首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

2.
The present study explored ontogenetic shifts in habitat associations by coral reef fishes between recently settled juvenile and adult life stages (Moorea Island: Tiahura and Papetoai sites). Visual censuses highlighted four ontogenetic patterns in habitat associations: (1) no change in habitat associations between the juvenile and adult stages; (2) a decrease in the number of habitats used by adults compared to juveniles; (3) an increase in the number of habitats used during the adult stage; and (4) use of nursery areas by juveniles followed by an extensive movement to an entirely different adult habitat. The comparative analysis of spatial distribution of fish at Tiahura and Papetoai highlighted no-spatial variability in ontogenetic patterns (i.e., 10 of the 15 recorded species have spatial consistency in ontogenetic patterns). Overall, the shifts in habitat associations are of interest in the perspective of understanding flexibility and adaptation capability of coral reef fish, at least at the settlement time.  相似文献   

3.
Understanding the connectivity of fish among different typical habitats is important for conducting ecosystembased management, particularly when designing marine protected areas(MPA) or setting MPA networks. To clarify of connectivity among mangrove, seagrass beds, and coral reef habitats in Wenchang, Hainan Province,China, the fish community structure was studied in wet and dry seasons of 2018. Gill nets were placed across the three habitat types, and the number of species, individuals, and body size of individual fish were recorded. In total, 3 815 individuals belonging to 154 species of 57 families were collected. The highest number of individuals and species was documented in mangroves(117 species, 2 623 individuals), followed by coral reefs(61 species,438 individuals) and seagrass beds(46 species, 754 individuals). The similarity tests revealed highly significant differences among the three habitats. Approximately 23.4% species used two habitats and 11.0% species used three habitats. A significant difference(p0.05) in habitat use among eight species(Mugil cephalus, Gerres oblongus, Siganus fuscescens, Terapon jarbua, Sillago maculata, Upeneus tragula, Lutjanus russellii, and Monacanthus chinensis) was detected, with a clear ontogenetic shift in habitat use from mangrove or seagrass beds to coral reefs. The similarity indices suggested that fish assemblages can be divided into three large groups namely coral, seagrass, and mangrove habitat types. This study demonstrated that connectivity exists between mangrove–seagrass–coral reef continuum in Wenchang area; therefore, we recommend that fish connectivity should be considered when designing MPAs or MPA network where possible.  相似文献   

4.
Habitat choice of reef fish larvae at settlement is one of the mechanisms proposed to explain spatial patterns in the distribution of fishes and the corresponding spatial structure of communities. Field experiments using Pomacentridae were conducted at Iriomote Island, southern Japan, in order to determine if rare recruitment of coral reef fishes in seagrass beds is due to larval settlement preference. When three types of natural patch treatments (branching coral patch, seagrass patch, and control without patches) were established in cleared seagrass squares in the center of a seagrass bed, four pomacentrid species, Amblyglyphidodon curacao, Dischistodus prosopotaenia, Cheiloprion labiatus, and Dascyllus aruanus, recruited exclusively onto the coral patches, indicating that larvae distributed in the seagrass bed may have preferred a coral rather than seagrass substrate as a settlement habitat. The effects of differences in physical shape (grid structure for branching coral vs. vertical structure for seagrass leaves) and rigidity (rigid substrate for coral vs. flexible substrate for seagrass) between coral and seagrass substrates on such recruitment patterns were investigated using artificial coral and seagrass units. When artificial habitat units with predator exclusion cages were established in the cleared seagrass squares as above, high densities of A. curacao and D. prosopotaenia recruits were observed on the rigid rather than flexible habitat units (both unit types having similar shape), whereas differences in recruit numbers of the two species were unclear in differently shaped units. These results demonstrated that even though pomacentrid larvae are distributed in the seagrass bed, they do not settle on the seagrass substrate owing to their habitat choice being partially based on a preference for substrate rigidity. Moreover, non-recruitment of C. labiatus and D. aruanus on artificial habitat units suggested that the presence of living coral substrates rather than physical shape/rigidity of substrates are an important cue for habitat choice of these fishes.  相似文献   

