首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Maritime Alps (north‐west Italy – south‐east France), the Middle Triassic–lowermost Cretaceous platform carbonates of the Provençal Domain locally show an intense dolomitization. Dolomitized bodies, irregularly shaped and variable in size from some metres to hundreds of metres, are associated with tabular bodies of dolomite‐cemented breccias, cutting the bedding at a high angle, and networks of dolomite veins. Field and petrographic observations indicate that dolomitization was a polyphase process, in which episodes of hydrofracturing and host‐rock dissolution, related to episodic expulsion of overpressured fluids through faults and fracture systems, were associated with phases of host‐rock dolomitization and void cementation. Fluid inclusion analysis indicates that dolomitizing fluids were relatively hot (170 to 260°C). The case study represents an outstanding example of a fossil hydrothermal system, which significantly contributes to the knowledge of such dolomitization systems in continental margin settings. The unusually favourable stratigraphic framework allows precise constraint of the timing of dolomitization (earliest Cretaceous) and, consequently, direct evaluation of the burial setting of dolomitization which, for the upper part of the dolomitized succession, was very shallow or even close to the surface. The described large‐scale hydrothermal system was probably related to deep‐rooted faults, and provides indirect evidence of a significant earliest Cretaceous fault activity in this part of the Alpine Tethys European palaeomargin.  相似文献   

2.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   

3.
The Waulsortian Limestone (Lower Carboniferous) of the southern Irish Midlands is dolomitized pervasively over a much larger region than previous studies have documented. This study indicates a complex, multistage, multiple fluid history for regional dolomitization. Partially and completely dolomitized sections of Waulsortian Limestones are characterized by finely crystalline (0·01–0·3 mm) planar dolomite. Planar replacive dolomite is commonly followed by coarse (≥0·5 mm) nonplanar replacive dolomite, and pervasive void‐filling saddle dolomite cement is frequently associated with Zn–Pb mineralization. Planar dolomite has average δ18O and δ13C values (‰ PDB) of –4·8 and 3·9 respectively. These are lower oxygen and slightly higher carbon isotope values than averages for marine limestones in the Waulsortian (δ18O=–2·2, δ13C=3·7). Mean C and O isotope values of planar replacive dolomite are also distinct from those of nonplanar and saddle dolomite cement (–7·0 and 3·3; –7·4 and 2·4 respectively). Fluid inclusions indicate a complex history involving at least three chemically and thermally distinct fluids during dolomite cementation. The petrography and geochemistry of planar dolomites are consistent with an early diagenetic origin, possibly in equilibrium with modified Carboniferous sea water. Where the Waulsortian was exposed to hydrothermal fluids (70–280 °C), planar dolomite underwent a neomorphic recrystallization to a coarser crystalline, planar and nonplanar dolomite characterized by lower δ18O values. Void‐filling dolomite cement is isotopically similar to nonplanar, replacive dolomite and reflects a similar origin from hydrothermal fluids. This history of multiple stages of dolomitization is significantly more complex than earlier models proposed for the Irish Midlands and provides a framework upon which to test competing models of regional vs. localized fluid flow.  相似文献   

