首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The preliminary research results of vertical deformation dislocation model of GongheM S =6.9 earthquake show that, the causative structure is a hidden fault with strike N60°W, dipping S47°W, which lies near the current subsidence center of Gonghe basin. The rupture length and width are 30km and 14km, the upper and lower bound depth of the fault in width direction are 3km and 17km respectively. The maximum coseismic and preseismic vertical deformation of GongheM S =6.9 earthquake are 247mm and about 100mm. The reasons why there existed rapid postseismic uplift are also given a tentative discussion.  相似文献   

2.
利用Sentinel-1A卫星升降轨道数据和D-InSAR技术获得青海门源2022年1月8日MS6.9地震的同震形变场,并基于弹性半空间位错模型反演其震源参数,利用分布滑动模型确定断层面上的滑动分布。结果表明,2022年1月8日青海门源地震的同震形变场沿NWW-SEE方向分布;断裂带南缘升轨影像和降轨影像最大视距分别为61 cm和62 cm,断裂带北缘升轨影像和降轨影像最大视距地表形变量分别为43 cm和56 cm。InSAR同震形变场断裂尺度模型断层长30 km,宽18 km,最大滑移量3.5 m;断层滑动分布模型表明该地震为左旋走滑地震。结合冷龙岭断裂的运动特征和几何特征,初步确定此次MS6.9地震的发震断裂为冷龙岭断裂  相似文献   

3.
2021年5月21日晚21时48分,云南省大理州漾濞县(震中:25.67°N,99.87°E)发生M_S6.4地震,震源深度8 km。为快速获得此次地震同震形变场及断层几何参数,研究该次地震的发震构造等,文章基于震前、震后的sentinel-1A卫星升降轨SAR数据进行二轨法差分雷达干涉测量(DInSAR),并基于Okada弹性半空间位错模型反演断层几何参数。研究结果如下:(1)此次地震造成的同震形变场长约19 km,宽约20 km;(2)升轨雷达视线向最大形变约为8.2 cm,降轨雷达视线向最大形变约为8.7 cm;(3)地震断层走向为313.7°,倾角为87°,滑动角为175°,为右旋走滑型断层,最大滑动量为0.79 m,反演得出的地震矩为1.48×10~(18) N·m,矩震级为M_W6.1。在川滇块体向南挤出的构造背景下,块体西边界的维西—乔后断裂、红河断裂发生右旋走滑,本次地震便是维西—乔后断裂南段分支断裂右旋走滑活动的体现。  相似文献   

4.
2022年1月8日青海省海北州门源县发生MS6.9地震,震中距离2016年1月21日门源MS6.4地震震中约33km,两次门源地震均发生在冷龙岭断裂附近,但在震源机制、主发震断层破裂过程及地震序列余震活动等方面显著不同。针对两次门源地震序列的比较分析,对研究冷龙岭断裂及其附近区域强震序列和余震衰减特征等具有重要研究意义。通过对比分析2022年门源MS6.9地震和2016年门源MS6.4地震余震的时空演化特征,发现二者在震源过程和断层破裂尺度上存在明显差异,前者发震断层破裂充分,震后能量释放充分,余震丰富且震级偏高;而后者发震断层未破裂至地表,余震震级水平偏低。综合分析两次门源地震序列表现出来的差异性,认为其可能与地震发震断层的破裂过程密切相关,且同时受到区域构造环境的影响。  相似文献   

5.
2022年1月8日,青海省门源县发生MS6.9地震。使用青海、甘肃等区域数字台网所观测到的2009年1月1日—2022年2月8日间青海门源及周边地区(36°~39°N,101°~104°E)14 869次地震事件的地震观测资料,基于双差成像(TomoDD)方法进行重定位分析,结果表明:门源及周边地区地震震源深度较浅,主要集中在5~15 km深度范围,其中10 km附近分布最多。推断该深度区域为门源及周边地区的主要孕震区。基于地震重定位结果和主震区三维速度结构分别对2016年门源MS6.4地震和此次地震序列的发震机理进行分析对比,发现两次地震都位于高速异常体边缘,速度结构与断裂、地震序列吻合较好。2022年门源地震位于高速体的西端末梢位置,是该高速体受青藏高原东北缘顺时针应力作用导致的滑动产生的走滑型地震。  相似文献   

