首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The textural and compositional characteristics of the surficial shelf sediments north and south of the Orange River Delta are reviewed and compared. Sediments are fractionated and dispersed both north- and southwards of the Orange River mouth by wave action, longshore drift and subsurface currents. The mean grain size decreases both offshore and southwards in response to decreased wave influence at the seabed and the competence of the weak poleward undercurrent respectively. The increasing dominance of marine biogenic components in sediments south of the prodelta indicates a greater marine influence, modifying previous inferences that the Namaqualand mudbelt is primarily derived from the southward transport of Orange River sediments. A sharp distinction can be drawn between sediments of the Orange Shelf to the south and the Walvis Shelf to the north. Foraminiferarich deposits that dominate the Orange middle shelf and slope indicate that upwelling is an inner-shelf phenomenon. On the Walvis Shelf, foraminiferal sediments are confined to the slope and outer shelf. Fish debris is more common in Walvis Shelf sediments. Although phosphorite and glauconite sands often occur together in the same deposits on the Orange Shelf, the two minerals are concentrated in separate deposits on the Walvis Shelf.  相似文献   

2.
P.J Ramsay 《Marine Geology》1994,120(3-4):225-247
The geostrophic current-controlled northern Zululand shelf displays a unique assemblage of interesting physical, sedimentological and biological phenomena. The shelf in this area is extremely narrow (3 km) and is characterised by submarine canyons, coral reefs, and steep gradients on the continental slope. Three submarine canyons occur in the study area and are classified as mature- or youthful-phase canyons depending on the degree to which they breach the shelf. These canyons originated as mass-wasting features which were exploited by palaeo-drainage during sea-level regressions. Shelf lithology is dominated by a series of coast-parallel patch coral reefs which have colonised beachrock and aeolianite sequences that extend semi-continuously from −5 to −95 m, and delineate late Pleistocene palaeocoastline events. The unconsolidated sediment on the shelf is either shelf sand (mainly terrigenous quartz grains) or bioclastic sediment. Large-scale subaqueous dunes commonly form in the unconsolidated sediment on the outer-shelf due to the Agulhas Current flow. These dunes occur as two distinct fields at depths of −35 to −70 m; the major sediment transport direction is towards the south, but occasional bedload parting zones exist where the bedform migration direction changes from south to north.  相似文献   

3.
Fluid mud suspensions, defined as containing between 10 to 480 g/liter, occur in numerous estuarine and nearshore continental shelf environments. The quantities of sediment incorporated in fluid mud are enormous, and they must be considered to be of major importance in the transport and deposition of fine-grained sediment in these environments.This study was performed on the NE Brazilian Continental Shelf, a muddy coastline that reaches from the Amazon to the Orinoco, a distance of 1600 km. The fluid mud forms a thick (3 to 5 m) boundary layer that extends 100-km offshore and generally coincides with the 10-m depth contour.The fluid muds appear well-adjusted to the current regime on the NE Brazilian continental shelf. Near-bottom current velocities were seldom greater than 50 cm/sec during the sampling interval. Consequently, yield stress in fluid muds of 1.20 × 103 kg/m3 and greater was seldom exceeded, and consolidation proceeded without interruption.  相似文献   

4.
A seismic refraction survey along nine profiles has been carried out on the Norwegian continental shelf in the area between Andøya and Fugløybanken (69°–71°N). In all but one of the profiles the shelf is found to be covered with layered sediments. Average velocities are 1.85, 2.20, 2,55, 3.25, and 3.90 km/s probably representing sediments of Cenozoic and Mesozoic ages. An average velocity of 5.25 km/s represents a basement, which probably is the seaward continuation of the onshore Caledonian rocks. Except for an apparent depressional area just north of Andøya the sedimentary layers appear to dip towards the shelf edge. On the outer part of the shelf the 2.20 km/s layer appears at the sea-floor while more complex structures are found on the inner part of the shelf.Publication No. 3 in NTNF's Continental Shelf Project.  相似文献   