4.
A multidisciplinary study, conducted over the carbonate platform deposits of the Liassic Calcari Grigi Group (Southern Alps), highlighted how the use of outcrop analogues can contribute to better define the distribution of dolomitic bodies related to fault networks, to characterize the petrophysical properties of the dolomitic sequence and unravel a complex diagenetic history. This study was carried out in the Asiago Plateau (southernmost part of the eastern Southern Alps, northern Italy) which provides excellent outcrops of the Jurassic Calcari Grigi Group. The dolomitization of the Jurassic sequence is variable in terms of stratigraphic extension and geographic distribution. In the studied localities the dolomitization is generally limited to the Mount Zugna Formation and is characterized by an undulatory front, with ‘sub‐vertical dolomitic chimneys’ along the major faults. Within this unit, and often associated with faults, stacked high‐porosity and permeability bed‐parallel dolomitic bodies are developed that show excellent petrophysical properties. The dolomitic intervals are characterized by pervasive unimodal and patchy polymodal dolomite crystals. Thin section, cathodoluminescence, isotopic and fluid inclusion analyses were used to constrain the paragenetic evolution of the sequence which is similar in all the studied localities. The first dolomitization stage is marked by zoned dolomite crystals with a dull luminescent core. The porosity is thought to have increased after this stage, with dark blue luminescent dolomite accompanied by the corrosion of older crystals. The appearance of saddle dolomite marks the onset of the porosity reduction stage, ending with the infilling of vugs and the remaining open pores with calcite cement. The diagenetic evolution locally stopped at the saddle dolomite stage with the complete occlusion of the remaining pores. Paragenetic and fluid‐inclusion data suggest an evolutionary trend of increasing temperatures and decreasing salinity toward brackish fluids responsible for dolomite and calcite precipitation. The integration of the available data seem to indicate that the diagenetic evolution of the study area is related to: (i) the interplay between evolving fluids (from marine to brackish); (ii) the burial of the sequence (increasing temperature); and (iii) the evolution of the hydrogeological system (fault and fracture network, fluid mixing). This complex paragenetic evolution is strongly linked to the evolution of the porosity framework that evolved from a good, widespread network in the early stages of the burial history to a confined system in the later stages due to reduction of porosity by the deposition of late calcite and dolomite cements.  相似文献   

5.
Dolomites occur extensively in Cambrian to Lower Ordovician carbonates in the Tienshan orogen of the Quruqtagh area, north‐east Tarim Basin, where thick (up to 1 km), dark grey lenticular limestones of semi‐pelagic to pelagic origin are prominent. The dolomites generally occur as beige, anastomosed geobodies that cross‐cut well‐stratified limestones. Based on detailed field investigations and petrographic examination, three types of matrix dolomite are identified: fine crystalline planar‐e (Md1), fine to medium crystalline planar‐s (e) (Md2) and fine to coarse crystalline non‐planar‐a (Md3) dolomites. One type of cement dolomite, the non‐planar saddle dolomite (Cd), is also common. The preferential occurrence of Md1 along low‐amplitude stylolites points to a causal link to pressure dissolution by which minor Mg ions were probably released for replacive dolomitization during shallow burial compaction. Type Md2, Md3 and Cd dolomites, commonly co‐occurring within the fractured zones, have large overlaps in isotopic composition with that of host limestone, implying that dolomitizing fluids inherited their composition from remnant pore fluids or were buffered by the formation water of host limestones through water–rock interaction. However, the lower δ18O and higher 87Sr/86Sr ratios of these dolomites also suggest more intense fluid–rock interaction at elevated temperature and inputs of Mg and radiogenic Sr from the host limestones with more argillaceous matter and possibly underlying Neoproterozoic siliciclastic strata. Secondary tensional faults and fractures within a compressional tectonic regime were probably important conduits through which higher‐temperature Mg‐rich fluids that had been expelled from depth were driven by enhanced tectonic compression and heating during block overthrusting, forming irregular networks of dolomitized bodies enclosed within the host limestones. This scenario probably took place during the Late Hercynian orogeny, as the Tarim block collided with Tienshan island arc system to the north and north‐east. Subsequent downward recharges of meteoric fluids into the dolomitizing aquifer probably terminated dolomitization as a result of final closure of the South Tienshan Ocean (or Palaeo‐Asian Ocean) and significant tectonic uplift of the Tienshan orogen. This study demonstrates the constructive role of notably tensional (or transtensional) faulting/fracturing in channelling fluids upward as a result of intense tectonic compression and heating along overthrust planes on the convergent plate margin; however, a relatively short‐lived, low fluid flux may have limited the dolomitization exclusively within the fractured/faulted limestones in the overthrust sheets.  相似文献   