6.
2022年1月8日,青海省海北藏族自治州门源县发生MS6.9地震,震中位于青藏高原东北缘地区祁连—海原断裂带的冷龙岭断裂和托勒山断裂构造转换区域(37.77°N,101.26°E)。震后野外现场考察结果表明,此次地震形成的同震地表破裂带总长度约为26 km,整体走向NWW向,破裂性质以左旋走滑局部逆冲为主。断层错动造成的破坏形式以雁列式组合的张裂隙、张剪裂隙、挤压鼓包、断层陡坎等为主。其中,道河至硫磺沟段地表破裂最为强烈,规模大且连续性好,造成的震害最为显著,地表破裂规模向东、西两端逐渐衰减。破裂带穿过区域内多条河流,造成显著的冰面破裂变形,并沿河岸形成一系列的边坡崩塌、滚石等地质灾害。综合破裂带及震害规模分析,宏观震中位于道河至硫磺沟地区。  相似文献   

7.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic  相似文献   

8.
运用Sentinel-1A卫星数据和D-InSAR技术,获取2021-05-21云南漾濞M_S6.4地震的同震形变场。结果显示,漾濞地震同震形变场长轴近NW展布升降轨形变场符号相反,视线向最大沉降量和抬升量为0.1 m。InSAR同震形变场反演的滑动分布主要集中在沿走向2~12 km,倾向1~9 km的范围内,最大滑动量0.35 m,发震断层长9.8 km、宽4 km,滑动量主要集中在地下3~6 km范围内,滑动角-146.7°。同震位移场及滑动分布模型反映本次地震为发震断层的右旋走滑事件,地震破裂未达到地表。断层模型反演结果显示,矩震级为M_W6.1,发震断层以北西走向右旋走滑运动为主,初步认为本次M_W6.1地震发震断裂可能是一条NW向的维西—乔后断裂西侧的隐伏次生断裂。  相似文献   

9.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

10.
Conclusions The sequence of the November 29, 1999 Xiuyan, Liaoning, earthquake withM S=5.4 is relocated, and its rupture process is analyzed. Results are as follows: The rupture extended mainly before the January 12, 2000,M S=5.1 earthquake. There are two phases of rupture extending: The first phase was before the November 29, 1999,M S=5.4 earthquake, epicenters were situated within a small region with a dimension of about 5 km, and the focal depth increased. It shows that the rupture mainly extended from shallow part to deep in the vertical direction. The second phase was between theM S=5.4 earthquake and theM S=5.1 earthquake, earthquakes migrated along southeast, the focal depth decreased. It indicates that the rupture extended along southeast and from deep to shallow part. Foundation item: The Project of “Mechanism and Prediction of the Strong Continental Earthquake” (95-13-05-04). Contribution No. 01FE2017, Institute of Geophysics, China Seismological Bureau.  相似文献   