5.
The Galicia-Minho Shelf features two large mud patches, the Douro and the Galicia Mud patches. These are recent sediment bodies that have accumulated under a combination of conditions including: (1) abundant supplies of sediment; (2) morphological barriers that act as sediment traps; and (3) hydrographic conditions that favour the accumulation of fine sediment in these sinks. This paper describes the mechanisms controlling the deposition of the fine-grained sediment depositions and the processes that result in resuspension processes on the Galicia-Minho Shelf.Fine-grained sediments are provided from discharges from the river basins on the southern sector of the shelf, mainly the Douro and Minho rivers. Sediments are exported from river estuaries onto the shelf during episodic flood events. In contrast, most of the sediments originating from the Galician hinterland fail to contribute significantly to sedimentation on the shelf, because they are retained in the Galician Rías, which function as sediment traps.Sediments deposited on the shelf are frequently remobilized, particularly during southwesterly storms that coincide with downwelling conditions. Once in suspension the fine-grained sediments are transported northwards by the poleward flowing bottom currents and are eventually deposited on the Douro and Galicia Mud patches after a series of resuspension events. The locations of the two mud patches are strongly influenced by the shelf morphology.Fines already deposited on the mud patches are occasionally reintroduced into the system by large storm events. Some material from the Douro Mud patch and adjacent areas is re-deposited in the Galicia Mud patch. It is probable that sediments re-suspended from the Galicia Mud patch are carried off the shelf when storm events coincide with downwelling conditions.  相似文献   

6.
《Marine Geology》2005,216(4):239-247
The Ayeyarwady continental shelf is a complex sedimentary system characterized by large sediment influx (> 360 million ton/yr), a wide shelf (> 170 km), a strong tidal regime (7 m maximum tidal range), and incised by the Martaban Canyon. Grain size distribution on the Ayeyarwady shelf reveals three distinct areas in terms of sediment texture (i) a near-shore mud belt in the Gulf of Martaban and adjacent inner shelf (ii) outer shelf relict sands and (iii) mixed sediments with varying proportions of relict sand and modern mud in the Martaban Canyon. The bulk of the terrigenous sediment discharged by the Ayeyarwady River is displaced eastwards by a combination of tidal currents and clockwise flowing SW monsoon current and deposited in the Gulf of Martaban resulting in shoaling of its water depths. Part of the sediment discharge reaches the deep Andaman Sea via the Martaban Canyon and the rest is transported westward into the Bay of Bengal by the counter-clockwise flowing NE monsoon currents.  相似文献   

7.
Sediment distribution patterns on the Galicia-Minho continental shelf   总被引:1,自引:0,他引:1  
A sedimentological and bathymetric study of the Minho-Galicia Shelf shows a strong contrast between a southern shelf region with a thin partially relict cover of sands and gravel, and a northern region where fine-grained sediments predominate. This contrast is explained through differences in the sediment supply, the oceanographic environment (storms and ocean currents) and the morphology of the shelf which results from its underlying tectonic framework.Most sediment is supplied to the Galicia-Minho Shelf by river discharges onto the Minho Shelf, particularly that from the Douro River. In the northern part of the shelf the Galician Rías act as sediment traps rather than sediment suppliers. The bulk of the sediment washes out of the rivers during episodic storm events. While most of the coarse sediments remain deposited close to the coast, the fine-grained material is exported to the outer areas of the shelf. Subsequently, coarse sediments close to the coast are transported southwards by the littoral drift. Whereas the fine-grained material is frequently resuspended through the action of the large swells who influence reaches deep into the water. This frequent resuspension has a long-term sorting effect on the sediments. Furthermore, resuspended sediments on the middle and outer regions of the shelf are transported northwards by a poleward flowing bottom current.As a consequence of the differential transport of coarse sediments to the south, and of the fine-grained sediments to the north, the outer reaches of the Minho Shelf are relatively poor in recent sediments. In many areas relict sediments as well as features associated with ancient coastlines and river mouths, still appear as seabed features. In contrast, the northern regions of the shelf are covered by a thin veneer of fine-grained material that smooth other most of these fossil features.The fine-grained sediment fractions (mostly very fine sands to coarse silts) are deposited in two large mud patches, the Douro and the Galicia Mud Patches, which are situated at water depths of around 100–120 m. These two mud patches are both controlled by the local hydrodynamics and morphology. The Beiral de Viana, to the west of the Douro Mud Patch is a plateau, up to 20 m high lying parallel to the shelf-break and is a morphological expression of an underlying horst system. This plateau acts as a barrier that prevents the drift of some of the fine-grained material to the west, out over the shelf-break and the continental slope. The Galicia Mud Patch is situated on the eastern part of the Galician Shelf to the north of the Douro Mud Patch. It is situated near the extension of the Porto–Tomar fault, which results in the shelf being usually steep in this region, down to a depth of about 100 m. West of this area the slope is much more gentle. Northward transport of the sediment is strongly reduced by the E–W trending outcrops of plutonic and metamorphic rocks.  相似文献   