6.
The Upper Devonian carbonate reefs in West‐central Alberta are important petroleum reservoirs that are well‐known for their extensive secondary porosity. An outcrop analogue study indicates that an early matrix‐selective dolomitization event occurred which is characterized by a major Late Devonian sea water component with increased salinity because of evaporation. It is interpreted that the matrix (replacive) dolomite formed during the Famennian as the result of a combination of both seepage and latent reflux dolomitization, although an additional type or overprinting of later intermediate burial dolomitization cannot be excluded. Formation of the moulds is attributed mainly to the dissolution of undolomitized fossil cores, most typically stromatoporoids. Geochemical modelling indicates that carboxylic acid fluids have the highest potential for dissolving residual calcite in this case. Geochemical models consistent with this analysis and interpretations can reproduce the secondary porosity and suggest a viable dolomitization process for the localities studied.  相似文献   

7.
Dolomitization often plays a critical role in the pore network development of platform carbonates, with implications for reservoir quality distribution. Understanding both the hydrological system driving dolomitization and the chemistry of the fluids involved is fundamental to constrain predictions of the geometry and the petrophysical properties of dolomite bodies. Here, the role of secular variations in seawater Mg/Ca as a control on dolomitization and early porosity modification was evaluated using one‐dimensional reactive transport models and fluids based on modern (aragonite sea), Mississippian and Aptian (calcite sea) seawaters. The sensitivity of dolomitization to a range of extrinsic controls (brine salinity, temperature, fluid flow rate and pCO2) and to intrinsic reactivity of the sediments (effective reactive surface area) was also explored. Simulations suggest faster calcite replacement by dolomite for seawaters with higher Mg/Ca, indicating that dolomitization potential is determined more by Mg/Ca rather than saturation index. Increasing evaporative concentration enhances reaction rate independent of the effect of enhanced density‐driven fluid flux. In addition to brine composition, effective surface area of precursor sediments and temperature exert a critical control on replacement rate, while secular variations of pH and carbonate alkalinity associated with changes in pCO2 are only secondary controls. Above flow rates of 0·01 m yr?1 replacive dolomitization is reaction‐limited rather than flux limited, favouring alteration of fine‐grained carbonates and suggesting that preferential alteration of grainstone units is rare unless head gradients are low. Post‐replacement dolomite cementation is flux dependent, and thus favoured in areas of high head gradient and high permeability sediments and, contrary to replacement, supersaturation is a more important driver than Mg/Ca. While uncertainties remain regarding low‐temperature dolomitization kinetics, the capability of numerical simulations to decouple individual controls provides new insights which can be used, in conjunction with traditional comparative sedimentology, to generate more rigorous conceptual models for individual reservoir settings.  相似文献   

8.
Partially dolomitized carbonate successions provide a good opportunity to understand the commonly multistage process of dolomitization. Petrographic methods, fluid inclusion microthermometry and stable isotope measurements were applied to reconstruct the diagenetic evolution and dolomitization of a partially dolomitized Carnian reef limestone from the Transdanubian Range, Hungary. The diagenetic history began with reef diagenesis and formation of dolomite micro‐aggregates in microbial fabric elements; this was followed by the development of euhedral porphyrotopic dolomite crystals through overgrowths around the previously formed dolomite micro‐aggregates during the earliest burial stage. Increasing burial resulted in the extension of the dolomite patches via formation of finely crystalline replacement dolomite. From the Late Norian, when the Carnian reef carbonates reached the depth of 1·0 to 1·8 km, the diagenetic evolution continued in an intermediate to deep‐burial setting. Contemporaneously, an extensional regime was established, leading to fracturing. The progressive burial resulted in the recrystallization of the pre‐existing dolomite with increasing temperature, while saddle dolomite cement was precipitated in fractures. In connection with the Alpine Orogeny, intense denudation took place during the Late Cretaceous, accompanied by fracturing. Similar tectonically controlled denudation and fracturing occurred in several stages during the Cenozoic. As a result of these processes, the studied Carnian carbonates were raised to a near‐surface position or became subaerially exposed, leading to dedolomitization of the last dolomite phase and precipitation of calcite cement in cavities and fractures. This study revealed that by investigating partially and selectively dolomitized rock types, it is possible to document and understand those stages of the multiple dolomitization process which can barely be detected in the completely dolomitized rock bodies. Recognition of the dolomitization phases could provide the basis for the analysis of their relations with the depositional, diagenetic and tectonic processes, and stages of basin evolution.  相似文献   

