首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 359 毫秒
1.
孙晶  蔡淼  王飞  史月琴 《气象》2019,45(10):1341-1351
利用卫星、雷达、探空、飞机等观测资料和NCEP再分析资料,以及数值模拟结果,对2016年3月8—9日我国安庆地区的云系特征和飞机积冰气象条件进行了分析,并对比了几种积冰指数算法的计算结果。结果表明,此次飞机积冰发生在寒潮天气背景下,强冷空气造成锋面逆温。实测飞机积冰现象出现在对流降雨结束后的层积云层顶部,积冰高度对应高空锋区逆温层底部,云顶高度约为3.4 km,云顶温度为-10℃,无降水和雷达回波,云中主要为过冷水,丰沛时段飞机观测过冷水平均值为0.36 g·m~(-3),基本无冰相粒子。当云顶高度再度抬升,冰相粒子增多时,过冷水含量减少,不利于积冰现象发生。多种积冰指数对比分析表明,CIP初始积冰潜势算法较好体现了此次层积云飞机积冰特征。CPEFS模式模拟出了与实测比较一致的云宏微观结构。  相似文献   

2.
飞机积冰云微物理特征分析及监测技术研究   总被引:2,自引:2,他引:0  
王磊  李成才  赵增亮  姚志刚 《气象》2014,40(2):196-205
利用7个架次有积冰报告的飞机探测资料,对积冰云的微物理特征进行了分析,详细描述了云中相态组成、液水含量、中值体积直径和过冷大滴浓度特征。介绍了基于卫星、数值模式输出和地面观测资料的飞机积冰潜势监测技术,在与20个飞机探测积冰报告对比中,积冰监测可识别率为90%,并应用飞机积冰潜势监测技术具体分析了2010年10月26日的积冰个例。最后介绍了基于积冰潜势监测技术的飞机积冰监测系统,该系统能够支持水平分辨率为20 km、垂直分辨率为25 hPa、时间分辨率为1 h的飞机积冰潜势产品的运算和显示,该系统可为实际业务提供参考。  相似文献   

3.
利用东胜、延安、平凉、西安4站1990年1月--2009年12月每天08时和20时1000~100hPa标准等压面探空资料,选用国际民航组织建议的WAFS积冰指数L作为诊断依据,计算、分析陕西秦岭以北地区逐月飞机积冰率的垂直和水平分布特征,结果表明:该地区具有丰富的积冰试飞气象资源;在垂直高度上.700hPa及以下高度,飞机积冰主要发生在春季和冬季,700hPa高度以上,飞机积冰主要发生在夏半年;飞机积冰多发期间,850hPa及以下高度积冰率水平分布表现为南北少、中部多的特点;850hPa高度以上,飞机积冰率呈现出南部多、北部少的特点。  相似文献   

4.
飞机积冰气象条件研究进展   总被引:1,自引:0,他引:1  
孙晶  李想 《气象科技》2020,48(4):561-569
飞机积冰的直接影响气象因子包括大气温度、云中过冷水含量、过冷水滴大小。飞机积冰气象条件的研究对于飞行安全保障、飞机适航验证、人工影响天气等方面具有重要意义。近年来在飞机积冰气象条件研究方面取得了很大进展,文章对飞机积冰气象条件的外场观测、天气系统、监测识别、预报方法、气候分布等方面进展进行了简要综述,并对有关问题进行了讨论。飞机探测结果表明,过冷水时空分布具有明显不均匀性,国外以大量飞机积冰观测试验为基础统计分析了积冰环境,并制定了用于飞机积冰适航验证的一系列标准。产生飞机积冰的主要天气系统是锋面、高空槽线和切变线,冻雨往往产生强积冰。综合多源遥感数据各自的优势信息,建立飞机积冰区域识别技术是主要趋势。具有对云水显式预报能力的中尺度模式为预报飞机积冰提供了更好的工具。同时将多种监测数据、模式数据相融合的实时积冰潜势系统是新的发展方向。  相似文献   