5.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   

6.
随着沿海地区社会和经济活动不断增加,在人类活动和全球气候变化的双重压力下,全球珊瑚礁生态健康状况日益衰退。如何有效地监测珊瑚礁生态系统,使管理部门能够及时采取保护措施防止珊瑚礁生态系统的退化,已成为拥有珊瑚礁资源的国家亟需解决的环境问题。各主要国家均在大力发展珊瑚礁监测技术与装备。文中综述了国内外在珊瑚礁生态系统监测技术方面的研究现状,基于前人提出的原位在线监测技术,在南海某岛礁海域建设了珊瑚礁生态环境原位在线监测系统,并进行了1年多的业务化运行。在业务化运行期间,原位在线监测系统成功监测到了珊瑚礁的"白化-死亡-微藻附着-珊瑚骨骼腐烂-大型藻占领"这一退化过程,表明该监测系统能够实现珊瑚礁的长期、实时、连续监测。本文研究对于进一步认识珊瑚礁生态系统的时间变化特征及其影响机制均具有重要意义。  相似文献   

7.
Certain biodiversity patterns on coral reefs are generally consistent but we still lack fundamental insight into how assemblages vary across spatially heterogeneous reef systems. We compared fish, coral, and sponge assemblages across a symmetrical physiographical gradient (windward forereef, lagoon patch reef, leeward forereef) of the Glover's Reef atoll, Belize. Species richness of fishes and corals was highest in the deep habitat (15 m) on the windward forereef. Sponges were diverse and abundant on both deep windward and leeward forereefs but not on the exposed shallow (5 m) windward forereef. Fish and benthic assemblages were relatively distinct in each reef zone, with the lagoon patch reef communities consisting of a combination of leeward and windward species. Nevertheless, there were no clear patterns in community similarity matrices of fish and benthic assemblages, suggesting that overall coral and sponge assemblages had weak or no direct association with patterns in fish assemblages. A closer examination of fish trophic groups indicated that planktivores and predators were predictably associated with depth, whereas herbivores were associated with shallow protected reefs. None was specifically associated with spatial location along the atoll gradient. These patterns of diversity distribution are important for identifying spatial conservation priorities. A Marine Protected Area (MPA) at Glover's Reef encompasses substantial windward forereef and patch reef habitats. A much lesser extent of protection is afforded the leeward forereef that supports faunal assemblages that are unique and productive, if not as diverse as the windward forereef. Isolated coral atolls can serve as ideal systems to study spatial heterogeneity and biodiversity patterns, but more experimental studies are needed to reveal the mechanistic processes underlying these patterns.  相似文献   

8.
Tropical shallow-water habitats such as mangroves and seagrass beds are widely acknowledged as important juvenile habitats for various coral reef fish species, most of which are commercially important to fisheries. Spatio-temporal variability in ontogenetic habitat use by fish among these tropical coastal ecosystems has rarely been investigated, yet there are sufficient reasons to believe that this plays an important role. In the present study, we test the spatio-temporal variability in patterns of ontogenetic habitat use by some mangrove/seagrass-associated coral reef fishes (Lethrinus harak, Lethrinus lentjan, Lutjanus fulviflamma and Siganus sutor). Abundances of these four species were investigated during two years in Tanzanian coastal waters, using underwater visual census in mangrove, seagrass, shallow and deep mudflat, and shallow and deep coral reef habitats. The study covered four distinct seasons of the year and was done at two spatially separated (>40 km) locations. Averaged across locations, seasons and years, juveniles (≤10 cm length) of the four study species had significantly higher relative densities in shallow-water (mangroves and seagrass beds) than in deep-water habitats (deep mudflats or coral reefs), whereas the opposite pattern was found for the adults (>15 cm). These findings suggest a strong and general pattern of ontogenetic habitat shifts from shallow- to deep-water habitats. However, specific habitat-use patterns of juveniles as well as adults differed significantly in time and space. Various species showed subtle to considerable flexibility in juvenile as well as adult habitat use across seasons, years, or at different locations. Furthermore, for some species the data suggest presence of ontogenetic habitat shifts at one location but lack thereof at the other location. In summary, ontogenetic habitat use needs to be considered at various spatial and temporal scales for the interpretation of habitat utilization by fish during different life stages. This is important for conservation and management of these habitats, as essential habitats or seasons may be ignored or over-emphasized with respect to their importance for fish during different parts of their life cycle.  相似文献   