9.
The Early Jurassic dolomitized carbonates are a hydrocarbon exploration target in Northern Italy. Of these carbonates, the Liassic Albenza Formation platform and the overlying Sedrina Formation shelf were studied to define a pervasive dolomitization model and to shed light on dolomite distribution in the sub‐surface. Field work, as well as analyses of well cores, stable isotopes, trace elements and fluid inclusions, was carried out on the outcropping thrust belt and sub‐surface deformed foreland of the Southern Alps. Petrographic analyses showed a first, pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3 and D4). The δ18O values fall between ?8·2‰ and 0·1‰ Vienna‐Pee Dee Belemnite with the more depleted samples belonging to dolomite cement‐rich dolostones; the δ13C ranges from 2·6‰ to 3·7‰ Vienna‐Pee Dee Belemnite. Analysis of trace elements showed different Fe and Mn contents in the sub‐surface and outcropping dolostones, and a higher Fe in the younger dolomite cements. An increase in the precipitation temperature (up to 130 °C from fluid inclusion data) and a decrease in diagenetic fluid salinity (from sea water to brackish) are observed from the first pervasive replacement dolomite to the dolomite cement phases. Field observations indicate that, in the Albenza Formation, dolomitization was limited to palaeohighs or faulted platform margins in the Early Jurassic carbonates. The pervasive replacement phase is interpreted based on a ‘compaction model’; the formation fluids expelled from compacting basinal carbonates could have funnelled along faults into permeable palaeohighs. The high homogenization temperature of the dolomite cements and decreased salinities indicate precipitation at great depth with an influx of meteoric water. These data, along with the thermal history, suggest that the dolomite cements precipitated according to the ‘tectonic squeegee’ dolomitization model. The dolomite precipitation temperature was set against the thermal history of the carbonate platform to interpret the timing of dolomite precipitation. The dolomite precipitation temperatures (90 to 100 °C) were reached in the studied formations first in the thrust fold belt (Early Tertiary, 60 Ma), and then in the foreland succession during the Late Tertiary (10 Ma). This observation suggests that the dolomite precipitation fronts moved southwards over time, recording a ‘diagenetic wave’ linked to the migration of the orogenic system. Observations suggest that the porosity increased during the first phase of replacement dolomitization while the dolomite cementation phases partially occluded the pores. The distribution of porous dolomitized bodies is therefore linked to the ‘compaction dolomitization’ model.  相似文献   

10.
The presence of dolomite breccia patches along Wadi Batha Mahani suggests large-scale fluid flow causing dolomite formation. The controls on dolomitization have been studied, using petrography and geochemistry. Dolomitization was mainly controlled by brecciation and the nearby Hagab thrust. Breccias formed as subaerial scree deposits, with clay infill from dissolved platform limestones, during Early Cretaceous emergence. Cathodoluminescence of the dolostones indicates dolomitization took place in two phases. First, fine-crystalline planar-s dolomite replaced the breccias. Later, these dolomites were recrystallized by larger non-planar dolomites. The stable isotope trend towards depleted values (δ18O: − 2.7‰ to − 10.2‰ VPDB and δ13C: − 0.6‰ to − 8.9‰ VPDB), caused by mixing dolomite types during sampling, indicates type 2 dolomites were formed by hot fluids. Microthermometry of quartz cements and karst veins, post-dating dolomites, also yielded high temperatures. Hot formation waters which ascended along the Hagab thrust are invoked to explain type 2 dolomitization, silicification and hydrothermal karstification.  相似文献   