5.
利用云探测卫星CloudSat在2007年12月1日—2008年11月30日全年数据, 构建一种利用CloudSat云分类产品、温度产品、液态水含量产品来联合识别飞机积冰潜势的算法, 并利用该算法对上述时段的全球范围内飞机积冰潜势的出现频率进行统计分析, 旨在为航空安全特别是长途飞行提供一定参考依据。并分析了不同云类型和不同季节的飞机积冰潜势分布特征。结果表明:飞机积冰潜势在全球范围内存在纬向、海陆及季节差异特征。整体上中高纬度地区积冰潜势频率比低纬度地区高, 陆地上空的积冰潜势频率比海洋上空高; 对于不同云类型而言, 中高纬度地区积冰潜势以层云、层积云、高层云和高积云为主, 而低纬度地区积冰潜势以深对流云为主; 对于不同季节而言, 夏季积冰频率较低, 冬春季节频率较高。   相似文献   

6.
“04.12.21”飞机积冰天气过程数值特征分析   总被引:2,自引:3,他引:2  
刘开宇  申红喜  李秀连  梁爱民 《气象》2005,31(12):23-27
通过对2004年12月21日发生在民航太原机场附近的飞机积冰过程分析认为:华北地面高压和河套地区高空槽形成的“回流+倒槽”形势是此次积冰的天气背景,在具备暖湿环境的条件下,在冷暖空气交汇区域靠近冷空气一侧易发生积冰;除去飞机动力增温影响后,强积冰所需环境温度大致在-6~-10℃之间;弱上升气流和冷平流已经侵入的区域内有利于积冰的形成;WAFS数值预报产品可较有效地描述天气系统发展的动力结构和机制,具有较好的积冰形势预报能力,而在国际民航组织向成员国推荐的积冰指数基础上重新构造的积冰指数可以更好地预报积冰天气的发生区域.  相似文献   

7.
周星旭  李昀英  张潮 《气象》2023,(4):415-426
基于两种常用的飞机积冰诊断指数,利用ERA5再分析资料作为积冰发生的大气环境场,构建了飞机积冰诊断预报模型,对采集到的25个华东地区春季积冰个例进行了回算,并分别计算了我国不同纬度典型城市上空飞机积冰发生的时空分布特征,模拟了一次冷空气活动过程中浙江新昌上空积冰区域的时空分布,提出了飞机积冰预报方法的几种应用场景。结果表明:在选取的积冰个例中,积冰(IC)指数法诊断准确率为80%,假霜点温度经验法诊断准确率为92%;假霜点温度经验法考虑了飞机飞行速度与动力增温的影响,并且与冰水粒子浓度和中、低云的云量相关性更好,但在没有飞机真实空速情况下预测的积冰强度不够准确,400 hPa以上高度空报较多;IC指数法和假霜点温度经验法均能有效诊断出积冰易发生高度层和积冰高发时段,也可以有效预报某站点高空积冰强度分布情况,另外假霜点温度经验法可以反演发生积冰时的飞机临界飞行速度。  相似文献   

8.
2018年3月17日、27日,国产某型直升机在新疆五家渠地区成功完成2架次自然结冰试飞。利用NCEP/NCAR的1°×1°再分析资料、机测液态水含量资料结合常规气象资料,对2次结冰天气过程的天气环流形势、动力热力特征、液态水含量进行分析。结果表明:17日在高空冷涡、地面冷锋前的环流形势下,试飞高度层位于冷暖平流交汇处,温度为0~-4℃,比湿值为3~3.5 g/kg,处于强水汽辐合中心,并伴有弱上升运动,Ic积冰指数为20~30,云中液态水含量波动较大,飞机挂架上形成0.5 cm厚度的凇冰。27日在高空槽前和地面冷锋后的环流形势下,试飞高度层在弱冷平流中心附近,温度为0~-2℃,比湿值接近4.5 g/kg,处于弱水汽辐合中心边缘,伴有弱上升运动,Ic积冰指数为30~40,云中液态水含量稳定,飞机挂架上形成1~2 cm厚度的明冰。在气象保障中运用探空、云图、雷达、微波辐射计等资料有效预报了积冰区域及高度。  相似文献   

