首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

2.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

3.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

4.
The objective of this study was to assess the subsurface strata and groundwater situation of Olomoro, Nigeria using borehole logging and electrical resistivity techniques. The borehole logging consisting of resistivity and spontaneous potential logs were conducted by using the Johnson Keck logger on a drilled well in the study area. The electrical resistivity survey involving 17 vertical electrical soundings (VES) with a maximum current electrode spacing of 100 to 150 m was conducted using the Schlumberger electrode configuration. Analysis of the well cuttings revealed that the lithology of the subsurface consist of topsoil, clay, very fine sand, medium grain sand, coarse sand and very coarse sand. Results of the downhole logging also revealed that the mean electrical conductivity and the total dissolved solid of the groundwater was obtained as 390 μS/cm and 245 mg/cm3 respectively. These values are within the acceptable limit set by the Standard Organization of Nigeria (SON) for drinking water. The result of the vertical electrical sounding interpreted using the computer iterative modeling revealed the presence of four to five geoelectric layers which showed a close correlation with result from the lithology and downhole logging. Results further showed that the resistivity of the subsurface aquifer ranged between 1584 and 5420 Ωm while the aquifer depths varied between 27.8 and 39.3 m. Groundwater development of the area is suggested using the depth and resistivity maps provided in this study.  相似文献   

5.
A geoelectrical resistivity survey using vertical electrical sounding (VES) was conducted at Chaj Doab (land between rivers Jhelum and Chenab, Pakistan) and Rachna Doab (land between rivers Chenab and Ravi, Pakistan), with the objective of investigating groundwater conditions. A total of 90 sites were selected with 43 sites in Chaj and 47 sites in Rachna Doabs. The resistivity meter (ABEM Terrameter SAS 4000, Sweden) was used to collect the VES data by employing a Schlumberger electrode configuration, with half current electrode spacings (AB/2) ranging from 2 to 180 m and the potential electrode (MN) from 1 to 40 m. The field data were interpreted using the Interpex IX1D computer software and the resistivity versus depth models for each location was estimated. The outputs of subsurface layers with resistivities and thickness presented in contour maps and 3-D views by using SURFER software were created. A total of 102 groundwater samples from nearby hydrowells at different depths were collected to develop a correlation between the aquifer resistivity of VES and the electrical conductivity (EC) of the groundwater and to confirm the resulted geophysical resistivity models. From the correlation developed, it was observed that the groundwater salinity in the aquifer may be considered low and so safe for irrigation if resistivity >45 Ω m, and marginally fit for irrigation having resistivity between 25 and 45 Ω m. The study area has resistivities from 3.9 to 2,222 Ω m at the top of the unsaturated layer, between 1.21 and 171 Ω m, in the shallow aquifers, and 0.14–152 Ω m in the deep aquifers of the study area. The results indicate that the quality of groundwater is better near the rivers and in the shallow layers compared to the deep layers.  相似文献   

6.
Geoelectrical resistivity method involving vertical electrical sounding (VES) was carried out in a sedimentary environment to determine the suitability of the method for sub-surface groundwater investigations. The EC and TDS hydrochemical data in the study area clearly showed the influence of seawater intrusion. The abundance of the major cations and anions are in the following order, Na+ > Ca2+ > Mg 2+ > K+ = Cl- > HCO3- > SO42- > CO3 > NO3 > PO4. Results suggest that the groundwater in this study area is very hard and alkaline in nature. As indicated by Piper trilinear diagram, NaCl and Ca2+ - Mg2+–Cl- - SO42- facies are the dominant hydrochemical facies in the groundwater of Pearl city. The VES method by Schlamberger electrode array was applied in 12 locations, which is expected to represent the whole area. The resistivity meter (aquameter CRM 5OO) was used to collect the VES data by employing a Schlumberger electrode configuration, with half current electrode spacing (AB/2) ranging from 2 to 180 m and the potential electrode (MN) from 1 to 50 m. The resistivity data is then interpreted by WINSEV 1-D inversion program geoelectric software to entirely describe the aquifer system as well as the occurrence of groundwater. The outputs of sub-surface layers with resistivities and thickness presented in contour maps and 2-D views by using SURFER software were created. Accordingly, three zones with different resistivity values were detected, corresponding to three different formations: (1) a transition zone of sandy soil (aeolian deposits) thick formation, (2) strata’s saturated with fresh groundwater in the east disturbed by the presence of sandy shell limestone horizons, (3) a water-bearing formation in the west containing low saltwater horizons. The bedrock is encountered at an average depth of 95m. This study indicates that the groundwater reservoirs are mainly confined to the alluvial aquifer.  相似文献   