8.
Basal melting is an important factor affecting the stability of the ice shelf. The basal channel is formed from uneven melting, which also has an important impact on the stability of the ice shelf. Therefore, it has important scientific value to study the basal channel changes. This study combined datasets of Mosaics of Antarctica, Reference Elevation Model of Antarctica (REMA) and Operation IceBridge to study the temporal and spatial changes of basal channels at the Getz Ice Shelf in Antarctica. The relationships between the cross-sectional area and width of basal channel and those of its corresponding surface depression were statistically analyzed. Then, the changes of the basal channels of Getz Ice Shelf were derived from the ICESat observations and REMA digital elevation models (DEMs). After a detailed analysis of the factors affecting the basal channel changes, we found that the basal channels of Getz Ice Shelf were mainly concentrated in the eastern of the ice shelf, and most of them belonged to the ocean-sourced basal channel. From 2009 to 2016, the total length of the basal channel has increased by approximately 60 km. Affected by the warm Circumpolar Deep Water (CDW), significant changes in the basal channel occurred in the middle reaches of the Getz Ice Shelf. The change of the basal channels at the edge of the Getz Ice Shelf is significantly weaker than that in its middle and upper reaches. Especially in 2005–2012, the eastward wind on the ocean wind field and the westward wind around the continental shelf caused the invasion and upwelling of CDW. Meanwhile, the continuous warming of deep seawater also caused the deepening of the basal channel. During from 2012 to 2020, the fluctuations of the basal channels seem to be caused by the changes in temperature of CDW.  相似文献   

9.
The Indus Fan records the erosion of the western Himalayas and Karakoram since India began to collide with Asia during the Eocene, 50 Ma. Multi-channel seismic reflection data from the northern Arabian Sea correlated to industrial well Indus Marine A-1 on the Pakistan Shelf show that sedimentation patterns are variable through time, reflecting preferential sedimentation in deep water during periods of lower sea-level (e.g., middle Miocene, Pleistocene), the diversion of sediment toward the east following uplift of the Murray Ridge, and the autocyclic switching of fan lobes. Individual channel-levee systems are estimated to have been constructed over periods of 105–106 yr during the Late Miocene. Sediment velocities derived from sonobuoys and multi-channel stacking velocities allow sections to be time-depth converted and then backstripped to calculate sediment budgets through time. The middle Miocene is the period of most rapid accumulation, probably reflecting surface uplift in the source regions and strengthening of the monsoon at that time. Increasing sedimentation during the Pleistocene, after a late Miocene-Pliocene minimum, is apparently caused by faster erosion during intense glaciation. The sediment-unloaded geometry of the basement under the Pakistan Shelf shows a steep gradient, similar to the continent-ocean transition seen at other rifted volcanic margins, with basement depths on the oceanward side indistinguishable from oceanic crust. Consequently we suggest that the continent-ocean transition is located close to the present shelf break, rather than >350 km to the south, as previously proposed.  相似文献   