11.
On July 20, 1995, an earthquake of M L=4.1 occurred in Huailai basin, northwest of Beijing, with epicenter coordinates 40.326°N, 115.448°E and focal depth 5.5 km. Following the main shock, seismicity sharply increased in the basin. This earthquake sequence was recorded by Sino-European Cooperative Huailai Digital Seismograph Network (HDSN) and the hypocentres were precisely located. About 2 hours after the occurrence of the main shock, a smaller event of M L=2.0 took place at 40.323°N, 115.447°E with a focal depth of 5.0 km, which is very close to the main shock. Using the M L=2.0 earthquake as an empirical Green’s function, a regularization method was applied to retrieve the far-field source-time function (STF) of the main shock. Considering the records of HDSN are the type of velocity, to depress high frequency noise, we removed instrument response from the records of the two events, then integrated them to get displacement seismogram before applying the regularization method. From the 5 field stations, P phases in vertical direction which mostly are about 0.5 s in length were used. The STFs obtained from each seismic phases are in good agreement, showing that the M L=4.1 earthquake consisted of two events. STFs from each station demonstrate an obvious “seismic Doppler effect”. Assuming the nodal plane striking 37° and dipping 40°, determined by using P wave first motion data and aftershock distribution, is the fault plane, through a trial and error method, the following results were drawn: Both of the events lasted about 0.1 s, the rupture length of the first one is 0.5 km, longer than the second one which is 0.3 km, and the rupture velocity of the first event is 5.0 km/s, larger than that of the second one which is about 3.0 km/s; the second event took place 0.06 s later than the first one; on the fault plane, the first event ruptured in the direction γ=140° measured clockwise from the strike of the fault, while the second event ruptured at γ=80°, the initial point of the second one locates at γ=−100° and 0.52 km from the beginning point of the first one. Using far-field ground displacement spectrum measurement method, the following source parameters about the M L=4.1 earthquake were also reached: the scalar earthquake moment is 3.3×1013 N·m, stress drop 4.6 MPa, rupture radius 0.16 km. Contribution No. 99FE2022, Institute of Geophysics, China Seismological Bureau. This study is supported by the Chinese Joint Seismological Science Foundation (95-07-411).  相似文献   

12.
The postseismic vertical deformation rates of the 1990 Gonghe M S=7.0 earthquake appears to have decreased exponentially. Based on Okada’s coseismic surface displacement solution caused by a uniform fault slip in an elastic homogeneous half space, we derived its postseismic surface displacement by using a single-layer standard linear solid model, and further derived a simplified formula for determining the effective relaxation time and viscosity of the earth, which is independent of the dislocation parameters of the causative fault. From the postseismic vertical deformation of the 1990 Gonghe earthquake, we inferred that the effective relaxation time defined by τ=η/μ is 2.6 years, and the effective viscosity η is about 1018 Pa · s. This work was supported by Chinese Joint Seismological Science Foundation under the grants 92088 and 196098.  相似文献   

13.
Vertical coseismic deformation on non-causative fault caused by remote strong earthquakes(epicentral distance≥1500 km,MS≥7.0)are observed by fault-monitoring instruments of new type during recent two years.The monitor-ing result shows,delay time,maximum amplitude and duration of vertical deformation on the non-causative faulthave remarkable close relationship with earthquakes magnitude and epicentral distance.The delay time of verticalcoseismic deformation have positive linear relationship with epicentral distance.The velocity of coseismic defor-mation is 5.5 km/s,close to the velocity of surface wave in granite.The logarithms of maximum amplitude of co-seismic deformation and epicentral distance have remarkable linear relationship with magnitude.The greater themagnitude and the closer the epicentral distance are,the bigger the maximum amplitude of coseismic deformationon non-causative fault will be.Relative to the epicentral distance,the magnitude is the most important factor to theduration of coseismic vertical deformation on the non-causative fault.Stronger earthquake causes longer vibrationduration of coseismic deformation.The experiential equation of co-seismic deformation faults obtained by thiswork is significant on the coseismic deformation research.  相似文献   

14.
With the 2008 MS6.1 Panzhihua earthquake as a case study, we demonstrate that the focal depth of the main shock can be well constrained with two approaches: (1) using the depth phase sPL and (2) using full waveform inversion of local and teleseismic data. We also show that focal depths can be well constrained using the depth phase sPL with single broadband seismic station. Our study indicates that the main shock is located at a depth of 11 km, much shallower than those from other studies, confirming that the earthquake occurs in upper crust. Aftershocks are located in the depth range of 11-16 km, which is consistent with a ruptured near vertical fault whose width is about 10 km, as expected for an MS6.1 earthquake.  相似文献   

15.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, landslide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mechanism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic framework might be the main cause of the frequent occurrence of MS6.0~6.9 earthquakes in the area.  相似文献   

