首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain(SNP)in the 1910s and 1930s.We then allocated this cropland area to grid cells with a size of 1 km×1 km,using a range of cultivation possibilities from high to low;this was based on topography and minimum distances to rivers,settlements,and traffic lines.Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China,and map vectorization was performed with Arc GIS technology.Cropland areas for the1970s,1980s,1990s,2000s,and 2010s were retrieved from Landsat images.We found that the cropland areas were 4.92×104 km~2 and 7.60×10~4 km~2,accounting for 22.8%and 35.2% of the total area of the SNP in the 1910s and 1930s,respectively,which increased to 13.14×10~4 km~2,accounting for 60.9%in the 2010s.The cropland increased at a rate of 1.18×10~4km~2 per decade from the 1910s to 1970s while it was merely 0.285×10~4 km~2 per decade from the 1970s to 2010s.From the 1910s to 1930s,new cultivation mainly occurred in the central SNP while,from the 1930s to 1970s,it was mainly over the western and northern parts.This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

2.
As one of the most critical impact factors of global change, historical land-use change is an indispensable input in climate and environment simulations. To better understand the cropland change in the Guanzhong area, gazetteers, statistics, and survey data were collected as data sources. Methods of registered tax-paying cropland data collection, selection of time points, and data interpolation and calibration were used to reconstruct changes in the cropland area. The cropland area data at the county level were allocated to 1 km×1 km grid cells. The total cropland area in the Guanzhong area was influenced by changes in population, wars, natural disasters, and land-use types, and it fluctuated from 1650 to 2016. From 1780 to 1830, the cropland expanded in the northern and western parts of Guanzhong area, and the cropland in the north of Qinling Mountains increased slightly. The spatial pattern of cropland reached its maximum range in 1980, and the cropland area declined in the whole study area, especially in the cities of Xi'an and Xianyang in 2016. The comparison between HYDE 3.2 and the data obtained in this study showed that the grid cells of HYDE 3.2 exhibit lower values of cropland area fractions in the Guanzhong Basin and higher values in high-altitude areas around the Guanzhong Basin as compared to those in this study.  相似文献   

3.
Yu  Wanhui  Zhang  Lijuan  Zhang  Hongwen  Jiang  Lanqi  Zhang  Ankang  Pan  Tao 《地理学报(英文版)》2020,30(3):439-454
The effects of human activities on climate change are a significant area of research in the field of global environmental change. Land use and land cover change(LUCC) has a greater effect on climate than greenhouse gases, and the effect of farmland expansion on regional drought is particularly important. From the 1910 s to the 2010 s, cultivated land in Songnen Plain increased by 2.67 times, the area of cultivated land increased from 4.92×10~4 km~2 to 13.14×10~4 km~2, and its percentage of all land increased from 25% to 70%. This provides an opportunity to study the effects of the conversion of natural grassland to farmland on climate. In this study, the drought indices in Songnen Plain were evaluated from the 1910 s to the 2010 s, and the effect of farmland expansion on drought was investigated using statistical methods and the Weather Research and Forecasting Model based on UK's Climatic Research Unit data. The resulting dryness index, Palmer drought severity index, and standardized precipitation index values indicated a significant drying trend in the study area from 1981 to 2010. This trend can be attributed to increases in maximum temperature and diurnal temperature range, which increased the degree of drought. Based on statistical analysis and simulation, the maximum temperature, diurnal temperature range, and sensible heat flux increased during the growing season in Songnen Plain over the past 100 years, while the minimum temperature and latent heat flux decreased. The findings indicate that farmland expansion caused a drying trend in Songnen Plain during the study period.  相似文献   

4.
Over the past few decades,built-up land in China has increasingly expanded with rapid urbanization,industrialization and rural settlements construction.The expansions encroached upon a large amount of cropland,placing great challenges on national food security.Although the impacts of urban expansion on cropland have been intensively illustrated,few attentions have been paid to differentiating the effects of growing urban areas,rural settlements,and industrial/transportation land.To fill this gap and offer comprehensive implications on framing policies for cropland protection,this study investigates and compares the spatio-temporal patterns of cropland conversion to urban areas,rural settlements,and industrial/transportation land from 1987 to 2010,based on land use maps interpreted from remote sensing imagery.Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China.We find that 42,822 km2 of cropland were converted into built-up land in China,accounting for 43.8% of total cropland loss during 1987–2010.Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000.The contribution of rural settlement expansion decreased;however,rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality.The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions.These changes were closely related to the economic restructuring,urban-rural transformation and government policies in China.Future cropland conservation should focus on not only finding a reasonable urbanization mode,but also solving the "hollowing village" problem and balancing the industrial transformations.  相似文献   

