首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
地裂缝是中国主要地质灾害之一,至2015年已在全国22个省区1500余处发现地裂缝超过5002条,这些地裂缝给沿线地区造成了大量的经济损失。本文基于一系列的地质研究方法包括野外调查、地质绘图、地质勘探等,总结了中国地裂缝的空间分布,揭示了中国地裂缝的发育规律,并概化了中国地裂缝的运动特征。结果表明:中国地裂缝主要分布在大华北地区,尤以汾渭盆地、河北平原和长江三角洲最为严重,其中大于1 km的巨型地裂缝主要分布在汾渭盆地和河北平原。地裂缝分布表现出沿断裂带集中、顺地貌变异带展布、与地面沉降伴生、在黄土湿陷区散布、大中城市群发的规律。地裂缝运动特征可划分为拉张型、拉张-剪切型、剪切-拉张型和剪切型4种类型。  相似文献   

2.
中国“采水型”地裂缝特征和成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
过量开采地下水诱发的地裂缝("采水型"地裂缝)灾害对社会造成严重损失,受到人们普遍关注。近几十年来,国内外学者对其成因机制进行了大量研究,取得了丰硕成果。本文系统分析了前人的研究成果,归纳出"采水型"地裂缝的差异沉降成因、拉张性水平应变成因和四种成因模式;然后针对中国三个典型的"采水型"地裂缝发育区,即汾渭盆地、华北平原、苏锡常地区,阐述了各地地裂缝分布、发育特征和成因机理,并选择典型地段地裂缝进行成因分析,认为汾渭盆地和华北平原地区部分地裂缝属于"先期断层模式",而苏锡常地区地裂缝总体属于"基岩起伏模式",并阐述了该模式下导致地裂缝发育的差异性变形、水平应变作用机理。  相似文献   

3.
Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005–2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR’s InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.  相似文献   

4.
This paper summarizes the negative effects on geological environment caused by groundwater exploitation and its distribution. There are seven main types of the geological environment negative effects, which are generally as follows:(1) Constant decrease of groundwater level is mainly distributed in China(East Asia), India(South Asia), Tajikistan(Central Asia) and Saudi Arabia(West Asia);(2) land subsidence occurs mainly in eastern plains of East Asia and west Siberian Plain of North Asia;(3) seawater intrusion occurs mainly in China, Japan and South Korea in East Asia, Philippines and Indonesia in Southeast Asia, the Indian coastal areas in South Asia;(4) groundwater level decline caused by groundwater exploitation in oil fields;(5) mining collapse is mainly in 50° to 70° north latitude band;(6) the total area of karst collapse in China of East Asia is as much as 197.05 km~2; and(7) ground fracture is mainly distributed in the North China Plain, Fenwei Plain and the Yangtze River Delta. Asia can be divided into 6 zones in terms of the geological environment negative effect caused by groundwater exploitation. According to analysis, with the increasing intensity of human activities, geological environment issues become more and more serious, therefore it is vital to control the human activities within the scope of 5× 10~5 people/km~2 to 9.9× 10~5 people/km~2 for the effective control of the size of the affected area by geological environment problems.  相似文献   

5.
Land subsidence in China occurs predominantly in 17 provinces (cities) situated in the eastern and middle regions of the country, including Shanghai, Tianjin and Jiangsu, and Hebei provinces. It is primarily caused by groundwater overpumping. One of the areas most severely affected by land subsidence is the Yangtze Delta, most of which consists of Shanghai City, the Su-Xi-Chang area (Suzhou, Wuxi and Changzhou cities) of Jiangsu Province, and the Hang-Jia-Hu area (Hangzhou, Jiaxing and Huzhou cities) of Zhejiang Province. The excessive exploitation of groundwater forms in a large regional cone of depression and, consequently, land subsidence is also regional, currently centered in the Shanghai and Su-Xi-Chang areas. In 2002, the maximum cumulative subsidence of Shanghai, Su-Xi-Chang and Hang-Jia-Hu were 2.63 m, 2.00 and 1.06 m, respectively. The land subsidence area is continuing to expand throughout the Yangtze Delta. To study the characteristics and the pattern of this land subsidence, the government has implemented a monitoring system involving the placement of 37 groups of extensometers (layers marks) and drilling of more than 1000 observation wells. These provide an invaluable historical record of deformation and pore water pressure and facilitate studies on the special features of soil deformation when the groundwater level changes due to pumping. Several measures have been taken in recent years to control the development of the land subsidence in the different areas; these include groundwater injection, prohibition of pumping deep confined groundwater, and an adjustment of the pumping depth and magnitude of the groundwater withdrawn. At present, although the subsidence area is still increasing slowly, the subsidence rate is controlled.  相似文献   