9.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

10.
Deep-sea or cold-water corals form substantial habitat along many continental slopes, including the southeastern United States (SEUS). Despite increasing research on deep coral systems and growing appreciation of their importance to fishes, quantitative data on fish communities occupying these ecosystems are relatively lacking. Our overall goals were to document the fish species and their relative abundances and to describe the degree of general habitat specificity of the fishes on and around deep coral habitats on the SEUS slope. From 2000 to 2006, we used the Johnson-Sea-Link (JSL) submersible (65 dives, 366–783 m), supplemented with otter trawls (33 tows, 365–910 m) to document fishes and habitats from off North Carolina to east-central Florida. Eight areas with high concentrations of deep-sea corals were surveyed repeatedly. Three general habitat types (prime reef, transition reef, and off reef) were defined to determine large-scale habitat use patterns. Throughout the area, at least 99 fish species were identified, many (19%) of which yielded new distributional data. Most species observed with the JSL were on prime reef (n=50) and transition reef (n=42) habitats, but the off reef habitat supported a well developed, but different fauna (n=25 species). Prime reef was characterized by Laemonema melanurum (21% of total), Nezumia sclerorhynchus (17% of total), Beryx decadactylus (14% of total), and Helicolenus dactylopterus (10% of total). The off reef areas were dominated by Fenestraja plutonia (19% of total), Laemonema barbatulum (18% of total), Myxine glutinosa (8% of total), and Chlorophthalmus agassizi (7% of total). Transition habitat exhibited a mixture of species that were also found on either prime reef or off reef habitats. Nezumia sclerorhynchus was the most abundant (25% of total) transition habitat species, followed by L. barbatulum (16% of total) and L. melanurum (14% of total). Several species (e.g., Anthias woodsi, B. decadactylus, Conger oceanicus, and Dysommina rugosa) demonstrated specificity to deep-reef habitats, while others (e.g., C. agassizi, Benthobatis marcida, F. plutonia, and Phycis chesteri) were always more common away from reefs. In addition to new distributional data, we provide behavioral and biological observations for dominant species.  相似文献   

11.
Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean–atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on regenerating and recovering coral reefs have originated from broadcast spawning taxa with a potential for asexual growth, relatively long distance dispersal, successful settlement, rapid growth and a capacity for framework construction. Whether or not affected reefs can continue to function as before will depend on: (1) how much coral cover is lost, and which species are locally extirpated; (2) the ability of remnant and recovering coral communities to adapt or acclimatize to higher temperatures and other climatic factors such as reductions in aragonite saturation state; (3) the changing balance between reef accumulation and bioerosion; and (4) our ability to maintain ecosystem resilience by restoring healthy levels of herbivory, macroalgal cover, and coral recruitment. Bleaching disturbances are likely to become a chronic stress in many reef areas in the coming decades, and coral communities, if they cannot recover quickly enough, are likely to be reduced to their most hardy or adaptable constituents. Some degraded reefs may already be approaching this ecological asymptote, although to date there have not been any global extinctions of individual coral species as a result of bleaching events. Since human populations inhabiting tropical coastal areas derive great value from coral reefs, the degradation of these ecosystems as a result of coral bleaching and its associated impacts is of considerable societal, as well as biological concern. Coral reef conservation strategies now recognize climate change as a principal threat, and are engaged in efforts to allocate conservation activity according to geographic-, taxonomic-, and habitat-specific priorities to maximize coral reef survival. Efforts to forecast and monitor bleaching, involving both remote sensed observations and coupled ocean–atmosphere climate models, are also underway. In addition to these efforts, attempts to minimize and mitigate bleaching impacts on reefs are immediately required. If significant reductions in greenhouse gas emissions can be achieved within the next two to three decades, maximizing coral survivorship during this time may be critical to ensuring healthy reefs can recover in the long term.  相似文献   