5.
Quantitative characterization of environmental characteristics of cropland(ECC)plays an important role in maintaining sustainable development of agricultural systems and ensuring regional food security. In this study, the changes in ECC over the Songnen Plain, a major grain crops production region in Northeast China, were investigated for the period 1990–2015. The results revealed significant changes in climate conditions, soil physical properties and cropland use patterns with socioeconomic activities. Trends in climate parameters showed increasing temperature(+0.49°C/decade, p 0.05) and decreasing wind speed(–0.3 m/s/decade, p 0.01) for the growing season, while sunshine hours and precipitation exhibited non-significant trends. Four topsoil parameters including soil organic carbon(SOC), clay, bulk density and pH, indicated deteriorating soil conditions across most of the croplands, although some do exhibited slight improvement. The changing amplitude for each of the four above parameters ranged within –0.052 to 0.029 kg C/kg, –0.38 to 0.30,–0.60 to 0.39 g/cm~3, –3.29 to 2.34, respectively. Crop production significantly increased(44.0 million tons) with increasing sown area of croplands(~2.5 million ha) and fertilizer application(~2.5 million tons). The study reveals the dynamics of ECC in the Songnen Plain with intensive cultivation from 1990 to 2015. Population growth, economic development, and policy reform are shown to strongly influence the spatiotemporal changes in cropland characteristics.The study potentially provides valuable scientific information to support sustainable agroecosystem management in the context of global climate change and national socioeconomic development.  相似文献   

6.
Reconstructing historical land use and land cover change(LUCC) at the regional scale is an important component of global environmental change studies and of improving global historical land use datasets. By analyzing data in historical documents, including military-oriented cropland(hereafter M-cropland) area, the number of households engaged in M-cropland(hereafter M-household) reclamation, cropland area, and the number of households, we propose a conversion relationship between M-cropland area and cropland area reclaimed by each household. A provincial cropland area estimation method for the Yuan Dynasty is described and used to reconstruct the provincial cropland area for AD1290. Major findings are as follows.(1) Both the M-cropland and cropland areas of each household were high in the north and low in the south during the Yuan Dynasty, which resulted from different natural conditions and planting practices. Based on this observation, the government-allocated M-cropland reclamation area to each household was based on the cropland area reclaimed by each household.(2) The conversion relationship between M-cropland and cropland areas per household showed conversion coefficients of 1.23 and 0.65 for the south and north, respectively.(3) The cropland area in the entire study area in AD1290 was 535.4×106 mu(Chinese area unit, 1 mu=666.7 m~2), 57.8% in the north and 42.2% in the south. The fractional cropland areas for the entire study area, north, and south were 6.8%, 6.6%, and 7.1%, respectively and the per capita cropland areas for the whole study area, north, and south were 6.7, 15.6, and 4.1 mu, respectively.(4) Cropland was mainly distributed in the middle and lower reaches of the Yellow River(including the Fuli area), Huaihe River Basin(including Henan Province), and middle and lower reaches of the Yangtze River(including Jiangzhe, Jiangxi, and Huguang provinces).  相似文献   

