首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
塔尔湾断裂活动时代厘定及地貌陡坎成因分析   总被引:4,自引:2,他引:2  
阿尔金断裂东段北侧发育了多条NW向断裂,塔尔湾断裂是其中规模最大的塔尔湾-登登山-池家刺窝断裂的西段。该断裂总体走向NW,长约10km,在卫星影像上为一笔直的线性陡坎,地貌上为高几十cm至5m的地形陡坎。陡坎倾向NE,组成陡坎的地层主要有早更新世砾岩和全新世风积砂土等。通过地形剖面测量得到,由全新世风积砂组成的地貌陡坎高5m左右,由早更新世砾岩组成的地貌陡坎高1m左右。垂直地貌陡坎开挖的探槽揭示出,塔尔湾断裂为SW倾的逆断层,表现为新近纪泥岩逆冲于早更新世砾岩之上,断距为0.5m左右。全新世风积砂及晚更新世戈壁砾石层覆盖于断层之上,没有被错断。断裂上盘为新近纪泥岩,富含地下水,因此植被较发育;由于植被的保护及固砂作用,风积砂不断堆积并保存下来,风积沙层逐渐增高。下盘除地表有几十cm厚的戈壁砾石层外,下部均为胶结坚硬的早更新世砾岩,不含地下水,植被不发育。全新世风积砂土只发育在塔尔湾断裂上盘,下盘没有全新世地层发育;早更新世砾岩上的地貌陡坎高度远远小于全新世风积砂土上地貌陡坎的高度。这些都表明由全新世风积砂组成的地貌陡坎不是断裂活动形成的,而是外动力作用造成的。因此,塔尔湾断裂是一条早中更新世逆断裂。  相似文献   

2.
花海断裂是位于河西走廊西端阿尔金断裂系北侧花海盆地内的一条活动断裂,对该断裂活动性的认识不仅有助于评估该区的地震危险性,而且对深入理解青藏高原向北扩展过程中块体相互作用具有重要的科学意义。遥感解译与地震地质调查表明,花海断裂仅局限于花海盆地内,长度约25 km。断裂走向NNW,南端起自花海镇以南,向北经小泉、大泉、双泉子后穿过山水河,向北逐渐消失在北山山前大型冲积扇前。地貌上,花海断裂南部表现为线性延伸的断层陡坎,北段构成了风成砂丘与冲洪积扇的界线。在断裂北段跨断层陡坎进行了探槽开挖,探槽揭露和光释光年代学测试结果表明,该断裂最新一次古地震事件的时间距今约5万年,全新世以来没有明显的活动迹象,为晚更新世活动断裂。结合陡坎位错分析,花海断裂晚第四纪以来垂直滑动速率小于0.03 mm/a。区域大地构造动力学背景分析表明,花海断裂是在青藏高原向北扩展作用下盆地内形成的次一级活动断裂,是高原外围块体对青藏高原向外扩展的响应。  相似文献   

3.
通常认为甘肃北山是构造稳定区,不发育活动断裂,近年来新发现的俄博庙活动断裂挑战了这一传统认识,深入研究该断裂的新活动特征和活动速率,对于重新认识北山地区的新构造活动以及青藏高原和阿拉善块体的相互作用等问题具有重要意义。文中基于卫星影像解译、探槽开挖、差分GPS和无人机摄影测量、光释光测年等成熟的活动构造研究方法,定量研究了俄博庙断裂的新活动特征,得到以下认识:首先,文中完善了俄博庙断裂的几何展布,将断裂长度由约20km延长至45km,根据破裂长度与震级的经验关系推断俄博庙断裂具有发生7级地震的能力;其次,查明了断层陡坎的形态和成因,发现正向陡坎和反向陡坎交替发育,反向陡坎的高度为(0.22±0. 02)~(1.32±0. 1) m,正向陡坎的高度为(0.33±0. 1)~(0.64±0. 1) m,反向陡坎受由南向北低角度逆冲的断层控制,断层倾角为23°~86°,正向陡坎受倾向S的高角度正断层控制,断层倾角为60°~81°;另外,断层的左旋走滑比倾滑更显著,西段19条冲沟的左旋位移为(3.8±0. 5)~(105±25) m,根据其中最典型的一条冲沟的阶地陡坎的左旋位移量(16.7±0. 5) m和上阶地年龄(11.2±1. 5) ka,得到俄博庙断裂晚更新世末以来的左旋滑动速率为(1.52±0. 25) mm/a。晚新生代以来,在青藏高原NE向扩展的构造背景下,俄博庙断裂的新活动特征可能响应了青藏高原与阿拉善块体之间的相对剪切分量。  相似文献   