12.
在全球珊瑚礁生态系统面临退化威胁的情况下,珊瑚礁生态修复工作成为人类帮助珊瑚礁恢复健康的重要手段之一,并且在全球各个珊瑚礁区域都得到广泛应用.我国近岸珊瑚礁生态系统退化严重,本实验探讨利用珊瑚移植技术在三亚市蜈支洲岛典型的近岸珊瑚礁环境下恢复造礁石珊瑚的覆盖率,希望推动企业参与海洋生态保护并从中受益.在与当地旅游公司的...  相似文献   

13.
Mangroves are an attractive fish habitat because they provide shelter and food for juvenile fishes. However, because mangroves are almost always located in shallow water and in sheltered (i.e., lagoonal, estuarine or bay) environments, the degree to which the latter two factors contribute to the attractiveness of mangrove prop-roots as a fish habitat is unknown. Artificial Mangrove Units (AMUs) were placed at multiple depths and along a gradient from an embayment to, and including, the coral reef. Total fish density and species richness in AMUs placed in the embayment was lower at 1 m depth than at 2 and 3 m depth, suggesting that shallow water is not a prerequisite for the attractiveness of mangrove prop-roots as a fish habitat. Total fish density and species richness were equal or greater in AMUs on the coral reef than in the embayment, suggesting that placement of mangroves in a sheltered lagoonal environment is not solely responsible for the attractiveness of mangrove prop-roots either. After 3 weeks, removal of AMUs did not have a negative effect on total fish density or species richness. However, within the embayment AMU removal resulted in the complete collapse of the assemblage component comprised of species that use mangroves as juvenile habitats, highlighting the need for a species-based approach towards assessing the benefits provided by the presence of mangrove root structure for fishes.  相似文献   

14.
Degradation and mortality of corals is increasing worldwide and is expected to have significant effects on coral reef fish; hence studies on these effects are essential. In the present study, a field experiment was set up within Mafia Island Marine Park in Tanzania (East Africa) to examine the effects of bleaching and habitat structure on colonisation of coral reef fish assemblages. Live and bleached staghorn coral Acropora formosa was transplanted onto plots in a site dominated by sand and rubble, and the experimental design comprised of three treatments: live coral, bleached coral and eroded coral rubble. There was an immediate increase (within 24 h) in fish abundance and diversity in the two treatments with standing corals. Overall, live and bleached coral plots showed similar effects, but differed from the eroded coral plots which had a much lower abundance and diversity of fish. In general, fish species diversity changed with time over the study period while fish abundance did not. Multivariate analyses showed that while there were differences in fish assemblage structure between standing corals and the eroded coral treatment, there was neither a difference between live and bleached coral treatments nor any temporal effects on fish assemblage structure. Our findings suggest that physical structure and complexity of habitat have stronger effects on colonisation of reef fish assemblages than changes in coral health (such as bleaching) which do not affect coral structure. This may have important implications for appropriate coral reef management.  相似文献   