7.
A novel study on using geoelectrical resistivity, soil property, and hydrogeochemical analysis methods for delineating and mapping of heavy metal in aquifer system is presented in this paper. A total of 47 surveys of geoelectrical resistivity with Wenner configuration were conducted to determine the subsurface and the groundwater characteristics. The groundwater sample from 53 existing wells and 2 new wells has been analyzed to derive their water chemical content. The chemical analysis was done on the soil sample obtained from new two wells and from selected locations. The water and soil chemical analysis results from the new two wells were used as calibration in resistivity interpretation. The occurrence of heavy metal in aquifer system was expected to detect using the geoelectrical resistivity survey for the whole study area. The result of groundwater analysis shows that the groundwater sample contains a relatively low concentration of Fe (<?0.3 mg/L) elongating from the south up to the middle region. While in the middle and the northwestern, Fe concentration is relatively high (around 12 mg/L). Chemical analysis of soil sample shows that in the lower resistivity zone (<?18 Ωm), Al and Fe concentrations are comparatively high with an average of 68,000 and 40,000 mg/kg, respectively. Starting from the middle to the northwestern zone, the resistivity value appears to be low. It is definitely caused by higher Al and Fe concentration within the soil, and it is supported also by lower total anion content in the groundwater. While the resistivity value of more than 40 Ωm in aquifers is obtained in the zone which Fe concentration is relatively lower in the soil but not present in the groundwater. Correlation Fe concentration in the soil and Fe concentration in the groundwater sample shows the trend of positively linear; however, the Al concentration in soil has no correlation with Al content in groundwater. Finally, the probability of high heavy metal zone in the aquifer system is easily delineated by the distribution of geoelectrical resistivity presented in depth slice shapes which extend from the Boundary Range Composite Batholith in the north to the northwest.  相似文献   

8.
Subsurface geophysical surveys were carried out using a large range of methods in an unconfined sandstone aquifer in semiarid south-western Niger for improving both the conceptual model of water flow through the unsaturated zone and the parameterization of numerical a groundwater model of the aquifer. Methods included: electromagnetic mapping, electrical resistivity tomography (ERT), resistivity logging, time domain electromagnetic sounding (TDEM), and magnetic resonance sounding (MRS). Analyses of electrical conductivities, complemented by geochemical measurements, allowed us to identify preferential pathways for infiltration and drainage beneath gullies and alluvial fans. The mean water content estimated by MRS (13%) was used for computing the regional groundwater recharge from long-term change in the water table. The ranges in permeability and water content obtained with MRS allowed a reduction of the degree of freedom of aquifer parameters used in groundwater modelling.  相似文献   

9.
The principal aim of this study is to assess the scope of monitoring diesel plume migration in a scaled aquifer model with a miniaturised electrical resistivity array. Respectively 1000 and 500 ml of diesel were injected in both the unsaturated and water-saturated zones of a sand body overlying a clay aquitard, and diesel migration was monitored with a miniature electrode array and an off-the-shelf resistivity meter. Inverted time-lapse electrical resistivity tomography (ERT) data reflect downward and lateral spreading of the diesel plume away from the injection point in the unsaturated zone. Diesel was also imaged to spread upwards and laterally away from the injection point in the saturated zone, as controlled by capillary rise. In both cases later-time ERT images reflected preferential pooling of diesel on the water table, as well as vertical smearing of pooled diesel in response to simulated water-table fluctuations. Repeat fluid electrical conductivity (EC) and dissolved oxygen (DO) measurements validate the observed changes in bulk resistivity caused by both diesel injections. Artefacts introduced by 2D inversion of 3D contaminant transport were abound. Time-lapse ERT imaging of diesel transport is therefore inferred to be feasible and well-suited to complementing conventional techniques of intrusive site investigation, although time-lapse 3D or 4D ERT imaging is strongly advocated.  相似文献   

