEP) pioneered a system-wide management framework that develops estuarine habitat restoration and protection goals based on supporting estuarine-dependent species and the habitat landscapes they require (for example, the extent of seagrass beds, mangrove forests, oyster reefs, or oligohaline marshes) within an estuary. We describe this framework and provide related statistics as methods to help managers set system-wide ecological goals using larger conceptual approaches that are easily communicated to stakeholders and the public; we also discuss applications of the approach to existing and evolving paradigms of estuarine management. The TBEP and partners used this framework to combine a simple and unifying vision with a diverse and complex set of management tools, resulting in greatly improved environmental conditions within Tampa Bay.  相似文献   

14.
Understanding rates of nitrogen cycling in estuaries is crucial for understanding their productivity and resilience to eutrophication. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, links reduced and oxidized forms of inorganic nitrogen and is therefore an important step of the nitrogen cycle. However, rates of nitrification in estuary waters are poorly characterized. In fall and winter of 2011–2012, we measured nitrification rates throughout the water column of all major regions of San Francisco Bay, a large, turbid, nutrient-rich estuary on the west coast of North America. Nitrification rates were highest in regions furthest from the ocean, including many samples with rates higher than those typically measured in the sea. In bottom waters, nitrification rates were commonly at least twice the magnitude of surface rates. Strong positive correlations were found between nitrification and both suspended particulate matter and ammonium concentration. Our results are consistent with previous studies documenting high nitrification rates in brackish, turbid regions of other estuaries, many of which also showed correlations with suspended sediment and ammonium concentrations. Overall, nitrification in estuary waters appears to play a significant role in the estuarine nitrogen cycle, though the maximum rate of nitrification can differ dramatically between estuaries.  相似文献   

15.
Freshwater inputs often play a more direct role in estuarine phytoplankton biomass (chlorophyll a) accumulation than nitrogen (N) inputs, since discharge simultaneously controls both phytoplankton residence time and N loading. Understanding this link is critical, given potential changes in climate and human activities that may affect discharge and watershed N supply. Chlorophyll a (chla) relationships with hydrologic variability were examined in 3-year time series from two neighboring, shallow (<5?m), microtidal estuaries (New and Neuse River estuaries, NC, USA) influenced by the same climatic conditions and events. Under conditions ranging from drought to floods, N concentration and salinity showed direct positive and negative responses, respectively, to discharge for both estuaries. The response of chla to discharge was more complex, but was elucidated through conversion of discharge to freshwater flushing time, an estimate of transport time scale. Non-linear fits of chla to flushing time revealed non-monotonic, unimodal relationships that reflected the changing balance between intrinsic growth and losses through time and along the axis of each estuary. Maximum biomass occurred at approximately 10-day flushing times for both systems. Residual analysis of the fitted data revealed positive relationships between chla and temperature, suggesting enhanced growth rates at higher temperatures. N loading and system-wide, volume-weighted chla were positively correlated, and biomass yields per N load were greater than other marine systems. When combined with information on loss processes, these results on the hydrologic control of phytoplankton biomass will help formulate mechanistic models necessary to predict ecosystem responses to future climate and anthropogenic changes.  相似文献   

16.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

17.
Biomass burning results in the formation and accumulation of pyrogenic products such as black carbon (BC) and black nitrogen (BN) in soils. The ubiquitous presence of pyrogenic products in natural dissolved organic matter (DOM) and potential implications in global carbon cycling have recently been reported. However, little is known about the environmental dynamics or the importance in the global N cycle of dissolved BN (DBN; or heteroaromatic N). Here we report the coupling between DBN and dissolved BC (DBC) in ultrafiltered DOM from six headwater streams across a climatic region of North America, suggesting similar combustion sources, and that DOC may play an important role in the translocation of soil BN to the dissolved phase. The export of potentially recalcitrant riverine DBN to the ocean may affect the biogeochemical cycling of N and possibly the microbial community structure in aquatic environments.  相似文献   

18.
锑的环境生物地球化学循环与效应研究展望   总被引:13,自引:0,他引:13  
研究表明锑与铅和汞一样,是一个可长距离输送的全球性有毒元素;但锑的研究最近才引起国际社会的关注。与其它金属如汞、铅、镉和砷等相比,国际上锑的研究开展得相对较少。为了揭示锑的全球性污染程度、循环过程及其对生态环境的影响,急需开展深入研究。概述了前人在锑的环境生物地球化学循环和效应方面的研究成果,分析了存在的科学问题,凝练了进一步研究的方向、思路和方法,并指出我国西南地区是开展这一方向研究的理想区域,及在该地区开展深入研究的重要性。  相似文献   

19.
大气CO2浓度升高已成为全球备受关注的环境问题.CO2排放量的增加加剧了地球表层的温室效应,也对生态系统的结构和功能产生了重要影响.生态系统对CO2浓度升高的响应是一个长期的过程.在干旱半干旱区,CO2浓度的升高对生态系统生产力、植物、土壤和微生物等都有影响,尤其改变了生态系统中的碳循环,并加剧了生态系统对氮的需求.碳...  相似文献   

20.
Estuaries are one of the most threatened ecosystems, with a great number of stressors related to pollution, hydromorphological changes, and invasive species. However, the response of the biological indicators proposed for their ecological status assessment is not always well established. When using estuarine vegetation (saltmarshes and seagrasses) as an indicator, there are several theoretical concepts regarding the relationships between the variations of this indicator and hydromorphological stressors. It is precisely these relationships which are presented in this work. To carry out this objective, based on the first intercalibration process, a set of metrics for saltmarsh and seagrass taxonomic compositions (e.g., loss of number of taxa and richness) and abundance (e.g., relative coverage and relative extent) have been selected and applied to different estuaries located in Northern Spain. Additionally, a methodology for the hydromorphological status assessment, based on the analysis of the anthropogenic changes in the hydrodynamic and morphological estuarine characteristics (e.g., the extension of land claim areas or changes in the estuarine perimeter), has been developed and applied to these transitional water bodies in order to find a gradient of pressured sites in which we seek correlations between the vegetation metrics and hydromorphological stressors. As a result, the response of the different vegetation indicators is variable. In some cases, a negative correlation of the indicator with the pressure degree exists, whereas in other cases, the relationship is not as clear. Nonetheless, according to the results, it can be suggested that the placing of anthropogenic structures diminishes the quality of the estuarine vegetation. Therefore, to maintain a suitable environment for the estuarine vegetation seems necessary in order to reduce the number of the hydrodynamic structures which are no longer in use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号