7.
北宋中期耕地面积及其空间分布格局重建(英文)   总被引:3,自引:1,他引:2  
To understand historical human-induced land cover change and its climatic effects, it is necessary to create historical land use datasets with explicit spatial information. Using the taxes-cropland area and number of families compiled from historical documents, we esti-mated the real cropland area and populations within each Lu (a province-level political region in the Northern Song Dynasty) in the mid-Northern Song Dynasty (AD1004-1085). The es-timations were accomplished through analyzing the contemporary policies of tax, population and agricultural development. Then, we converted the political region-based cropland area to geographically explicit grid cell-based fractional cropland at the cell size of 60 km by 60 km. The conversion was based on calculating cultivation suitability of each grid cell using the topographic slope, altitude and population density as the independent variables. As a result, the total area of cropland within the Northern Song territory in the 1070s was estimated to be about 720 million mu (Chinese area unit, 1 mu = 666.7 m2), of which 40.1% and 59.9% oc-curred in the north and south respectively. The population was estimated to be about 87.2 million, of which 38.7% and 61.3% were in the north and south respectively, and per capita cropland area was about 8.2 mu. The national mean reclamation ratio (i.e. ratio of cropland area to total land area; RRA hereafter for short) was bout 16.6%. The plain areas, such as the North China Plain, the middle and lower reaches of the Yangtze River, Guanzhong Plain, plains surrounding the Dongting Lake and Poyang Lake and Sichuan Basin, had a higher RRA, being mostly over 40%; while the hilly and mountainous areas, such as south of Nanling Mountains, the southwest regions (excluding the Chengdu Plain), Loess Plateau and south-east coastal regions, had a lower RRA, being less than 20%. Moreover, RRA varied with topographic slope and altitude. In the areas of low altitude (≤250 m), middle altitude (250-100 m) and high altitude (1000-3500 m), there were 443 million, 215 million and 64 million mu of cropland respectively and their regional mean RRAs were 27.5%, 12.6% and 7.2% respectively. In the areas of flat slope, gentle slope, medium slope and steep slope, there were 116 million, 456 million, 144 million and 2 million mu of cropland respectively and their regional mean RRAs were 34.6%, 20.7%, 8.5% and 2.3% respectively.  相似文献   

8.
We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series data, observed crop phenophases and the climate data collected from 1990 to 2010. First, the phenological parameters, such as the dates of onset-of-growth, peak-of-growth and end-of-growth as well as the length of the growing season, were extracted from the smoothed NVDI time-series dataset and showed an obvious correlation with the observed crop phenophases, including the stages of seedling, heading, maturity and the length of the growth period. Secondly, the spatio-temporal trends of the major thermal conditions (the first date of ≥10℃, the first frost date, the length of the temperature-allowing growth period and the accumulated temperature (AT) of ≥10℃) in Northeast China were illustrated and analyzed over the past 20 years. Thirdly, we focused on the responses of cropland phenophases to the thermal conditions changes. The results showed that the onset-of-growth date had an obvious positive correlation with the first date of ≥10℃ (P < 0.01), especially in the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle and eastern parts of Jilin Province. For the extracted length of growing season and the observed growth period, notable correlations were found in almost same regions (P < 0.05). However, there was no obvious correlation between the end-of-growth date and the first frost date in the study area. Opposite correlations were observed between the length of the growing season and the AT of ≥10℃. In the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle part of Jilin and Liaoning Provinces, the positive correlation coefficients were higher than the critical value of 0.05, whereas the negative correlation coefficients reached a level of 0.55 (P < 0.05) in the middle and southern parts of Heilongjiang Province and some parts of the Sanjiang Plain. This finding indicated that the crop growth periods were shortened because of the elevated temperature; in contrast, the extended growth period usually meant a crop transformation from early- or middle-maturing varieties into middle or late ones.  相似文献   

9.
中国东北耕地物候期对气候变化的响应(英文)   总被引:9,自引:3,他引:6  
We investigated the responses of cropland phenophases to changes of agricultural thermal conditions in Northeast China using the SPOT-VGT Normalized Difference Vegetation Index (NDVI) ten-day-composed time-series data, observed crop phenophases and the climate data collected from 1990 to 2010. First, the phenological parameters, such as the dates of onset-of-growth, peak-of-growth and end-of-growth as well as the length of the growing season, were extracted from the smoothed NVDI time-series dataset and showed an obvious correlation with the observed crop phenophases, including the stages of seedling, heading, maturity and the length of the growth period. Secondly, the spatio-temporal trends of the major thermal conditions (the first date of ≥10℃, the first frost date, the length of the temperature-allowing growth period and the accumulated temperature (AT) of ≥10℃) in Northeast China were illustrated and analyzed over the past 20 years. Thirdly, we focused on the responses of cropland phenophases to the thermal conditions changes. The results showed that the onset-of-growth date had an obvious positive correlation with the first date of ≥10℃ (P < 0.01), especially in the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle and eastern parts of Jilin Province. For the extracted length of growing season and the observed growth period, notable correlations were found in almost same regions (P < 0.05). However, there was no obvious correlation between the end-of-growth date and the first frost date in the study area. Opposite correlations were observed between the length of the growing season and the AT of ≥10℃. In the northern part of the Songnen Plain, the eastern part of the Sanjiang Plain and the middle part of Jilin and Liaoning Provinces, the positive correlation coefficients were higher than the critical value of 0.05, whereas the negative correlation coefficients reached a level of 0.55 (P < 0.05) in the middle and southern parts of Heilongjiang Province and some parts of the Sanjiang Plain. This finding indicated that the crop growth periods were shortened because of the elevated temperature; in contrast, the extended growth period usually meant a crop transformation from early- or middle-maturing varieties into middle or late ones.  相似文献   