10.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   

11.
Electrical resistivity surveying for delineating seawater intrusion was performed in the Dibdibba aquifer in the area between the cities of Al-Zubair–Safwan and Al-Zubair–Umm Qasr in the vicinity of Khor AL-Zubair Channel, Basrah governorate, southern Iraq. Fourteen 2D resistivity profiles with a total length of 14 km were collected in the study area. The resistivity sections were compared with lithological data extracted from 11 boreholes. Thirty-nine groundwater samples were collected within the area and analyzed for chemical constituents; internal hydrogeological reports and unpublished studies were also evaluated. Results reveal the existence of three major resistivity layers, ranging from 0.1 to 130 Ωm at various depths and locations. The first layer has very low electrical resistivity (0.1–5 Ωm) representing a layer saturated with saltwater intruded from Khor AL-Zubair Channel. The second layer shows resistivity in the range of 5–130 Ωm, attributed to a transition zone and an unaffected zone saturated with brackish groundwater. The last resistivity layer (<?3 Ωm) represents coarse-grain sediments saturated with saline groundwater. Furthermore, a hard clay bed (Jojab) appears with a resistivity of 3–7 Ωm in all 2D imaging lines within a depth of 20–28 m. Electrical conductivity (EC) measurements from seven wells collected in 2014 and 2016 show a positive EC difference increasing landward with an average increase of 1927 µS/cm. In addition, six chemical relationships (Na/Cl, [Ca?+?Mg]/[HCO3?+?SO4], SO4/HCO3, SO4/Cl, Mg/Ca and Cl/[HCO3?+?CO3]) are used to detect the source of salinity in groundwater. This study proves that extensive use of high-resolution 2D imaging sections, alongside lithological and hydrogeological data, can serve as a useful tool to delineate the boundaries between aquifers, identify hydraulic boundaries between groundwater with different salinities and allocate hard clay layers between the upper and lower Dibdibba aquifer. In general, the combination of 2D imaging and hydrochemistry enables conceptualization of the hydrogeological situation in the subsurface and characterization of the salinity source, here seawater intrusion, in the study area. There have been no studies published so far on the characteristics of saltwater intrusion in the study area, and this study is considered to be important for monitoring and studying the intrusion and regression of seawater.  相似文献   

12.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

13.
This research is an attempt to accomplish a 3-D resistivity imaging survey, which was carried out near a water well contaminated with hydrocarbon materials in Karbala governorate. Two-dimensional resistivity imaging measurements were collected along four parallel profiles, using a Wenner array with electrode spacing of 1 m. The RES3DINV program was used to invert the apparent resistivity data. The results displayed a resistivity distribution of the subsurface in a three-dimensional volume. Thus, both the horizontal and vertical extents of the contaminated zone were displayed. This technique revealed a low resistivity zone at depth ranges from 3 to 6 m in the investigation area, but the seepage starts at depth ranges between 2 and 3 m and continues down depth (may be to the groundwater level). This low resistivity zone is the most likely location for a subsurface seepage of contaminated water. It is clear that the sufficient measurement points along 2-D lines in a small area can increase the 3-D imaging resolution, and nearly real 3-D imaging can be achieved, when the size of subsurface anomaly compared with the electrode spacing (a) of the Wenner array is taken into consideration.  相似文献   

14.
Electrical imaging of the groundwater aquifer at Banting,Selangor, Malaysia   总被引:1,自引:0,他引:1  
A geophysical study was carried out in the Banting area of Malaysia to delineate groundwater aquifer and marine clay layer of the alluvial Quaternary deposits of Beruas and Gula Formations. The Beruas Formation is formed by peat and clayey materials as well as silt and sands, whereas the Gula Formation consists of clay, silt, sand and gravels. Both Formations were deposited on top of the Carboniferous shale of the Kenny Hill Formation. A 2-D geoelectrical resistivity technique was used. Resistivity measurement was carried out using an ABEM SAS 4000 Terrameter. The 2-D resistivity data of subsurface material for each survey line was calculated through inverse modelling and then compared with borehole data. The resistivity images of all the subsurface material below the survey lines show similar pattern of continuous structure of layering or layers with some lenses with resistivity ranging from 0.1 to 50 Ωm. The upper layer shows resistivity values ranging from 0.1 to 10 Ωm, representing a clay horizon with a thickness up to 45 m. The second layer with depth varies from 45 to 70 m below surface and has resistivity values ranging from 10 to 30 Ωm. Borehole data indicate coarse sand with some gravels for this layer, which is also the groundwater aquifer in the study area. The lowermost layer at a depth of 70 m below ground level shows resistivity values ranging from 30–50 Ωm and can be correlated with metasedimentary rocks consisting of shale and metaquartzite.  相似文献   