11.
We clarified three stages of dolomitization and secondary changes by studying the petrology and geochemistry characteristics of dolomite from the Ma55–Ma510 sub-members of the Ordovician Majiagou Formation in the Jingxi area in the Ordos Basin: (1) Syngenetic microbial dolomitization is characterized by formation of dolomite with a mainly micrite structure and horse tooth-shape dolomite cements. (2) Seepage reflux dolomitization during the penecontemporaneous period superposed adjustment functions such as recrystallization and stabilization in the middle-deep burial stage, forming dolomites mainly consisting of micro crystal and powder crystal structure. (3) Powder dolomite, fine dolomite, and medium-coarse crystalline dolomite formed in pores and fractures in the middle-deep burial stage. The secondary concussive transgression-regression under a regressive background is an important condition for the occurrence of many stages of dolomitization in the study area. The basin was an occlusive epicontinental sea environment in the Ma5 member of the Ordovician Majiagou Formation sedimentary period. In the sediments, sulfate content was high, which is conducive to the preservation of microbial activity and microbial dolomitization. Micritic dolomite formed by microbial dolomitization provides good migration pathways for seepage reflux dolomitization. Affected by evaporation seawater with increased Mg/Ca ratio, seepage reflux dolomitization was widely developed and formed large-scale dolomite, and underwater uplifts and slopes are favorable areas for dolomite. In the middle-deep burial stage, dolomitizing fluid in the stratum recrystallized or stabilized the previous dolomite and formed a small amount of euhedral dolomite in the pores and fractures.  相似文献   

12.
埋藏白云石化作用是形成厚层块状白云岩的主要机制之一,但其形成过程一直存在争议。本文以塔里木盆地永安坝剖面蓬莱坝组为例进行解剖,在露头和薄片岩石学研究的基础上,利用激光U-Pb定年和同位素分析,剖析了蓬莱坝组白云岩形成时期及演化过程,取得三个方面的认识:(1)蓬莱坝组发育四种类型白云岩:藻纹层白云岩、自形-半自形细中晶白云岩、雾心亮边自形中晶白云岩和他形粗晶白云岩,不同类型白云岩垂向互层发育;(2)U-Pb定年结果显示蓬莱坝组受三期云化作用改造,分别为准同生期云化作用、晚奥陶世到志留纪浅埋藏云化作用(464±12Ma到433±22Ma)及泥盆纪埋藏云化作用(382±29Ma),浅埋藏云化作用会对准同生白云石造成重结晶,而埋藏云化作用表现为白云石次生加大,存在寒武系云化流体卷入,影响U-Pb定年;(3)规模白云岩的发育为沉积环境和构造埋藏演化史共同作用的结果,提出塔中北斜坡和塔北南缘为规模白云岩发育区,这对本区油气勘探具有重要的指导意义。  相似文献   

13.
《Sedimentology》2018,65(1):209-234
Dolomites of varied ages exhibit metre‐scale nested patterns of lateral periodic variation in permeability and porosity and, by inference, dolomite abundance as most examples are 100% dolomite. Two‐dimensional reaction–transport modelling simulations of bed‐scale dolomitization were used to assess whether those patterns in dolomite abundance could form during near‐surface replacement dolomitization. Simulations used a 2 m high and 18 m long model domain, a low‐Mg calcite grainstone precursor and an evaporated Mississippian seawater brine (430 parts per thousand salinity) as the dolomitizing fluid. The domain was initially populated with random variations in porosity and/or grain size. Results reveal that spatial patterns in dolomite abundance emerge when there is as little as 1% dolomite formed, with similarities between the modelled patterns and outcrop‐documented patterns. The nested patterns include a near‐random component that constitutes ≤40% of the total variance, short‐range correlation ranging from 1·5 to 3·3 m and a longer‐range periodic trend with a wavelength up to 6·5 m. The emergence of pattern in dolomite abundance is the result of an autogenic self‐organizing phenomenon. It is triggered by variation in initial calcite reactive surface area that occurs due to the random heterogeneities in initial porosity and/or grain sizes. The pattern develops due to a combination of kinetic disequilibrium reactions (dolomite precipitation and calcite dissolution) and positive feedbacks between dolomite growth, calcite dissolution and fluid flow. Flow is around loci of higher dolomite, lower porosity and higher reactive surface areas, but through loci of lower dolomite, higher porosity and lower reactive surface areas. The resulting less porous/more dolomite and more porous/less dolomite structures at the metre‐scale arise from those localized interactions. This self‐organizing mechanism for pattern formation constitutes a new model for geochemical self‐organization during dolomitization and is the only self‐organization model that is proven applicable to the formation of metre‐scale patterns during early, near‐surface dolomitization.  相似文献   