10.
Using the methods of combining landscape ecology with GIS spatial analysis,this paper analyses the dynamics of the marsh landscape stucture of the Sanjing Plain in the past 20 years,furthermore,taking Fujin County,located in the north of the plain,as an example,analyzes the conversion between marsh and other land use types.It is shown that the marsh in the Sanjiang Plain decreased greatly in the past 20 years,but the trend has begun to reverse,The marsh area decreased by 51.33% from 1980 to 1996,whereas it decreased by 4.19% from 1996 to 2000.The fragmentation of the marsh increased;the number of the patches increased by 326 from 1986 to 1996,whereas it only increased by 18 patches from 1996 to 2000,It is obvious that the speed of patches number diminished and the marsh fragmentation decreased,which shows that the reclamation of the marsh converted from the fragmentation to the brim in a large area of the marsh.The reclaimed marsh has mainly converted to paddy field and dry land .Large area of the marsh.The reclaimed marsh has mainly converted to paddy fiedld and dry land.Large-scale reclamation in the Sanjiang Plain influences its natural environment directly:the climate of the region turns from cold and wet to warm and dry,which makes the marsh both in the low-temperature northern part and in the deeply stagnant eastern part suitable for further agricultural development.  相似文献   

11.
Spatially explicit modeling techniques recently emerged as an alternative to monitor land use changes. This study adopted the well-known CLUE-S(Conversion of Land Use and its Effects at Small regional extent) model to analyze the spatio-temporal land use changes in a hot-spot in Northeast China(NEC). In total,13 driving factors were selected to statistically analyze the spatial relationships between biophysical and socioeconomic factors and individual land use types. These relationships were then used to simulate land use dynamic changes during 1980–2010 at a 1 km spatial resolution,and to capture the overall land use change patterns. The obtained results indicate that increases in cropland area in NEC were mainly distributed in the Sanjiang Plain and the Songnen Plain during 1980–2000,with a small reduction between 2000 and 2010. An opposite pattern was identified for changes in forest areas. Forest decreases were mainly distributed in the Khingan Mountains and the Changbai Mountains between 1980 and 2000,with a slight increase during 2000–2010. The urban areas have expanded to occupy surrounding croplands and grasslands,particularly after the year 2000. More attention is needed on the newly gained croplands,which have largely replaced wetlands in the Sanjiang Plain over the last decade. Land use change patterns identified here should be considered in future policy making so as to strengthen local eco-environmental security.  相似文献   

12.
With linear curvefitting, Mann-kendall method and Yamamoto method, ≥10 ℃accumulated temperature and precipitation from May to September of 6 meteorological stations (Baoqing, fujin, Jiamusi, Hegang, Jixi and Hulin) from 1978 to 2007 were used to explore 30-year agricultural climate change and trend in the Sanjiang Plain. The results showed that ≥10 ℃ accumulated temperature of the 6 stations have risen by 141.0 ℃ to 287.4 ℃ when estimated by their significant linear trends (n=30, α=0.05) over the last 30 years (1978 to 2007). The rates of warming for the last 30 years range from 4.70 ℃per year to 9.58 ℃ per year. There are not significant linear trends on precipitation from May to September of the 6 stations over the last 30 years. The period of 1978 to 1998 in which ≥10 ℃ accumulated temperature is lower is consistent with that in which there is more precipitation from May to September, and warming and drying period has occurred in the Sanjiang Plain since 1999. Under the background of warming and drying agricultural climate, high yield cultivation of Phragmites australis and establishment of Phragmites australis-fish (crab) symbiosis ecosystem in natural mire are the ways for reasonable use of natural wetland. The area of paddy fields has been increasing from 7.25×104 ha in 1978 to 121.2×104 ha in 2006. It is proposed that paddy field range should not be expanded blindly toward the north in the Sanjiang Plain, and chilling injury forecast and prevention should be pay attention to. In the area that the chilling injury happens frequently, the rotation between rice and other crops should be implemented. Measures, which combine drainage, store and irrigation, should be taken instead of single drainage on comprehensive control of regional low and wet croplands to ensure controlling drought and flood.  相似文献   