4.
祁连山北缘玉门-北大河断裂晚第四纪活动特征   总被引:3,自引:2,他引:1       下载免费PDF全文
通过卫星影像解译、野外实地调查并结合前人研究成果,对位于祁连山北缘的玉门—北大河断裂晚第四纪构造活动特征进行研究。结果表明,玉门—北大河断裂为一条全新世活动的逆冲断裂,该断裂西起玉门青草湾,向东经老玉门市、大红泉止于骨头泉,全长约80km,整体走向NWW。根据断裂的几何结构及活动习性可将其分为三段:东段构造形态简单连续,为逆冲断层陡坎为主的古地震地表破裂带;中段结构复杂,由多条次级断层组成,以逆冲扩展为主;西段未出露地表而成为盲断裂-褶皱带。通过对断层陡坎差分GPS测量及相应地貌面年代测试,得到断裂晚更新世以来逆冲速率约为(0.73±0.09)mm/a。  相似文献   

5.
大河沿—洛包泉活动断裂带由 7条活断裂呈左阶雁列式排列 ,其中东盐池、七角井、托莱泉活断裂在平面上也呈左阶排列。沿断裂分布有古地震断层陡坎。东盐池断裂具有左旋逆冲性质。断层陡坎高 0 .6— 4 .5 m,断坎坡角为 2 6°— 2 8°,断裂垂直断距 1m,冲沟左错 10— 11.5 m,其垂直平均活动速率为 0 .18mm / a,水平平均活动速率为 1.31— 2 .0 2 mm/ a,为全新世中、晚期活动断裂。七角井断裂具有左旋逆冲或左旋逆走滑性质 ,断层陡坎高为 0 .75— 8.3m ,断坎坡角为 14°— 2 1°,左错为2 .5— 6 .5 m,垂直平均活动速率为 0 .15— 0 .17mm/ a,水平平均活动速率为 0 .35— 0 .4 9mm/ a。该断裂为全新世中、晚期活动断裂。托莱泉断裂具有逆冲性质。断层陡坎西段高为 0 .75— 4 m,坡角为19°— 2 0 .5°;东段高为 3— 12 m,坡角为 10°— 2 9°,垂直平均活动速率为 0 .2 5 mm/ a。该断裂为晚更新世晚期活动断裂  相似文献   

6.
昌马盆地为祁连山西端的山间盆地,前人一直关注其周边断裂(如昌马断裂)的构造变形,盆地内部变形则鲜有研究。基于遥感解译和野外考察、探槽开挖、差分GPS和放射性碳(14C)测年等方法,发现昌马盆地西北部的一条活动断层。断层长约4 km,总体走向NEE,倾向SE,倾角陡立,断层地貌表现为陡坎、复陡坎、断层沟槽等,陡坎高度0~5.6 m,由WS向NE逐渐增大。断层运动性质以正断为主,最新活动时代为全新世,并识别出2期古地震事件:6 670~6 885 a B.P.和26 330~26 915 a B.P.。研究结果表明,在青藏高原东北缘向NE方向挤压扩展的背景下,祁连山造山带发生NW-SE向伸展,导致其西端受到SE向拉张作用而形成正断层。  相似文献   