16.
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain M S=8.1 (M W=7.8) earthquake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The second stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position. Foundation item: Joint Seismological Science Foundation of China (103066) and Foundation of the Seismic Pattern and Digital Seismic Data Application Research Office of Institute of Earthquake Science of the China Earthquake Administration.  相似文献   

17.
2021年5月22日青海省果洛州玛多县发生M_S7.4地震。为探究本次地震的发震构造及余震分布特征,选取2021年5月1日—6月3日青海测震台网观测到的33°~36°N,97°~99.5°E空间范围内的地震观测报告,利用双差精定位方法进行双差精定位处理。重定位后整体残差平均减小了0.23,深度在5~25 km间随机分布。根据地震迁移方向和震区地质构造,认为本次地震的发震构造为昆仑山口—江错断裂,玛多—甘德东段受主震触发影响爆发一系列小震,两条断裂之间可能因为本次地震产生一定联系。本次地震产生新的断裂,突破了两条断裂之前的空区,连接到玛多—甘德断层,使两条断层交叉相连,形成新的断层构造。  相似文献   

18.
The October 21, 1766 earthquake is the most widely felt event in the seismic history of Trinidad and Venezuela. Previous works diverged on the interpretation of the historical data available for this event. They associated the earthquake either with the Lesser Antilles subduction zone, with strike-slip motion along El Pilar fault, or with intraplate deformation at the edge of Guyana shield. Isoseismal areas are proposed after a new search and analysis of primary and secondary sources of historical information. Two of the largest earthquakes of the twentieth century which occurred in the region, the 1968 (M S 6.4, h = 103 km), and the 1997 (M W 6.9, h = 25 km) events, for which both intensity data and instrumentally determined source parameters are available, are used to calibrate the isoseismal areas and to interpret them in terms of source depth and magnitude. It is concluded that the large extent of intensity values higher than V is diagnostic of the depth (85 ± 20 km) of the 1766 source, and of local amplifications of ground motion due to soft soil conditions and to strong contrasts of impedance at the edge of Guyana shield. It is proposed that the event occurred either in slab, or close to the bottom lithospheric interface between the Caribbean and South American plates (∼11°N; ∼62.5°W). The value of the magnitude is estimated at 6.5 < M S < 7.5 depending on the source depth and on the decay of ground motion as a function of distance. Deep and intermediate depth earthquakes can induce important casualties in Trinidad, Venezuela, and Guyana, possibly more damaging than those induced by shallower earthquakes along the strike of El Pilar Fault.  相似文献   

19.
The Akto M_S6. 7 earthquake occurred near the western end of the Muji fault basin in the top of the Pamir syntaxis. The main shock of this earthquake is complicated and the focal mechanism solutions based on the seismic wave inversions are different. Based on the Sentinel-1 SAR data,the coseismal deformation field of the earthquake is obtained by In SAR technique. Based on the elastic half-space dislocation model,the geometrical parameters and the slip distribution model are determined by nonlinear and linear inversion algorithms. The results show that the distributed slip model can well explain the coseismic deformation field. The earthquake includes at least two rupture events,which are located at 7 km(74. 11°E,39. 25°N)and 33 km(74. 49°E,39. 16°N)east from the epicenter according to the CENC. The deformation field caused by the earthquake shows a symmetry distribution,with the maximum LOS deformation of 20 cm. The main seismic slip is concentrated in the 0-20 km depth,and the maximum slip is 0. 84 m. The seismic fault is the Muji fault,and this earthquake indicates that the northeastward push of the Indian plate is enhanced.  相似文献   

20.
1990年共和7.0级地震的发震构造讨论   总被引:2,自引:0,他引:2       下载免费PDF全文
根据地质、地震及形变资料研究了1990年4月青海省共和MS7.0地震的发震构造.认为NWNWW向的哇玉香卡拉干逆冲盲断裂是该次地震的发震构造.其地表形变以褶皱隆起为主.因此,共和地震是一次典型的“盲断裂褶皱地震”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号