13.
Land use/cover change is an important parameter in the climate and ecological simulations. Although they had been widely used in the community, SAGE dataset and HYDE dataset, the two representative global historical land use datasets, were little assessed about their accuracies in regional scale. Here, we carried out some assessments for the traditional cultivated region of China (TCRC) over last 300 years, by comparing SAGE2010 and HYDE (v3.1) with Chinese Historical Cropland Dataset (CHCD). The comparisons were performed at three spatial scales: entire study area, provincial area and 60 km by 60 km grid cell. The results show that (1) the cropland area from SAGE2010 was much more than that from CHCD moreover, the growth at a rate of 0.51% from 1700 to 1950 and -0.34% after 1950 were also inconsistent with that from CHCD. (2) HYDE dataset (v3.1) was closer to CHCD dataset than SAGE dataset on entire study area. However, the large biases could be detected at provincial scale and 60 km by 60 km grid cell scale. The percent of grid cells having biases greater than 70% (〈-70% or 〉70%) and 90% (〈-90% or 〉90%) accounted for 56%-63% and 40%-45% of the total grid cells respectively while those having biases range from -10% to 10% and from -30% to 30% account for only 5%-6% and 17% of the total grid cells respectively. (3) Using local historical archives to reconstruct historical dataset with high accuracy would be a valu- able way to improve the accuracy of climate and ecological simulation.  相似文献   

14.
Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with standard procedures based on Landsat TM/ETM+ im- ages. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as fol- lows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change de- creased in the south and increased in the north, but the total area remained almost un- changed. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the Huang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin; (2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China; (3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and (4) effective- ness of the "Grain for Green" project in the southern agricultural-pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change in the north affected the change in cropland, policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century, the anthropogenic factors that drove variations in land-use pat- terns have shifted the emphasis from one-way land development to both development and conservation. The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries, the internal characteristics of zones, and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning, variations in unit boundaries, and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.  相似文献   

15.
Analyses of desertified land and land use change in Naiman County of Inner-Mongolia showed that there was a fluctuated in-crease of rain-fed cropland in the period from 1951 to 1960, then decreased until the middle of the 1990's, then increased again, while irrigated cropland consistently increased. The woodland and build-up land consistently increased while grassland area de-creased. The area of water body increased from 1975 to 1995 and then decreased while river beach decreased. Wetland change fluctuated with a maximum of 303.53km2 in 1995 and a minimum of 62.08 km2 in 2002. Invasion of cropland into river beach does not only change land coverage on the beach, but also the hydrological process of the river systems and deeply influence wa-ter availability. The correlation between cropland and underground water table is negative and significant. Increase of irrigated cropland is the primary cause of water availability reduction. Water table reduction is negatively correlated to cropland. The total desertified land has decreased since 1975. A rapid increase occurred before 1959, but it is difficult to assess the change of deserti-fication due to lack of data from 1959 to 1975. Changes of different types of desertified lands were different. There is no signifi-cant correlation between land use and different types of desertified land, but there is a significant negative correlation between woodland and total desertified land. The correlation between grassland and total desertified land is positive and significant. There is a significant correlation between different land cover and key factors such as water body and annual precipitation, river beach and runoff, area of shifting dune and annual precipitation, and cropland and underground water table. Desertification reversion in Naiman County is fragile and will be even much more fragile due to population growth, rapid land use and climate change. This will lead to continued invasion of irrigated cropland into more fragile ecosystems and reduction of water availability.  相似文献   

16.
Land-use/land-cover changes(LUCCs) have links to both human and nature interactions. China's Land-Use/cover Datasets(CLUDs) were updated regularly at 5-year intervals from the late 1980s to 2010, with standard procedures based on Landsat TM\ETM+ images. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as follows. Land-use changes(LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years(1990–2010). The area of cropland change decreased in the south and increased in the north, but the total area remained almost unchanged. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included(1) an accelerated expansion of built-up land in theHuang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin;(2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China;(3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and(4) effectiveness of the "Grain for Green" project in the southern agricultural–pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change in the north affected the change in cropland, policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century, the anthropogenic factors that drove variations in land-use patterns have shifted the emphasis from one-way land development to both development and conservation. The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries, the internal characteristics of zones, and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning, variations in unit boundaries, and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.  相似文献   