7.
昌马断裂位于祁连山西段,是祁连山系列次级断裂与阿尔金断裂东段的重要构造转换断层之一,于1932年发生7.6级地震。位于昌马断裂中东段的臭水柳沟古地震探槽揭示了2次地震事件:一次为1932年昌马地震事件,另一次为(902±44)a B.P.以来发生的事件,这弥补了昌马断裂全新世晚期古地震事件缺失的现状。结合前人的研究结果可确定昌马断裂全新世至少发生7次古地震事件,推测地震复发间隔为1ka左右,部分事件未能揭示。通过探槽揭示的低角度断层、地层变形和部分断裂的地貌特征可知,受阿尔金断裂NEE向挤出的影响,昌马断裂部分段落表现出低角度的逆冲推覆活动,形成其特有的低角度走滑现象,以吸收阿尔金断裂东段的左旋位移。这也说明昌马断裂在承担阿尔金断裂与祁连山西段系列断层的构造转换中起着重要作用。  相似文献   

8.
庞炜  何文贵  张波 《地震研究》2019,42(1):120-132,I0002
临泽断裂在地貌上可见3条断层陡坎,总体走向NNW,最长约8 km,东侧和中间陡坎主体倾向E,西侧陡坎倾向W。①利用差分GPS对3条断层陡坎进行了详细的测量,发现临泽断层陡坎较低,局部发育多级断层陡坎,坡角较缓,高度几十厘米至1米多;②在临泽断裂上选取4个探槽剖面进行古地震分析、样品采集和年代测试,发现东侧和中间的断层陡坎为正断层所控制,西侧的断层陡坎为逆断层所控制;③探槽开挖揭露出晚更新世晚期以来,临泽断裂上发生过4次古地震事件,时间分别为(8 895±125)a B.P.之前、(7 245±75)a B.P.~(6 190±20)a B.P.、(5120±20)a B.P.~(4.8±0.5)ka和(2 550±50)a B.P.~(2 326±64)a;④全新世以来可以确定3次事件,较早一次事件与榆木山北缘断裂上较早一次古地震事件时间比较吻合,说明临泽断裂可能是榆木山断裂向河西走廊内部继续活动的延伸;最后一次古地震事件的离逝时间约为2 500 a,表明临泽断裂全新世活动一直比较强烈。  相似文献   

9.
青藏高原北缘三危山断裂晚更新世活动特征   总被引:1,自引:0,他引:1  
三危山断裂位于青藏高原北缘,属于阿尔金断裂带向NW扩展的分支断裂,其最新的构造活动反映了青藏高原北部地区的构造演化及地震活动特征。文中通过遥感影像解译、野外实地调查和地质填图,对该断裂晚第四纪构造活动特征进行了研究。结果表明,三危山断裂发育于三危山西北麓,长约175km,断裂以左旋走滑为主,兼有逆断层性质,局部表现出正断层特征。其构造活动的地貌表现形式主要有:基岩陡坎、断层沟槽以及山包、冲沟左旋等。古地震探槽开挖揭示三危山断裂主要断错晚更新世地层,在距今(40.3±5.2)~(42.1±3.9)ka有过1次古地震活动,为1条晚更新世活动断裂。  相似文献   

10.
阿拉善地块南缘地处青藏高原东北缘地壳扩展前锋带的北侧,对该地区活动断裂晚第四纪的运动性质、滑动速率等开展研究,有助于理解阿拉善地块的晚第四纪构造变形特征及其对青藏高原向N扩展的响应。文中结合遥感影像解译与野外地质地貌考察,对阿拉善地块南缘的北大山断裂进行了分段和活动性研究。结果表明,北大山断裂左旋走滑断错晚第四纪洪积扇和阶地等地貌,形成显著的位错阶地坎、冲沟以及断层陡坎。通过对断错地貌线等标志的测量、复原、统计分析等,发现断裂的地貌位移值分布于3~20m,发育新鲜断层自由面的断层陡坎和左旋错动的纹沟指示了断层的最新一次活动。基于同期洪积扇年龄估算得到北大山断裂晚更新世以来的左旋滑动速率为0.3~0.6mm/a。北大山断裂的运动学特征与区域NE向应力场一致,可能受到了青藏高原NE向扩展的影响。  相似文献   