15.
The future development of agriculture, industry, and civil activity planned to be in the Western Desert. This strategy need to the groundwater resource. Vertical electrical soundings (VES) and electromagnetic (TEM) measurements conducted in the El Bawiti, northern Bahariya Oasis. The measurements give detailed information about the geometry of the different hydrogeological layers in the aquifer system and depth to them. A total of 22 VES and TEM were carried out within El Bawiti area. Thirty-one sub soil samples were collected from eight sites to determine the chemical characteristics and address the effects of lithogenic source and anthropogenic activity on them. The geoelectrical measurements and borehole information indicate the presence of five geoelectrical units, from top to base; the surface cover, sand and shale, upper aquifer (Nubian sandstone), sand and shale, and lower aquifer (Nubian sandstone). Surface cover was equally distributed in thickness and composed of dry sand, gravel, and clay deposits. The regional resistivity of the upper aquifer increased in the southwestern part and decline in the northern, eastern, southern, and western parts. The decline in the resistivity reflects the high water yields and potentiality, as well as low salinity. The resistivity of the lower aquifer increased due the northwestern part and the southwestern part. The information collected during this research provides valuable data for estimating the fresh- to brackish-water resources and for development of a groundwater management plan. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. The electrical conductivity of the soil ranges from 302 to 8,490 μS/cm, increases in the western and central-northern parts. It is attributed to the location from the salt-affected soils (playa), the relatively lower elevation units (depressions) and the position in landscape in the Oasis. Sodium adsorption ratio ranges from 0.44 to 11 and the exchangeable sodium ratio ranges from 0.11 to 5. The estimated magnesium hazard fluctuated below 50%. The statistical analyses were accomplished in soil chemistry and discussed.  相似文献   

16.
The city of Burdur, which is built on an alluvium aquifer, is located in one of the most seismically active zones in southwestern Turkey. The soil properties in the study site are characterized by unconsolidated and water-saturated sediments including silty, clayey and sandy units, and shallow groundwater level is the other characteristic of the site. Thus, the city is under soil liquefaction risk during a large earthquake. A resistivity survey including 189 vertical electrical sounding (VES) measurements was carried out in 2000 as part of a multi-disciplinary project aiming to investigate settlement properties in Burdur city and its vicinity. In the present study, the VES data acquired by using a Schlumberger array were re-processed with 1D and 2D inversion techniques to determine liquefaction potential in the study site. The results of some 1D interpretations were compared to the data from several wells drilled during the project. Also, the groundwater level map that was previously obtained by hydrological studies was extended toward north by using the resistivity data. 2D least-squares inversions were performed along nine VES profiles. This provided very useful information on vertical and horizontal extends of geologic units and water content in the subsurface. The study area is characterized by low resistivity distribution (<150 Ωm) originating from high fluid content in the subsurface. Lower resistivity (3–30 Ωm) is associated with the Quaternary and the Tertiary lacustrine sediments while relatively high resistivity (40–150 Ωm) is related to the Quaternary alluvial cone deposits. This study has also shown that the resistivity measurements are useful in the estimation of liquefaction risk in a site by providing information on the groundwater level and the fluid content in the subsurface. Based on this, we obtained a liquefaction hazard map for the study area. The liquefaction potential was classified by considering the resistivity distributions from 2D inversion of the VES profiles, the types of the sediments and the extended groundwater level map. According to this map, the study area was characterized by high liquefaction hazard risk.  相似文献   

17.
DRASTIC indexing and integrated electrical conductivity (IEC) modeling are approaches for assessing aquifer vulnerability to surface pollution. DRASTIC indexing is more common, but IEC modeling is faster and more cost-effective because it requires less data and fewer processing steps. This study aimed to compare DRASTIC indexing with IEC modeling to determine whether the latter is sufficient on its own. Both approaches are utilized to determine zones vulnerable to groundwater pollution in the Nile Delta. Hence, assessing the nature and degree of risk are important for realizing effective measures toward damage minimization. For DRASTIC indexing, hydrogeological factors such as depth to aquifer, recharge rate, aquifer media, soil permeability, topography, impact of the vadose zone, and hydraulic conductivity were combined in a geographical information system environment for assessing the aquifer vulnerability. For IEC modeling, DC resistivity data were collected from 36 surface sounding points to cover the entire area and used to estimate the IEC index. Additionally, the vulnerable zones identified by both approaches were tested using a local-scale resistivity survey in the form of 1D and 2D resistivity imaging to determine the permeable pathways in the vadose zone. A correlation of 0.82 was obtained between the DRASTIC indexing and IEC modeling results. For additional benefit, the obtained DRASTIC and IEC models were used together to develop a vulnerability map. This map showed a very high vulnerability zone, a high-vulnerability zone, and moderate- and low-vulnerability zones constituting 19.89, 41, 27, and 12%, respectively, of the study area. Identifying where groundwater is more vulnerable to pollution enables more effective protection and management of groundwater resources in vulnerable areas.  相似文献   