9.
王钦  吴俊杰 《气象科技》2018,46(4):799-808
利用常规气象资料和机载温度探测资料(OAT),对2015—2016年冬季四川盆地7次低空飞行(3000m以下)飞机积冰的个例进行了诊断分析。结果表明:冬季在四川盆地内3000m以下飞行,导致飞机积冰的环流形势包括冷锋型、低槽型、西南气流型以及弱脊型,其中前三种形势更有利于中度积冰的产生。飞机积冰均发生在穿过温度小于0℃的云中,出现中度积冰的温度范围在-4^-2℃,轻度积冰温度范围在-1~0℃,在这一温度范围内,相对湿度越大越有利于积冰的产生,其中产生中度积冰时相对湿度均在90%以上。在有利的环流形势以及一定的温度和相对湿度条件下,垂直上升气流速度在-1.0^-0.05Pa·s-1之间更有利于中度积冰的产生,-0.05~0Pa·s-1之间更有利于轻度积冰的产生。  相似文献   

10.
使用北京人工影响天气办公室提供的2014-2017年京津冀地区飞行记录积冰个例样本与机载观测数据,2016年全国空中报告积冰、非积冰个例样本和欧洲中期天气预报中心(ECMWF)第5代全球气候大气再分析数据(ERA5),基于模糊逻辑隶属度函数,定义了以气温和相对湿度为判别基础并考虑垂直速度和云量影响的积冰指数Ip(icing potential index),用于判断飞机在空中发生积冰事件的可能性。检验结果表明:该指数对积冰事件的判别准确率为80.2%,与目前国内常用的经典积冰指数(Ic)相比,其判别准确率有明显提升,且漏报率和虚警率均显著降低(分别为9.4%和10.4%),结合数值预报产品可对飞机在空中特定位置发生积冰事件的可能性进行预测。  相似文献   

11.
利用2021年2月28日机载探测资料, 结合欧洲中期天气预报中心ERA5再分析资料、陕西省延安站探空资料, 分析飞机发生严重积冰的天气背景和云的宏微观结构特征。此次严重积冰天气是受高空槽、低空切变线、低空急流和地面冷锋共同影响的结果。ERA5再分析资料表明:过冷水大值区主要分布于锋区前部暖侧的700 hPa至600 hPa高度。探空资料表明:飞机探测区环境温度为-9~-3℃, 温度露点差为0℃, 具有发生严重积冰的温度和湿度条件。飞机遭遇严重积冰期间环境温度为-8~-5℃, 云粒子探头观测的液态水含量平均为0.35 g·m-3, 最大为0.7 g·m-3;总水含量仪观测的液态水含量平均为0.5 g·m-3, 最大为0.85 g·m-3, 有11 min大于0.45 g·m-3;云粒子中值体积直径平均为20.3 μm, 云粒子数浓度平均为149.3 cm-3;云粒子数浓度由低层到高层呈增大趋势, 而云粒子中值体积直径变化趋势与之相反。计算表明:国王350飞机在穿云作业时, 云中过冷水含量分别高于0.04 g·m-3, 0.15 g·m-3和0.45 g·m-3时可能遭遇轻度积冰、中度积冰和严重积冰。  相似文献   

12.
积-层混合云是影响北京地区的重要降水云系,运用飞机探测资料结合中尺度数值模式WRF,对2014年9月23日发生在北京地区的一次积-层混合云系的垂直结构和降水机制进行了探测资料分析和数值模拟研究。通过分析云系的雷达回波演变,发现云中的对流泡没有出现爆发式增长,回波在垂直方向上增长不明显,此次过程属于积-层水平混合型云系降水。飞机探测资料分析显示,上、下午探测云系的液态水含量都不高(最大低于1 g/m3);在云系不同高度,飞机探测到的冰晶形状主要有板状、针柱状、辐枝状和不规则状,由于云中过冷水含量相对较低,聚合冰晶的数量明显多于凇附冰晶,冰晶的聚合是云中粒子增长的主要过程。对模拟云系垂直微物理结构和降水粒子的源、汇项分析得到:高层,由凝华产生的冰晶和雪晶在过冷水含量较低的环境中不断聚并、长大并下落,云系中霰的含量很低,增大的冰晶和雪晶下落至0℃层附近融化是产生地面降水的主要机制。此外,融化层附近,雨滴捕获云滴不断长大并下降至地面也是地面降水的另一个重要来源。   相似文献   