11.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

12.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.  相似文献   

13.
The sinistral strike-slip characteristic of the Altyn Tagh Fault gradually disappears near the Jiuxi Basin at the west end of Hexi Corridor, and the Kuantanshan Fault and the northern marginal fault of Heishan on its east are thrust structures. There are two faults distributed in the north of Kuantanshan, namely, the Taerwan-Chijiaciwo Fault and the Ganxiashan Fault, both are featured with obvious activity. Predecessors thought that the Taerwan-Chijiaciwo Fault is a thrust fault with low movement rate, but there is few detailed study on its horizontal motion. Is there horizontal strike-slip movement in the northern marginal fault of Kuantanshan? This issue has an important significance to further explore the structural transformation mode between the Altyn Tagh strike-slip faults and the northern thrust faults in the north margin of Qilianshan. Using high resolution remote sensing images and field work, such as combining with UAV SfM photogrammetry, the paper studies the strike-slip characteristics of the Taerwan-Chijiaciwo Fault and Ganxiashan Fault on the northern margin of Kuantanshan, and get two preliminary understandings:(1) The northern marginal fault of Kuantanshan is an active right-lateral strike-slip fault with thrust component, the horizontal to vertical dislocation ratio is about 3-4 times. Based on the statistics of dislocation amount of the gullies and terraces along the north marginal Kuantanshan fault, it is preliminarily estimated that the late Pleistocene right-lateral strike-slip rate is about 0.2-0.25 mm/a and the Holocene right-lateral strike-slip rate is about 0.5-1.5 mm/a. (2) The main driving force to the tectonics at the western end of Hexi Corridor, where the northern marginal fault of Kuantanshan locates, comes from the northward extrusion of the Qilian Mountains, which results in the right-lateral strike-slip of the northern marginal fault of Kuananshan and the thrust movement of several faults inside the Jiuxi Basin. The effect of the Altyn Tagh Fault on other tectonic structures is not obvious in this region.  相似文献   

14.
In this study, we described a 14km-long paleoearthquakes surface rupture across the salt flats of western Qaidam Basin, 10km south of the Xorkol segment of the central Altyn Tagh Fault, with satellite images interpretation and field investigation methods. The surface rupture strikes on average about N80°E sub-parallel to the main Altyn Tagh Fault, but is composed of several stepping segments with markedly different strike ranging from 68°N~87°E. The surface rupture is marked by pressure ridges, sub-fault strands, tension-gashes, pull-apart and faulted basins, likely caused by left-lateral strike-slip faulting. More than 30 pressure ridges can be distinguished with various rectangular, elliptical or elongated shapes. Most long axis of the ridges are oblique(90°N~140°E)to, but a few are nearly parallel to the surface rupture strike. The ridge sizes vary also, with heights from 1 to 15m, widths from several to 60m, and lengths from 10 to 100m. The overall size of these pressure ridges is similar to those found along the Altyn Tagh Fault, for instance, south of Pingding Shan or across Xorkol. Right-stepping 0.5~1m-deep gashes or sub-faults, with lengths from a few meters to several hundred meters, are distributed obliquely between ridges at an angle reaching 30°. The sub-faults are characterized with SE or NW facing 0.5~1m-high scarps. Several pull-apart and faulted basins are bounded by faults along the eastern part of the surface rupture. One large pull-apart basins are 6~7m deep and 400m wide. A faulted basin, 80m wide, 500m long and 3m deep, is bounded by 2 left-stepping left-lateral faults and 4 right-stepping normal faults. Two to three m-wide gashes are often seen on pressure ridges, and some ridges are left-laterally faulted and cut into several parts, probably owing to the occurrence of repetitive earthquakes. The OSL dating indicates that the most recent rupture might occur during Holocene.
Southwestwards the rupture trace disappears a few hundred meters north of a south dipping thrust scarp bounding uplifted and folded Plio-Quaternary sediments to the south. Thrust scarps can be followed southwestward for another 12km and suggest a connection with the south Pingding Shan Fault, a left-lateral splay of the main Altyn Tagh Fault. To the northeast the rupture trace progressively veers to the east and is seen cross-cutting the bajada south of Datonggou Nanshan and merging with active thrusts clearly outlined by south facing cumulative scarps across the fans. The geometry of this strike-slip fault trace and the clear young seismic geomorphology typifies the present and tectonically active link between left-lateral strike-slip faulting and thrusting along the eastern termination of the Altyn Tagh Fault, a process responsible for the growth of the Tibetan plateau at its northeastern margin. The discrete relation between thrusting and strike-slip faulting suggests discontinuous transfer of strain from strike-slip faulting to thrusting and thus stepwise northeastward slip-rate decrease along the Altyn Tagh Fault after each strike-slip/thrust junction.  相似文献   