14.
It has long been recognized that the Arab‐D reservoir in Ghawar field has been significantly dolomitized and that the distribution of dolomites is highly heterogeneous across this reservoir. Previous studies indicated that dolomite occurs with either a stratigraphic or non‐stratigraphic distribution; when mapped, dolomite tends to form several parallel linear trends across the field. Although stratigraphic dolomite was suggested to be formed early from highly evaporated pore fluids sourced from overlying evaporite deposits, non‐stratigraphic dolomite was thought to be generated primarily from hydrothermal fluids sourced from below. This study focuses primarily on these non‐stratigraphic dolomites, and proposes that: (i) these dolomites initially formed via seepage reflux, but were reinforced by late stage hydrothermal dolomitization; and (ii) reflux is also responsible for the formation of parallel, linear trends of dolomite. The reflux model hypothesizes that an evaporative lagoon (which is the source of dolomitizing fluids) formed during the falling stage systems tract of a depositional sequence, and that with continuing sea‐level fall this lagoon migrated progressively towards deeper parts of an intrashelf basin adjacent to the Ghawar field, leaving behind lines of dolomite bodies along a series of temporary coastlines. Two‐dimensional reactive transport models have been built to test this hypothesis, and have resulted in a predicted pattern of dolomite bodies that agrees with both the observed vertical distribution of non‐stratigraphic dolomite, as well as the mapped lateral distribution of the dolomite trends. In addition, the major ion compositions of Late Jurassic seawater are calculated based on fluid inclusion data in the literature. Using Jurassic seawater in current models leads to the absence of anhydrite cements and less potential of over‐dolomitization than using modern seawater.  相似文献   

15.
Widespread dolomitization and leaching occur in the Asbian to Brigantian (Dinantian) sequence of the Bowland Basin. Within this mudrock-dominated succession, dolomite is developed in calcarenites and limestone breccia/conglomerates deposited in a carbonate slope environment (Pendleside Limestone) and also within graded quartz wackes deposited by density currents in a generally ‘starved’ basin environment (Pendleside Sandstone). The dolomitized intervals range in thickness from less than one metre to several tens of metres and have a stratabound nature. All stages of calcite cement pre-date dolomitization and calcite veins are dolomitized. Dolomite crystals replace neomorphic spar and may also contain insoluble residues that were concentrated along stylolites. Thus dolomitization was a late stage process within the carbonate diagenetic sequence. A late-stage diagenetic origin is also indicated within the sandstones, with dolomite post-dating the development of quartz overgrowths. Six main textural styles of dolomite are observed: (1) scattered; (2) mosaic; (3) subhedral to euhedral rhombic; (4) microcrystalline; (5) single crystal and (6) saddle. The style of dolomite developed is dependent on the host rock mineralogy, on whether it is space-filling or replacive and also on temperature. Chemically the dolomite varies from near stoichiometric compositions to ankeritic varieties containing up to 20 mole % FeCO3. Generally the dolomites have isotopic compositions depleted in δ18O compared to the host limestone, with similar or lighter δ13C values. Initial dolomite was of the scattered type, but with progressive replacement of the host a mosaic dolostone with a sucrosic texture was produced. There was a general increase in the Fe and Mn content and reduction in δ18O ratio of the crystals during dolomitization. Leaching is restricted to partly dolomitized horizons, where calcite, feldspars, micas, clays and, to some extent, dolomite have been leached. This has produced biomouldic and vuggy secondary porosity within the carbonates, whereas in the sandstones honeycombed, corroded and floating grains associated with oversized pores occur. Porosity within both carbonates and sandstones is reduced by ferroan dolomite/ankerite cements. Field, petrographic and chemical characteristics indicate that dolomitizing solutions were predominantly derived from the enclosing mudrocks (Bowland Shales) during intermediate/deep burial. Fluid migration out of the mudrocks would have been sided by dehydration reactions and overpressure, the fluids migrating along the most permeable horizons—the coarse grained carbonates and sandstones that are now dolomitized and contain secondary porosity.  相似文献   