6.
衡水地区地裂缝空间发育特征与地下水位降深关系   总被引:1,自引:0,他引:1  
通过浅层地震法及高密度电阻率法物探对河北衡水地区最近发现的3条地裂缝调查,探明了地裂缝地下发育深度、宽度、倾向等,发现地裂缝在地表与地下发育特征有明显不同:地表以一条地裂缝存在,在地下深处则以裂缝带发育,裂缝带两侧裂缝埋深不同,地下裂缝形态表现为上窄下宽。对该地区深层钻探、水文地质和多年地下水开采等资料分析表明,该地区的地裂缝是地质历史时期地质构造活动产物,开采深层地下水等资源则是促使地裂缝发展的主要原因。通过对不同地点地裂缝发育深度与近36年以来地下水水位降深的关系分析,结果显示:不同地区地裂缝发育深度与相应深层地下水水位降深呈线性关系。研究成果对地裂缝机理研究及预防开采深层地下水对地质环境的影响具有指导作用。  相似文献   

7.
On causes and impacts of land subsidence in Bandung Basin, Indonesia   总被引:2,自引:1,他引:1  
The Bandung Basin is a large intra-montane basin surrounded by volcanic highlands, in western Java, Indonesia, inhabited by more than seven million people. The basin, an area of about 2,300 km2, is a highland plateau at approximately 650–700 m above sea level and is surrounded by up to 2,400 m high Late Tertiary and Quaternary volcanic terrain. Based on the results of nine GPS surveys conducted since 2000 up to 2011, it was shown that several locations in the Bandung Basin have experienced land subsidence, with an average rate of about ?8 cm/year and can go up to about ?23 cm/year in certain locations. A hypothesis has been proposed by several studies that land subsidence observed in several locations in the Bandung Basin has been caused mainly by excessive groundwater extraction. It is found that there is a strong correlation between the rates of groundwater level lowering with the GPS-derived rates of land subsidence in several locations in Bandung Basin. The GPS results in this study detected significant subsidence in the textile industry area, where very large volumes of groundwater are usually extracted. The impact of land subsidence in Bandung can be seen in several forms, mainly in the cracking and damage of houses, buildings and infrastructure. Land subsidence also aggravates the flooding in Bandung Basin, which has brought huge economic losses and deteriorated the quality of life and environment in the affected areas.  相似文献   

8.
基于ANN的苏锡常地裂缝预测研究   总被引:5,自引:0,他引:5  
伴随着地面沉降灾害的发生,地裂缝作为一种新的地质灾害出现在苏锡常平原上,已有十多年历史,给地区发展造成严重危害。作者在较详细地阐述区域地质背景基础上,着重分析了地下水位和地面沉降在地裂缝形成中的作用。确定了“起伏的基底外加地下水位和地面沉降作用”这一地裂缝成灾模式。研究认为地裂缝的发生与地下水及地面沉降之间不存在简单的线性关系。而是二者共同作用的结果,同时需要有量的配合。初步确定了水位埋深50m,地面沉降量达500mm这样一个苏锡常地区地裂缝的易发环境。通过文章的研究,使得苏锡常地区地裂缝的产生机制更加清晰。文中一些定性和半定量的分析结论将对该地区地裂缝防治区划产生指导作用。  相似文献   

9.
上海的地面沉降在国内外具有典型性。沉降洼地的形成与发展在城市防汛、城区地面积水、重大线型工程差异沉降影响等方面对上海城市的可持续发展带来不利影响。地面沉降也通过洪涝、潮汛等显性灾害的成灾风险与致灾频率的增加,而体现出缓变型灾害的本质。上海目前已对全市地下水资源的开发利用实施有序管理,建立了覆盖全市整个陆域与第四纪地层的地面沉降监测网络体系,并融入了自动化测控与GPS监测等高新技术手段。同时密切结合城市总体建设发展规划,开展针对性的专题研究,深化城市地质工作,并注重与长江三角洲地区的联动。以科学有效的管理,落实可持续发展战略,使地区经济发展与地质生态环境保护协调统一。  相似文献   