13.
徐戈  孙继明  牛生杰  周碧  王永庆 《大气科学》2016,40(6):1297-1319
霰和冻滴是深对流降水的主要来源。由于二者密度差异造成的不同下落末速度必然会导致云微物理过程的变化以及降水时空分布的改变。我们在以色列特拉维夫大学二维轴对称对流云全分档模式的基础上,将水成物粒子从34档增加到40档,修改了霰和雪的密度,加入冻滴分档处理的微物理过程,发展了一个包括液滴、冰晶、雪、霰和冻滴更为详细的云微物理分档模式。利用改进后的模式模拟了一次理想的强对流天气过程,分析了改进模式与原模式模拟的云微物理量场以及水成物粒子的时空分布特征,模拟结果表明:(1)由于冻滴的产生,较大的下落末速度导致在云内-3℃至-8℃较早地出现了冻滴,并造成了大量的冰晶繁生。(2)冻滴形成前期,液态水中心区域位于垂直上升速度大值中心上方,形成液态水累积区;冻滴形成期,液态水累积区位于0℃层以上,雨滴冻结生成冻滴,霰与半径大于100 μm的液滴碰并生成冻滴;冻滴增长期,在垂直上升气流的支撑下,冻滴碰并过冷水增长,导致冻滴含量增大,液态水含量减小。因此,改进模式能较好的模拟冻滴的形成过程,可以将该分档处理的微物理方案耦合到三维WRF(Weather Research and Forecasting model)模式中,更深入地研究强雷暴风切变在冰雹生成过程中的作用。  相似文献   

14.
机载含水量仪是目前云中液态水含量唯一的探测仪器,其准确性直接影响人工增雨作业条件判别。基于2015年和2017年四川盆地南部开展的10架次飞机云物理探测试验,考察机载热线含水量仪LWC-100探测数据发现存在异常极大值、负值数量多等问题。通过分析DMT(Droplet Measurement Technologies)公司云粒子探头(cloud droplet probe,CDP)、云粒子图像探头(cloud imaging probe,CIP)、降水粒子图像探头(precipitation imaging probe,PIP)数据,提出对入云前的干功率进行重新计算的3种方法:方法1以CDP探头的不同粒子尺度分档为标准,不低于某一档尺度的粒子数浓度大于0记为入云;方法2以CDP的数浓度大于10 cm-3为入云判定条件;方法3以CDP,CIP,PIP 3种探头探测的粒子数浓度同时大于0记为入云。结果显示:3种方法均有效纠正液态水含量不为0的情况,负值数量也较探测数据明显减少。方法1以不小于5 μm的粒子数浓度大于0记为入云,校验计算得到的液态水含量以负值数量和大小作为评价依据较方法2和方法3更优。  相似文献   

15.
对云中微物理过程的研究是研究云降水形成过程和人工影响降水的重要基础,目前对积层混合云的对流区/对流泡中的微物理结构了解甚少。本文利用河北省“十三五”气象重点工程——云水资源开发利用工程的示范项目(2017~2019年)“太行山东麓人工增雨防雹作业技术试验”飞机和地面雷达观测数据,重点分析研究了2017年5月22日一次典型稳定性积层混合云对流泡和融化层的结构特征。研究结果表明,此次积层混合云高层存在高浓度大冰粒子,冰粒子下落过程中的增长在不同区域存在明显差异,在含有高过冷水含量的对流泡中,冰粒子增长主要是聚并和凇附增长,而在过冷水含量较低的云区以聚并增长为主。由于聚并增长形成的大冰粒子密度低,下落速度小,穿过0℃层时间更长,出现大量半融化的冰粒子,使融化现象更为明显。镶嵌在层状云中的对流泡一般处于0℃~-10℃(高度4~6 km)层之间,垂直和水平尺度约2 km,最大上升气流速度可达5 m s-1。对流泡内平均液态水含量是周围云区的2倍左右,小云粒子平均浓度比周围云区高一个量级,大粒子(直径800 μm以上)的浓度也更高。在具有较高过冷水含量的对流泡中降水形成符合“播撒—供给”机制,但在过冷水含量较低的区域并不符合这一机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号