16.
通过岩心观察和薄片鉴定,在岩石学和矿物学特征分析基础上,结合白云石有序度测定,碳、氧同位素、锶同位素和稀土元素组成及配分模式分析,详细研究了川北元坝地区长兴组白云石化作用的特征、机制及模式,结果表明长兴组发育微晶白云石(岩)、粉-中晶他形白云石、粉-中晶自形白云石和异形白云石等四种类型,它们的有序度由低变高;白云石的碳、氧同位素、锶同位素和稀土元素组成及配分模式特征表明,长兴组微晶白云石(岩)、粉-中晶他形白云石、粉-中晶自形白云石主要形成于浓缩海水环境、正常海水环境、或者与正常海水相似的地层水环境中,并遭受过热液地质作用的改造,从微晶白云石(岩)→粉-中晶他形白云石→粉-中晶自形白云石是一个沉积埋藏过程中多阶段白云石化作用的产物,异形白云石则由热液作用形成;根据长兴组白云石的矿物学和地球化学特征及白云石化作用与层序和沉积相之间的关系,分别可以用准同生期蒸发泵白云石化作用模式、准同生期渗透回流白云石化作用模式、成岩早期浅埋藏状态下地层水白云石化作用模式和成岩晚期热液白云石化作用模式来解释微晶白云石(岩),粉-中晶他形白云石、粉-中晶自形白云石和异形白云石的形成。白云石化作用是有利于长兴组储层形成的建设性成岩作用。  相似文献   

17.
During the Cretaceous, high global sea-level and low latitudinal temperature variations led to the growth of epeiric carbonate platforms. Platform-scale dolomitization of these platforms is not common, reflecting the low Mg/Ca ratio of seawater and a humid climate. This study describes the processes governing pervasive dolomitization of a land-attached carbonate platform within the Iberian Basin. Dolomite is planar to sub-planar with a geochemical signature consistent with dolomitization from penesaline seawater. Dolomitization was most pervasive during a 1 Myr period in the middle Cenomanian, by repeated reflux of seawater from brine pools formed on the top of a southward-prograding carbonate platform. Tilting and structural reorganization in the Upper Cenomanian led to a reversal in polarity of the platform, and dolomitization was restarted by the northward reflux of seawater. Rising relative sea-level and oceanic acidification led to back-stepping of the platform such that the supply of dolomitizing fluids was cut off. In the Lower Turonian, pervasively dolomitized rudist rudstone facies in the south of the study area indicate that dolomitization restarted, either penecontemporaneously or later, from highly evaporated Campanian–Maastrichtian seawater. A systematic increase in dolomite crystal size up-section ties broadly, but not entirely, to stratigraphy. It is possible that these textural differences reflect changes in fluid chemistry, limestone permeability or precursor rock texture. However, the lack of stratigraphic conformance, and the preservation of the earliest-formed dolomite only in the oldest sediments, could indicate a progressive recrystallization of early-formed dolomite through repeated reflux of brines. As such, the succession appears to preserve a fossilized record of dolomite recrystallization through time during the Cenomanian–Turonian. The results of this study therefore provide a record of the progressive dolomitization of a carbonate platform and demonstrate the important interplay of climate and basin-scale tectonics on dolomite distribution and crystallinity.  相似文献   