10.
《Marine Geology》2001,172(1-2):117-145
We propose that late Wisconsin deposition and erosion (Hudson Shelf and Block Island valleys) on the shelf and slope from New Jersey to southern New England were a consequence of the catastrophic drainage of glacial lakes behind terminal moraine systems and the huge volume of water stored beneath the Laurentian ice sheet and subsequent erosion of the lake sediments by flash floods. The morphology imparted by glaciation regulated the discharge associated with the ablation of the glaciers. Associated with the deposits west of Hudson Shelf Valley are the remains of mammoth and mastodon which were transported from their living habitats along the lake shores to their present burial sites on the shelf. The floods also triggered gravity flows on the upper continental slope which made possible the transportation of coarse debris over hundreds of km into the deep-sea. That these catastrophic flood morphologies can still be recognized on the middle to outer shelf suggest that much of its surface was little modified during the late Pleistocene/Holocene transgression. Thus the late Pleistocene/Holocene transgression may have been characterized by short periods when sea level rose rapidly allowing for the preservation of relict features.  相似文献   

11.
Locating the quantitized natural sediment fingerprints is an important work for marine sediment dynamics study.The total of 146 sediment samples were collected from the Shelf of the East China Sea and five rivers,including Huanghe (Yellow),Changjiang (Yangtze),Qiantang,Ou and Min River.The sediment grain size and the contents of rare earth elements (REEs) were measured with laser particle size analyzer and ICP-MS technology.The results show that absolute REE content (ΣREE) and the concentration ratio of light REEs to heavy REEs (L/HREE) are different in the sediments among those rivers.There are higher REE contents in being less than 2 m and 2–31 μm fractions in the Changjiang Estuary surface sediments.The REE contents of bulk sediment are dominated by the corresponding values of those leading size-fractions.REE of sediment is higher close to the estuaries and declines seaward on the inner shelf of the East China Sea (ECS).The L/HREE ratio has a tendency of increase southward from 28 ? N.Hydrodynamic conditions plays a predominate role on spacial distributions of the surficial sediment’s REE parameters.In some situations,the currents tend to remove the coarser light grains from initial populations,as well as the deposit of the finer heavy mineral grains.In other situations,the currents will change the ratio of sediment constituents,such as ratio between silts and clays in the sediments.As a result,the various values of REE or L/HREE ratio in different bulk sediments are more affected by the change of size-fractions than source location.Under the long-term stable hydrodynamic environment,i.e.,the East China Sea Shelf,new sediment transport model based on the size and density gradation concept may help to understand the spatial distribution patterns of REE parameters.  相似文献   

12.
南极普里兹湾及其邻近海域水团研究   总被引:3,自引:3,他引:0  
普里兹湾及其邻近海域是中国南大洋调查研究的传统优势海域与重点区域。围绕夏季表层水、冬季水、陆架水、绕极深层水、南极底层水、普里兹湾底层水、冰架水等研究海区主要水团的特征和分布,总结了前人在南极普里兹湾及其邻近海域基于调查资料开展的水团研究中所取得的成果。研究表明,前人在对陆架水的示性指标界定上,将陆架水是否区分为高盐陆架水和低盐陆架水存在较大争议,在高盐陆架水和普里兹湾底层水的定义上存在重叠;目前尚没有证据表明绕极深层水向南可以伸展到普里兹湾的陆架区域,也没有发现在普里兹湾附近海域生成南极底层水的直接证据。  相似文献   