10.
对"用调整地下水开采层次方法控制地面沉降"的质疑   总被引:3,自引:0,他引:3  
据不完全统计,至今我国已有90余个城市和地区相继发生不同程度的地面沉降,长江、黄河、珠江三角洲、华北平原、松辽平原及沿海许多地区,地面沉降正在发生和发展之中,尤其以上海为中心的长江三角洲及以天津为中心的华北平原,成为我国两片最大的沉降地区。地面沉降对这些地区社会和经济的可持续发展带来严重影响。几十年来,这些地区一直将“调整地下水开采层次”作为控制地面沉降措施之一。该文章认为“调整地下水开采层次”并非一种理想的控沉措施,不仅值得商榷,甚至为应该被否定的控沉措施。依据:①一般情况下,随深度增加,地层的压缩性会渐下;但是开采同量的地下水,其水位下降的速率及幅度深部含水组比浅部含水组要大的多,两者引起的沉降量不会有明显的差别;②从地下水开采资源组成与地面沉降关系分析,含水层深度越深,其中的压密释水量所占的比例也越大,造成的地面沉降也越严重;③地层的物理力学性质及固结状态,随深度的增加,也不完全是越来越好。  相似文献   

11.
Based on the formation and development analysis of the environmental geological disaster of land subsidence, earth fissures and other geological disasters in the North China, it showed these disasters caused a very serious problem in some areas of the North China, such as the deep groundwater exploitation cone, which is accumulated with great damage and loss and is hard to be controlled, therefore, great attention should be paid. It is considered that the formation of the deep groundwater cone is the root of various geological environmental problems, and the groundwater cone recovery is the key to solve other environmental problems  相似文献   

12.
Excessive extraction of groundwater has caused severe land subsidence and earth fissures in the Southern Yangtse Delta, China. Based on field data, the temporal and spatial distribution of land subsidence is investigated and the causes for earth fissures are analyzed. The areal distribution of the land subsidence is closely related to the cones of depression in the main exploited aquifers. The compaction of a hydrostratigraphic unit depends on its mechanical behavior, thickness, compressibility, and the piezometric level changing. The primary subsidence layers in Shanghai have been the first aquitard before 1990 and the third confined aquifer since then. But the second aquitard unit was the primary subsidence layer in Changzhou. Earth fissures, trending in several directions, occurred in the Husu tectonic zone. They were mainly caused by differential subsidence and horizontal displacement that resulted from tensile stress and shear stress in units. The majority of fissures in the study area are tensile.  相似文献   

13.
为提升对长江流域水文地质和地下水资源的认知程度,突破以往单独从地表水或地下水角度进行评价的局限性,长江流域水文地质调查工程以地球系统科学理论和水循环理论为指导,充分考虑地表水与地下水的转化关系,将水文地质单元和地表水流域有机结合,划分长江流域地下水评价单元,建立典型地下水资源评价模型,开展了新一轮长江流域地下水资源评价。评价结果表明:(1)长江流域水循环要素时空分布不均,降水以中游最多,并由东南向西北递减;地表径流主要集中在夏季,且长江北岸比南岸集中程度更高;蒸散发量总体上呈现东部高于西部的特征,最大值集中在长江中游一带;长江流域地下水位总体保持稳定,丰枯季水位变化总体不大,一般小于2 m;长三角超采区的地下水漏斗面积已明显减小,相关环境地质问题得到了有效控制。(2)2020年长江流域的地下水资源总量2421.70亿m~3/a,其中山丘区地下水资源量2092.79亿m~3/a,平原区地下水资源量331.35亿m~3/a;地下水储存量较2019年整体略有增加趋势,其中四川盆地最为明显,共增加23.72亿m~3。(3)长江流域的水质上游优于下游,优质地下水主要分布在赣南地区和大别山南麓一带,部分地区水质较差的主要原因是原生劣质水的广泛分布。长江流域地下水开发利用水平整体很低,局部地区由于过往不合理的开发所引发的环境地质问题已得到缓解,岩溶塌陷、地面沉降等问题得到了较好控制。建议适当开发利用赣南地区和大别山南麓一带优质的基岩裂隙水。  相似文献   