18.
Cambrian dolostone reservoirs in the Tarim Basin, China, have significant potential for future discoveries of petroleum, although exploration and production planning is hampered by limited understanding of the occurrence and distribution of dolomite in such ancient rocks buried to nearly 8 km. The study herein accessed new drill core samples which provide an opportunity to understand the dolomitization process in deep basins and its impact on Cambrian carbonate reservoirs. This study documents the origin of the dolostone reservoirs using a combination of petrology, fluid‐inclusion microthermometry, and stable and radiogenic‐isotopes of outcrop and core samples. An initial microbial dolomitization event occurred in restricted lagoon environments and is characterized by depleted δ13C values. Dolomicrite from lagoonal and sabkha facies, some fabric‐retentive dolomite and fabric‐obliterative dolomite in the peloidal shoal and reef facies show the highest δ18O values. These dolomites represent relatively early reflux dolomitization. The local occurrence of K‐feldspar in dolomicrite indicates that some radiogenic strontium was contributed via terrigenous input. Most fabric‐retentive dolomite may have precipitated from seawater at slightly elevated temperatures, suggested by petrological and isotopic data. Most fabric‐obliterative dolomite, and medium to coarse dolomite cement, formed between 90°C and 130°C from marine evaporitic brine. Saddle dolomite formed by hydrothermal dolomitization at temperatures up to 170°C, and involved the mixing of connate brines with Sr‐ enriched hydrothermal fluids. Intercrystalline, moldic, and breccia porosities are due to the early stages of dolomitization. Macroscopic, intergranular, vuggy, fracture and dissolution porosity are due to burial‐related dissolution and regional hydrothermal events. This work has shown that old (for example, Cambrian or even Precambrian) sucrosic dolomite with associated anhydrite, buried to as much as 8000 m, can still have a high potential for hosting substantial hydrocarbon resources and should be globally targeted for future exploration.  相似文献   

19.
Reactive-transport models are developed here that produce dolomite via two scenarios: primary dolomite (no CaCO3 dissolution involved) versus secondary dolomite (dolomitization, involving CaCO3 dissolution). Using the available dolomite precipitation rate kinetics, calculations suggest that tens of meters of thick dolomite deposits cannot form at near room temperature (25-35°C) by inorganic precipitation mechanism, though this mechanism will provide dolomite aggregates that can act as the nuclei for dolomite crystallization during later dolomitization stage. Increase in supersaturation, Mg+2/Ca+2 ratio and CO3-2 on the formation of dolomite at near room temperature are subtle except for temperature.This study suggests that microbial mediation is needed for appreciable amount of primary dolomite formation. On the other hand, reactive-transport models depicting dolomitization (temperature range of 40 to 200°C) predicts the formation of two adjacent moving coupled reaction zones (calcite dissolution and dolomite precipitation) with sharp dolomitization front, and generation of >20% of secondary porosity. Due to elevated temperature of formation, dolomitization mechanism is efficient in converting existing calcite into dolomite at a much faster rate compared to primary dolomite formation.  相似文献   

20.
Zinc–lead–barite deposits located in Lefan and Lower Banik localities of about 25 km northeast of Zakho City, Northern Iraq consist of a group of strata-bound sulfides hosted in Upper Cretaceous (Upper Campanian–Maastrichtian) dolomitic limestone. Carbonate-hosted ores contain 3.77% Zn, 2% Pb, and 5% Fe, while in lower Banik, they contain 1.5% Zn, 0.37% Pb, and 1.4% Fe. Diagenetic processes, such as dolomitization and recrystalization in addition to the type of microfacies, provided appropriate physical and chemical conditions that permitted the passage of ore-bearing fluids and participated in precipitation and ore localization. These deposits are precipitated in a platform and developed within the Foreland Thrust Belt. Ore precipitated as infill of intergranular dolomite porosity with replaced dolomite and rudist shells forming disseminated crystals that occupy intergranular pore spaces around dolomite and calcite and as infill of dissolution spaces and fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号