15.
The Sanweishan fault is located in the northern margin of the Tibetan plateau. It is a branch of the Altyn Tagh fault zone which extends to the northwest. A detailed study on Late Quaternary activity characteristics of the Sanwei Shan Fault can help understanding the strain distribution of the Altyn Tagh fault zone and regional seismic activity and northward growth of the Tibetan plateau. Previous research on this fault is insufficient and its activity is a controversial issue. Based on satellite images interpretation, field investigations and geological mapping, this study attempts to characterize this feature, especially its activity during Late Quaternary. Trench excavation and sample dating permit to address this issue, including determination of paleoseismic events along this fault. The results show that the Sanweishan fault is a large-scale active structure. It starts from the Shuangta reservoir in the east, extending southward by Shigongkouzi, Lucaogou, and Shugouzi, terminates south of Xishuigou, with a length of 175km. The fault trends in NEE, dipping SE at angles 50°~70°. It is characterized by left-lateral strike-slip with a component of thrust and local normal faulting. According to the geometry, the fault can be divided into three segments, i.e. Shuangta-Shigongkouzi, Shigongkouzi-Shugouzi and Shugouzi-Xishuigou from east to west, looking like a left-or right-step pattern. Plenty of offset fault landforms appear along the Sanweishan Fault, including ridges, left-lateral strike-slip gullies, fault scarps, and fault grooves. The trench study at the middle and eastern segments of the fault shows its activity during Late Pleistocene, evidenced by displaced strata of this epoch. Identification marks of the paleoearthquakes and sample dating reveal one paleoearthquake that occurred at(40.3±5.2)~(42.1±3.9) ka.  相似文献   

16.
阿尔金断裂带东段距今20ka以来的滑动速率   总被引:13,自引:6,他引:13       下载免费PDF全文
王峰  徐锡伟  郑荣章 《地震地质》2003,25(3):349-358
阿尔金断裂带作为青藏高原北部边界 ,其走滑量和走滑速率一直为地学界所关注 ,对这样一条大陆内部巨型走滑断裂带的滑动速率进行研究 ,对于了解阿尔金断裂带左旋走滑和青藏高原北部隆升之间的耦合关系 ,具有重要意义。在阿尔金断裂带东段的疏勒河口以西 ,阿尔金断裂错断了几条规模相近的河流阶地和洪积扇 ,形成典型的走滑断层断错地貌。通过对这些典型断错地貌点的地貌观测和年代学研究 ,得到阿尔金断裂带东段石堡城以东疏勒河以西自 2 0kaBP以来的滑动速率约为 4~ 5mm/a。自 50kaBP以来 ,阿尔金断裂带东段断层平均滑动速率具有较高的时间、空间一致性 ,约为 4~ 6mm/a ,表明利用河流阶地和洪积扇位错作为断层走滑位移标志计算断层滑动速率 ,具有较高的可信度  相似文献   

17.
The Yumen Fault lies on the west segment of the north Qilian Fault belt and adjacent to the Altyn-Tagh Fault,in the north margin of the Tibet Plateau.The tectonic location of the Yumen fault is special,and the fault is the evidence of recent activity of the northward growth of Tibetan plateau.In recent twenty years,many researches show the activity of the Yumen Fault became stronger from the early Pleistocene to the Holocene.Because the Yumen Fault is a new active fault and fold belt in the Qilian orogenic belt in the north margin of the Tibet Plateau,it is important to ascertain its slip rate and the recurrence interval of paleoearthquakes since the Late Pleistocene.Using the satellite image interpretation of the Beida river terrace,the GPS measurement of alluvial fans in front of the Yumen Fault and the trench excavation on the fault scarps,two conclusions are obtained in this paper.(1) The vertical slip rate of the Yumen Fault is about 0.41~0.48mm/a in the Holocene and about 0.24~0.30mm/a in the last stage of the late Pleistocene.(2) Since the Holocene epoch,four paleoearthquakes,which happened respectively in 6.12~10.53ka,3.6~5.38ka,1.64~1.93ka and 0.63~1.64ka,ruptured the surface scarps of the Yumen Fault.Overall,the recurrence interval of the paleoseismic events shortens gradually and the activity of the Yumen Fault becomes stronger since the Holocene.Anther characteristic is that every paleoearthquake probably ruptured multiple fault scarps at the same time.  相似文献   