13.
The west-central Florida inner shelf represents a transition between the quartz-dominated barrier-island system and the carbonate-dominated mid-outer shelf. Surface sediments exhibit a complex distribution pattern that can be attributed to multiple sediment sources and the ineffectiveness of physical processes for large-scale sediment redistribution. The west Florida shelf is the submerged extension of the Florida carbonate platform, consisting of a limestone karst surface veneered with a thin unconsolidated sediment cover. A total of 498 surface sediment samples were collected on the inner shelf and analyzed for texture and composition. Results show that sediment consists of a combination of fine quartz sand and coarse, biogenic carbonate sand and gravel, with variable but subordinate amounts of black, phosphorite-rich sand. The carbonate component consists primarily of molluskan fragments. The distribution is patchy and discontinuous with no discernible pattern, and the transition between sediment types is generally abrupt. Quartz-rich sediment dominates the inner 15 km north of the entrance into Tampa Bay, but south of the Bay is common only along the inner 3 km. Elsewhere, carbonate-rich sediment is the predominate sediment type, except where there is little sediment cover, in which cases black, phosphorite-rich sand dominates. Sediment sources are likely within, or around the periphery of the basin. Fine quartz sand is likely reworked from coastal units deposited during Pleistocene sea-level high stands. Carbonate sand and gravel is produced by marine organisms within the depositional basin. The black, phosphorite-rich sand likely originates from the bioerosion and reworking of the underlying strata that irregularly crop out within the study area. The distribution pattern contains elements of both storm- and tide-dominated siliciclastic shelves, but it is dictated primarily by the sediment source, similar to some carbonate systems. Other systems with similar sediment attributes include cool-water carbonate, sediment-starved, and mixed carbonate/siliciclastic systems. This study suggests a possible genetic link among the three systems.  相似文献   

14.
We use hydrological and current meter data collected in the Ross Sea, Antarctica between 1995 and 2006 to describe the spatial and temporal variability of water masses involved in the production of Antarctic Bottom Water (AABW). Data were collected in two regions of known outflows of dense shelf water in this region; the Drygalski Trough (DT) and the Glomar-Challenger Trough (GCT). Dense shelf water just inshore of the shelf break is dominated by High Salinity Shelf Water (HSSW) in the DT and Ice Shelf Water (ISW) in the GCT. The HSSW in the northern DT freshened by ∼0.06 in 11 y, while the ISW in the northern GCT freshened by ∼0.04 in 8 y and warmed by ∼0.04 °C in 11 y, dominated by a rapid warming during austral summer 2001/02. The Antarctic Slope Front separating the warm Circumpolar Deep Water (CDW) from the shelf waters is more stable near GCT than near DT, with CDW and mixing products being found on the outer DT shelf but not on the outer GCT shelf. The different source waters and mixing processes at the two sites lead to production of AABW with different thermohaline characteristics in the central and western Ross Sea. Multi-year time series of hydrography and currents at long-term moorings within 100 km of the shelf break in both troughs confirm the interannual signals in the dense shelf water and reveal the seasonal cycle of water mass properties. Near the DT the HSSW salinities experienced maxima in March/April and minima in September/October. The ISW in the GCT is warmest in March/April and coolest between August and October. Mooring data also demonstrate significant high-frequency variability associated with tides and other processes. Wavelet analysis of near-bottom moored sensors sampling the dense water cascade over the continental slope west of the GCT shows intermittent energetic pulses of cold, dense water with periods from ∼32 h to ∼5 days.  相似文献   

15.
Distribution of210Pb in sediments on the South Texas Continental Shelf is related to dynamics of the sedimentary transport processes. This radioisotope, whose concentration is time-dependent, defines three depocenters on the shelf. In addition, the variation of210Pb activity at the sediment/water interface delineates areas of terrigenous sedimentation from hemipelagic sedimentation.  相似文献   