15.
对中国珊瑚礁资源衰退状况和原因进行了调查和分析.结果表明,中国南海珊瑚礁资源衰退状况严重,珊瑚礁破坏率高达 90%以上,其中,占全国珊瑚礁总面积98%的海南,80%~95%的珊瑚礁受到破坏.除自然因素外,对珊瑚礁资源的不当的、过度的开发利用,社会经济发展带来的海洋环境污染等人为因素,是珊瑚礁资源衰退的主要原因.建立南中国海珊瑚礁生态系统保护与管理国际合作机制,正确评估珊瑚礁的生态功能与价值,建立珊瑚礁自然保护区及监测网络系统,是中国珊瑚礁资源保护性开发利用的可行对策.  相似文献   

16.
We investigated the diversity of patterns of habitat use by juveniles of coral reef fishes according to seasons and at two spatial scales (10–100 m and 1–10 km). We conducted underwater visual censuses in New Caledonia's Lagoon between 1986 and 2001. Co-inertia analyses highlighted the importance of mid-shelf habitats at large spatial scale (1–10 km) and of sandy and vegetated habitats at small spatial scale (10–100 m) for most juveniles. Among all juvenile species, 53% used different habitats across seasons (e.g. Lutjanus fulviflamma and Siganus argenteus) and 39% used different habitats as they grow (e.g. Lethrinus atkinsoni and Scarus ghobban). During their ontogeny, at large and small scales, respectively, 21% and 33% of the species studied showed an increase in the number of habitats used (e.g. L. fulviflamma, L. atkinsoni), 10% and 3% showed a decrease in the number of habitats used (e.g. Amphiprion melanopus, Siganus fuscescens), 23% and 3% showed a drastic change of habitat used (e.g. S. ghobban, Scarus sp.) whereas 46% and 61% showed no change of habitat used (e.g. Lethrinus genivittatus, Ctenochaetus striatus). Changes in habitat use at both small and large spatial scales occurred during the ontogeny of several species (e.g. S. ghobban, Scarus sp.). Results pointed out the different spatial and temporal scales of juvenile habitat use to account for in conservation decisions regarding both assemblage and species-specific levels.  相似文献   

17.
Effective conservation requires knowledge of the effects of habitat on distribution and abundance of organisms. Although the structure of coral reef fish assemblages is strongly correlated with attributes of reef structure, data relating reef types to fish assemblages are scarce. In this study we describe the influence of gross habitat characteristics and seasonality on coral reef fish assemblages of fringing and patch reefs in Kenya. Results showed that total fish abundance was not significantly different between the reefs; however, the fringing reef had higher species diversity during both the northeast (42 spp.) and southeast (36 spp.) monsoon seasons when compared to the patch reef. The more fished species (e.g. Siganus sutor and Lethrinus mahsena) were more abundant on the patch reef in both seasons. Statistical analysis indicated common species between the reefs were more abundant on the fringing reef. Seasons affected abundance of the more vagile species (S. sutor), whereas the reef‐attached sky emperor, L. mahsena was affected more by reef type than by seasons. No significant interaction effects of habitat and seasons were found, indicating independence of habitat and environmental variability in affecting fish assemblages on the reefs. Smaller sized fish dominated the fringing reef more than the patch reef, whereas the skewness index (Sk) indicated a normal‐sized frequency distribution on the patch reef. Trophic structure of the fishes varied more within than between reefs, whereas fish assemblage structure was affected more by seasons on the fringing reef. These results suggest that conservation measures such as marine protected area (MPA) design and setting should consider effects of reef morphology and environmental variability on coral‐reef fish assemblage structure.  相似文献   