18.
本文利用"中国地震科学台阵探测——南北地震带北段"项目在内蒙古阿拉善西部及甘肃西北部地区布设的80个流动宽频带地震仪及16个固定台站,于2013年10月—2015年6月所记录的787个远震事件,采用波形相关方法拾取了共49052个高质量的P波走时残差数据,并利用Fast-Marching远震走时层析成像方法,反演获取了研究区下方的三维P波速度结构.结果显示:阿尔金断裂带东段、祁连山、北山地区下方地壳结构表现为低速异常特征,具有明显的造山带构造特征;阿拉善地体下方地壳结构表现为高速异常特征,为典型的大陆地壳结构特征;阿拉善地块沿着青藏高原北边界逆冲断裂(NBT)南向俯冲,其在祁连山造山带下与北向俯冲的柴达木岩石圈形成了面对面的碰撞接触关系;阿尔金断裂带的末端并没有北东向延伸到阿拉善块体,而是受到刚性的阿拉善岩石圈阻挡沿着其南缘断裂带继续向东发展.  相似文献   

19.
1985年乌恰7.4级地震形变带   总被引:3,自引:1,他引:3       下载免费PDF全文
1985年乌恰7.4级地震在克孜勒苏河谷阶地上出现地表形变带,主要由地震陡坎、地震断层、地裂缝与挤压脊等形迹组成。长约15公里,最宽达800米。分布形态为一向东北突出的弧形形变带。逆断层走向近东西,倾向160°—210°,倾角30°左右,最大水平倾向断距约2米。正走滑断层走向340°—350°,倾向北东,倾角80°—88°,最大右旋水平位错为1.55米。走滑逆断层走向为280°—305°。倾向西南,倾角30°左右,最大右旋水平位移1.25米。挤压脊多呈东西向分布,最大缩短距离为0.4米  相似文献   

20.
古地震研究是构造地质基础研究工作之一,获得较为精细的古地震结果有利于提高对断层构造变形的样式、强度以及时间的认识。焉耆盆地是南天山东段的山间盆地,现今的构造应力场特征以挤压兼有走滑为主。盆地南北缘断裂均为全新世活动断裂,南缘开都河断裂以走滑运动为主。盆地北缘断裂向盆内扩展的新生和静逆断裂-褶皱带以逆冲运动为主,且具备发生7级以上大地震的能力。因此,对于焉耆盆地北缘和静逆断裂-褶皱带的古地震破裂方式和发生时间的研究具有重要意义。调查发现,其中的哈尔莫敦背斜南翼主逆断裂以30°左右向盆内逆冲,在河漫滩和T1阶地上形成了3排断层陡坎。在3条断层陡坎上开挖的5个探槽中,通过标志地层建立的时间序列可以确定6次古地震事件的先后关系。利用14C和光释光(OSL)测年手段获得了探槽中相关地层和坎前堆积物的沉积时代,利用逐次限定法得到了各次古地震事件的发生时间和全新世以来2ka左右的古地震复发间隔。结果显示F1断层在所有的古地震事件中都发生了破裂,F2断层只在事件E时产生了破裂,F3断层只在事件D和事件E中发生过破裂。从古地震事件上分析,事件D是一次3条断层同时破裂的事件,事件E是一次F1和F32条断层同时破裂的事件,其他事件都只在F1断层上破裂。和静逆断裂的古地震破裂同时存在必然性和不确定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号