16.
Temperature, salinity and chlorofluorocarbons (CFCs) 11, 12 and 113 were measured on a line of stations along the front of the Ross Ice Shelf in the austral summers of 1984, 1994 and 2000. Water mass distributions were similar each year but with high variability in the cross-sectional areas. CFC concentrations increased and salinity decreased with time throughout the water column. CFC saturation levels in the shelf and surface waters also increased with time and ranged from 43% to 90%. The undersaturation was due to inflow of low-CFC modified Circumpolar Deep Water, gas exchange limited by sea ice cover and isolation of water from the atmosphere beneath the ice shelf. The residence time of dense shelf waters resulting from sea ice formation is less well constrained by the chemical data than is the strong flow into the Ross Ice Shelf cavity. Shelf waters are transformed over about 3.5 years, by net basal melting of the ice shelf, into fresher Ice Shelf Water (ISW), which emerges as a large plume near the central ice front at temperatures below the sea surface freezing point. We estimate an average ISW production rate of 0.86 Sv and an average net basal melt rate of 60 km3/year for the Ross Ice Shelf exceeding a 300 m draft (75% of the ice cavity) during recent decades from box and stream tube models fit to all of the CFC and salinity data. Model fits to the individual data sets suggest ISW production and net basal melt rate variability due to interannual changes on a shorter time scale than our observations. ISW production based on the CFC budget is better constrained than net basal melting based on thermohaline data, with a heat budget yielding a rate of only 20 km3/yr. Reconciling differences between apparent freshwater and temperature changes under the ice shelf involves considerations of mixing, freezing and the flow of meltwater across the ice shelf grounding line.  相似文献   

17.
北白令海夏季冷水团的分布及其年际变化研究   总被引:7,自引:3,他引:4       下载免费PDF全文
利用1982-2008年间的高分辨率CTD数据,对夏季位于北白令海陆架底层的冷水团性质及其多年变化进行了研究.结果表明,依据该区域水体在温盐性质上的差异可以分为4类:陆架冷水团(BSW_C),白令海陆坡流水(BSCW),混合变性水(MW),陆架表层暖水(BSW_S).以-1℃,2℃和4℃温度等值线指示水团边界,清楚地将...  相似文献   

18.
A regressive depositional sequence has been prograding on the northeastern Tyrrhenian Shelf since the establishment of the present high stand of sea level. Thickness and distribution of this prograding sequence are chiefly controlled by the Tiber Delta sediment source and the oceanographic conditions on the shelf. Wavy bedforms characterize the Tiber prodelta slope between 35 and 100 m water depth. On 3.5 kHz subbottom profiles, these bedforms show the same morphology and internal depositional geometry as most of the deep-water examples of sediment waves.  相似文献   

19.
An ultra-high-resolution seismic study of the eastern Bengal Shelf with the parametric narrow-beam echosounder Parasound allows the interpretation of late Quaternary depositional patterns in terms of seismic stratigraphy. Accommodation space was still present on the outer shelf during the last lowstand, where a prograding delta developed in the western survey area. Oolitic beach ridges were later formed on top of this lowstand delta. Farther east, large parts of the shelf were exposed to subaerial erosion and a river system extended seaward across the area. A subaqueous highstand delta prograded southwards following the maximum transgression about 7,000 years ago. Its foreset beds exhibit acoustic voids very likely generated by sediment liquefaction, possibly caused by episodic energetic events such as major cyclones and/or earthquakes. Bottomset sediments extend seaward close to the shelf break in the west, whereas no Holocene sediments cover the outer shelf in the east.  相似文献   

20.
We present results from the first high-resolution seismic reflection survey of the inner Western Indus Shelf, and Indus Delta, Arabian Sea. The results show major regional differences in sedimentation across the shelf from east to west, as well as north to south, both since the Last Glacial Maximum (~20?ka) and over longer time scales. We identify 10 major regional reflectors, interpreted as representing sea level lowstands. Strong compressive folding is observed underlying a reflector we have called Horizon 6 in the north-western shelf, probably compression associated with the transpressional deformation of the Murray Ridge plate boundary. Downslope profiles show a series of well developed clinoforms, principally at the shelf edge, indicating significant preservation of large packages of sediment during lowstands. These clinoforms have developed close to zones of deformation, suggesting that subsidence is a factor in controlling sedimentation and consequently erosion of the Indus Shelf. These clinoforms fan out from dome features (tectonic anticlines) mostly located close to the modern shoreline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号