18.
The objective of this study is to evaluate the effectiveness of DC resistivity surveys for imaging the wastewater percolation around the stabilization ponds in the Tenth of Ramadan City, the desert fringes of East Nile Delta, Egypt. Detailed resistivity surveys, including DC soundings and electrical resistivity tomography (ERT), were carried out along several profiles. Furthermore, synthetic modeling of ERT was designed to optimize the survey configurations and interpretation of the results. A 2D modeling of smoothness-constrained least-squares inversion scheme was applied to delineate the possible wastewater infiltration zones from oxidation ponds. Because the geoelectrical interpretation has a degree of non-uniqueness, the resistivity inversion was constrained using borehole lithological information and soil sample laboratory measurements. The DC inversion results indicate decreasing resistivity down to a depth of 15 m around waste disposal sites. The inferred soil zone close to the oxidation ponds was a mixture of sand, silt and clay. Moreover, the clay minerals were characterized by moderate swelling that could have reduced the vertical infiltration speed, causing wastewater seepage, especially around unlined disposal sites and open surface drains. Accordingly, the medium-to-low resistivity values can be attributed to wastewater leakage in clayey sand soil. Because the area slopes generally toward the northeast, the surface seepage was dominant in the shallow impermeable sandy clay subsoil. Therefore, measuring soil parameters is a complementary method to optimize resistivity interpretation, with potential for mitigating environmental hazards from wastewater leakage around disposal ponds.  相似文献   

19.
美国Sand Hills地区地下水数值模拟及水量平衡分析   总被引:11,自引:1,他引:11       下载免费PDF全文
利用地下水数值模型MODFLOW和非饱和带水平衡模型对处于半干旱半湿润沙丘地区(Sand Hills)地下水位进行了模拟,并分析了含水层补排水量,河流与地下水补排关系,以及区域水平衡过程。揭示了独特沙丘地形和土壤特性对地下水补排量的影响。模拟结果表明,入渗率大、非饱和带厚的沙丘有利于降水入渗补给,减少了地下水蒸散发损失。加上下覆含水层具有良好的地下水储水空间,是该地区储存丰富的地下水量,以维持河流稳定流量,供给众多湖泊和湿地的原因。该研究对我国地下水资源评价和生态环境脆弱地区水资源保护具有指导意义。  相似文献   

20.
Geological transition zones are noted to be problematic in groundwater potential and development, due to their erratic and complex nature as well as characteristic of the subsurface lithologies. There were several occurrences of reported borehole failures and dry wells in these zones in Nigeria as a result of very scanty information that could serve as database for studying its groundwater potential. This study was therefore designed to generate hydrogeophysical data that could serve as baseline information on the groundwater potential in the study. In addition, to also delineate various subsurface lithologies present. Electrical resistivity survey for geophysical investigation was carried out using vertical electrical sounding (VES) technique. A total of 150 VES stations were purposively probed using Schlumberger electrode array. The interpreted data were used to produce geoelectric subsurface lithologies and to draw the geological section across the entire area. Various subsurface lithologies with their resistivities (Ωm) were delineated for basement complex (BC), transition zone (TZ), and sedimentary terrain (ST). In BC were topsoil, weathered zone, and fresh bedrock and in TZ were topsoil, sandy, laterite/clay, dry sand, sandstone, and fresh bedrock delineated while in the ST, topsoil, lateritic and sandy clay, dry sand, and the sandstone were delineated. In conclusion, the groundwater potential of the study area is largely been affected by the topography and the nature/composition of the Abeokuta Group that underlie the sedimentary part of the study area and the presence of thick laterite/clay unit of the basement complex portion of the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号