14.
This article gives a general introduction to land subsidence with the prediction approaches due to withdrawal of groundwater in three subsided/subsiding regions in China: the deltaic plain of Yangtse River (YRDP), North China Plain (NCP), and Fenwei Plain (FP). On YRDP, Shanghai is the typical subsided/subsiding city; on NCP Tianjin is the typical subsided/subsiding city, and on FP Taiyuan is the typical subsided/subsiding city. The subsided area with subsidence over 200 mm on YRDP is about 10,000 km2 and the maximum subsided value reached 2.9 m at Shanghai; on NCP the subsided area reached 60,000 km2 with the maximum subsidence of 3.9 m at Tianjing; on FP the subsided area is relatively smaller than that on the other two plains and is about 1,135 km2 with maximum subsidence of 3.7 m at Taiyuan city. In order to protect the civil and industrial facilities, it is necessary to predict the future development of land subsidence based on present state. Many researchers proposed several approaches to predict the land subsidence due to groundwater withdrawal according to different geological conditions and groundwater withdrawal practice. This article classifies these approaches into five categories: (i) statistical methods; (ii) 1D numerical method; (iii) quasi-3D seepage model; (iv) 3D seepage model; (v) fully coupled 3D model. In China, the former four categories are presently employed in the prediction practice and their merits and demerits are discussed. According to the prediction practice, 3D seepage model is the best method presently.  相似文献   

15.
Large differential land subsidence and earth fissures in Jiangyin,China   总被引:1,自引:0,他引:1  
Jiangyin County is in the infamous Su–Xi–Chang land subsidence area caused by excessive groundwater withdrawal in Jiangsu province, China. The maximum accumulated land subsidence reached 1,310 mm near the centre of the subsiding trough in 2006 in southern Jiangyin, and earth fissures of significant vertical offsets have been observed at Changjing, Hetang and Wenlin which form an arc towards the subsidence trough. An ancient Yangtze River course is found underlying and passing through the depression in southern Jiangyin, forming a local basin surrounded by outcropped bedrock ridges in the north and south. The Quaternary stratigraphy demonstrates significant heterogeneities in the basin; the second confined aquifer is much thicker and deeper and encapsulated inside the basin and absent above the ridges. The development of earth fissures along the Changjing–Hetang–Wenlin arc might be a combination of an inward rotation of sediments due to a large differential subsidence, an inward movement driven by seepage force and a steeper slope along the south-eastern shoulder of the basin that facilitates the development of horizontal tensile strain and/or shear strain necessary for fissuring. The land subsidence has slowed down and no new earth fissure zone has occurred in the area after the banning of deep groundwater extraction was enacted in 2001.  相似文献   

16.
地裂缝的成因机理争论不断,笔者认为活动断层与全新世浅表层开裂两者之间的联动机制为主要原因之一。文章以华北平原典型地裂缝为例,通过详尽地面调查、资料分析总结,结合地球物理勘察、槽探揭露和钻探等多种技术方法,得到以下几点认识:(1)依据全新世浅表层开裂形态特征,可将华北平原地裂缝划分为全新世节理裂隙型地裂缝和全新世活动断层型地裂缝。(2)节理裂隙型地裂缝开裂的外部条件是华北平原地下水位下降,疏干的松散含水层是地表水沿节理裂缝下渗后的储存场所,是产生渗透压力的原因;而活动断层是产生该类地裂缝的内部因素,两者缺一不可;活动断层型地裂缝实质是全新世活动断层。(3)节理裂隙型地裂缝主要特征是地表局部塌陷、间断性、地表无高差等;活动断层型地裂缝主要特征是连续性强,地表断距明显;地表断距是两种类型地裂缝的最主要区别特征。本文首次以构造活动断层与全新世浅表层开裂两者之间的联动机制为研究线索,阐述了构造活动断层在地裂缝形成过程中的具体作用,厘清了地下水位下降所扮演的“角色”,为城市规划建设提供了地质依据和建议。  相似文献   