18.
Surgeonfish and parrotfish play an important role in structuring the benthic communities of coral reefs. However, despite their importance, little is known about their distribution patterns in the north sector of the Mesoamerican Reef System. This study evaluated the distribution of these fish in 34 sites in four habitats (lagoon, front, slopes and terrace) along a depth gradient (c 0.5–20 m). These herbivorous fish were assessed by visual censuses. Species dominance was evaluated for each habitat using SIMPER analysis. Habitat characteristics data were collected to determine the relationship between habitat conditions and spatial variations in herbivorous fish (using abundance and biomass as a proxy) via redundancy analysis. The herbivorous fish assemblage had a low density (fish per 100 m2) and biomass (g·100 m?2) in comparison with assemblages in similar studies. In contrast, species richness was high compared with other studies in the Caribbean. Spatial variation of the abundance, biomass and size of herbivorous fish was strongly related to coral and seagrass cover, as well as to depth and rugosity. These four variables were critical in controlling the distribution patterns of the herbivorous fish assemblages. No associations were found between fish and macroalgae or any other benthic group. The present study indicates that the species richness of surgeonfish and parrotfish was not regionally affected by the dominance of macroalgae in the habitats studied. Seagrass beds and the coral reef matrix need to be preserved for the herbivorous fish assemblages to remain healthy and capable of controlling excess macroalgae growth.  相似文献   

19.
In consideration of the rapid degradation of coral reef ecosystems, the establishment of models is helpful to comprehend the degradation mechanism of coral reef ecosystems and predict the development process of coral reef communities. According to the characteristics of complex ecosystem of tropical coral reefs in China, the coral reef functional group is the core level variable; combined with the multiple feedback effects of coral reef functional groups and environmental changes, the study presents a coral reef ecosystem dynamics model with hermatypic corals as the core. Based on the simulation of the assumed initial value and the internal feedback of the system, the results show that in the basic simulation(relative health conditions), the coverage area of live corals and coral reefs generally decreased first and then increased, and increased by 4.67% and 6.38% between2010 and 2050, respectively. Based on the calibration model and the current situation of the studied area, the multi-factor disturbance effects of coral reef communities were simulated and explored by setting up three scenarios involving fishing policy, terrestrial deposition, and inorganic nitrogen emissions. Among them, in the single factor disturbance, the fishing policy exerts the most direct impact on the community decline; and the succession phenomenon is obvious; the terrestrial sedimentation has a faster and more integrated effect on the community decline; the effect of inorganic nitrogen emission on the community decline is relatively slow. In the double/multi-factor disturbance, the superimposed disturbance will aggravate the multi-source feedback effect of the coral reef communities development, accelerate the community decay rate, and make its development trajectory more complicated and diverse. This method provides a scientific and feasible method for simulating the damage of long-term coral reef community and exploring the development law and adaptive management of coral reef ecosystems. In the future, it can be further studied in the ecological restoration process and decisionmaking direction of coral reefs.  相似文献   

20.
在海洋环境变化和人类活动的双重影响下,我国珊瑚礁白化现象日趋严重,珊瑚礁健康状况、珊瑚种群数量和丰富度呈逐年下降的趋势。本文基于2005-2007年QuickBird卫星影像、2011-2012年QuickBird/WorldView-2卫星影像和2016-2018年GF-1/2卫星影像等3期高分辨率遥感数据,以西沙永乐群岛羚羊礁、中建岛等14个岛礁为研究区(以下统称永乐群岛),利用支持向量机(support vector machine,SVM)分类方法结合人机交互信息提取方法完成了3期永乐群岛的珊瑚礁底质类型分类,并通过珊瑚礁底质类型变化分析了永乐群岛珊瑚礁白化特征。主要结论包括:(1)提出了一种珊瑚礁白化程度分级的方法,将永乐群岛白化状况分为轻度、中度、重度和严重白化4个等级,通过分析发现在监测时段内14个岛礁中有13个发生了不同程度的白化,其中10个发生了重度白化(白化率20%以上),1个严重白化(羚羊礁,白化率为33.36%);(2)根据监测数据统计,上述珊瑚岛礁的白化主要是由珊瑚丛生区白化引起的,2005-2018年永乐群岛珊瑚丛生区白化面积占总的发生白化区域面积的70.55%;(3)14个岛礁中只有甘泉岛的活珊瑚覆盖在逐渐增加,活珊瑚覆盖面积由2006年5月10日的87.13 hm2增加到2018年3月7日的107.80 hm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号