17.
赵辉  陈文芳  崔亚莉 《地学前缘》2010,17(6):159-165
研究采用理论分析和实践成果相结合、区域宏观分析与典型地区深入剖析相结合的研究方法,从地下水不合理开发利用引起的环境问题出发,选取华北地区、西北地区以及沿海地区作为典型区,分析地下水位对环境的控制作用,提出了具有针对性的地下水位控制阈值。华北平原有利于山前调蓄的地下水位埋深为10m、中东部平原浅层控制土壤盐渍化水位埋深为2~3 m、防止地裂缝的水位埋深为7 m、深层控制地面沉降水位埋深为50 m、浅埋岩溶区地下水位应控制在岩溶含水层上覆的松散岩类的底板高程(2 m)之上;西北地区控制天然植被衰败的地下水位埋深为2.0~4.5 m和人工绿洲灌溉期控制土壤盐渍化的地下水位埋深为1.2~1.5 m,非灌溉期中冻结期地下水位埋深1.3~1.5 m,冻融期为2.2~2.7 m;沿海地区防止海水入侵的地下水位阈值应控制在漏斗中心水位高程-5~-6 m,最大不超过-8 m。上述地下水位控制阈值的确定,为实施地下水总量控制和水位控制管理提供了科学依据。  相似文献   

18.
Land subsidence is common in some regions of China. Various eco-environmental problems have arisen due to changes in water–rock interactions in these subsided areas, for which a comprehensive understanding of the hydrogeological setting is needed. This paper presents the general status of land subsidence in three typical subsided areas of China through the compilation of relevant data, and reviews some typical changes in the water–rock interactions in subsided areas along with related eco-environmental issues. It is found that the subsidence development and distribution are controlled by the groundwater-withdrawal intensity externally, and by the thickness and compressibility of unconsolidated sediments internally. The physical changes and related effects of water–rock interactions in subsided areas include: (1) the decreased ground elevation that caused floods, waterlogged farmland, etc.; (2) the differential subsidence that caused ground fissures; and (3) the change of seepage field that caused substantial reduction of the water resource. Chemically, the changes and related effects of water–rock interactions include: (1) the change to the chemical environment or processes due to the hydrogeologic structure alteration, which caused groundwater pollution; and (2) hydrologic mixing (seawater intrusion, artificial recharge; exchange with adjacent aquifers or aquitards), which degraded the groundwater quality. Further research on the subsided areas in China is suggested to reveal the mechanisms regarding biological and gaseous (meteorological) changes from the perspective of interacting systems among water, rocks, biological agents and gases.  相似文献   

19.
Earth Fissures in Wadi Najran,Kingdom of Saudi Arabia   总被引:1,自引:0,他引:1  
The formation of earth fissures due to groundwater depletion has been reported in many places in North America, Europe, and Asia. Najran Basin is in the southern part of the Kingdom of Saudi Arabia, and agricultural activities and other groundwater uses have caused significant groundwater depletion there. The basin recently experienced a sudden appearance of numerous earth fissures. An interdisciplinary study consisting of an evaluation of land-use changes, and hydrological, hydrogeological, and geophysical investigations was conducted to determine the reason for the formation of the earth fissures. The hydrological analysis strongly revealed that the groundwater level is decreasing with time. Groundwater depletion would lead to the accumulation of subsurface stress, causing soil hydro-consolidation which creates the ideal condition for the formation of earth fissures. Electrical resistivity, data indicated that there are anomalies in the profiles, which are most probably due to the presence of subsurface topography, another key factor for the formation of the earth fissures.  相似文献   

20.
Land subsidence in Bangkok, Thailand   总被引:9,自引:0,他引:9  
Land subsidence from deep well pumping has been affecting Bangkok for the past 35 years. Its impact is particularly critical because of the flat low-lying topography and the presence of a thick soft clay layer at the ground surface that augment flood risk and foundation engineering problems, respectively. The subsidence reached its most critical state in the early 1980s when it occurred at a rate as high as 120 mm/year. The rate decreased in the subsequent period but the subsidence-affected area expanded following the growth of the city. Despite various attempts implemented to remedy the crisis, groundwater pumping from the thick aquifer system underneath the city continued to increase from 1.2 million m3/day in the early 1980s to more than 2.0 million m3/day at the turn of the century. Piezometric levels in the main aquifer layers had been drawn down by as much as 65 m. Monitoring data showed a clear correlation between the subsidence and piezometric drawdown. The data suggested that for 1 m3 of groundwater pumped out in Bangkok Plain, approximately 0.10 m3 of ground loss occurred at the surface. Significant development has been made in numerical methods for prediction of differential settlements between building foundations caused by the piezometric drawdown in the aquifers. The strict mitigation measures adopted recently, comprising a pricing policy for groundwater management, an expansion of tap water supply, and strict enforcement of groundwater laws, have resulted in a marked drop in groundwater use. However, the land subsidence will continue for a long while owing to the time-dependent consolidation behavior of the soft clay layer and clay aquitards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号