17.
Different government departments and researchers have paid considerable attention at various levels to improving the eco-environment in ecologically fragile areas. Over the past decade, large numbers of people have emigrated from rural areas as a result of the rapid urbanization in Chinese society. The question then remains: to what extent does this migration affect the regional vegetation greenness in the areas that people have moved from Based on normalized difference vegetation index(NDVI) data with a resolution of 1 km, as well as meteorological data and socio-economic data from 2000 to 2010 in Inner Mongolia, the spatio-temporal variation of vegetation greenness in the study area was analyzed via trend analysis and significance test methods. The contributions of human activities and natural factors to the variation of vegetation conditions during this period were also quantitatively tested and verified, using a multi-regression analysis method. We found that:(1) the vegetation greenness of the study area increased by 10.1% during 2000–2010. More than 28% of the vegetation greenness increased significantly, and only about 2% decreased evidently during the study period.(2) The area with significant degradation showed a banded distribution at the northern edge of the agro-pastoral ecotone in central Inner Mongolia. This indicates that the eco-environment is still fragile in this area, which should be paid close attention. The area where vegetation greenness significantly improved showed a concentrated distribution in the southeast and west of Inner Mongolia.(3) The effect of agricultural labor on vegetation greenness exceeded those due to natural factors(i.e. precipitation and temperature). The emigration of agricultural labor improved the regional vegetation greenness significantly.  相似文献   

18.
Multiple cropping index(MCI) is the ratio of total sown area and cropland area in a region,which represents the regional time intensity of planting crops.Multiple cropping systems have effectively improved the utilization efficiency and production of cropland by increasing cropping frequency in one year.Meanwhile,it has also significantly altered biogeochemical cycles.Therefore,exploring the spatio-temporal dynamics of multiple cropping intensity is of great significance for ensuring food and ecological security.In this study,MCI of Huang-Huai-Hai agricultural region with intensive cropping practices was extracted based on a cropping intensity mapping algorithm using MODIS Enhanced Vegetation Index(EVI) time series at 500-m spatial resolution and 8-day time intervals.Then the physical characteristics and landscape pattern of MCI trends were analyzed from 2000–2012.Results showed that MCI in Huang-Huai-Hai agricultural region has increased from 152% to 156% in the 12 years.Topography is a primary factor in determining the spatial pattern dynamics of MCI,which is more stable in hilly area than in plain area.An increase from 158% to 164% of MCI occurred in plain area while there was almost no change in hilly area with single cropping.The most active region of MCI change was the intersection zone between the hilly area and plain area.In spatial patterns,landscape of multiple cropping systems tended to be homogenized reflected by a reduction in the degree of fragmentation and an increase in the degree of concentration of cropland with the same cropping system.  相似文献   

19.
The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of crop water consumption and net irrigation water consumption is crucial to guarantee the management of agricultural water resources. An actual crop evapotranspiration(ET) estimation model was proposed, by combining FAO Penman-Monteith method with remote sensing data. The planting area of winter wheat has a significant impact on water consumption; therefore, the planting area was also retrieved. The estimated ET showed good agreement with field-observed ET at four stations. The average relative bias and root mean square error(RMSE) for ET estimation were –2.2% and 25.5 mm, respectively. The results showed the planting area and water consumption of winter wheat had a decreasing trend in the Northern Hebei Plain(N-HBP) and Southern Hebei Plain(S-HBP). Moreover, in these two regions, there was a significant negative correlation between accumulated net irrigation water consumption and groundwater table. The total net irrigation water consumption in the N-HBP and S-HBP accounted for 12.9×10~9 m~3 and 31.9×10~9 m~3 during 2001–2016, respectively. Before and after 2001, the decline rate of groundwater table had a decreasing trend, as did the planting area of winter wheat in the N-HBP and S-HBP. The decrease of winter wheat planting area alleviated the decline of groundwater table in these two regions while the total net irrigation water consumption was both up to 28.5×10~9 m~3 during 2001–2016 in the Northwestern Shandong Plain(NW-SDP) and Northern Henan Plain(N-HNP). In these two regions, there was no significant correlation between accumulated net irrigation water consumption and groundwater table. The Yellow River was able to supply irrigation and the groundwater table had no significant declining trend.  相似文献   

20.
According to classification system of wetland in Ramsar Convention, salt marsh belongs to inland salt lake formed by regional hydrogeologic and climatic conditions[1]. In western Songnen Plain, the most distinct characteristic of water environment in salt marsh wetlands is that many water bodies have high salt contents and pH values, so salt marsh wetlands are categorized as a special natural synthesis[2]. 1 Natural environment in western Songnen PlainThe Songnen Plain lies to the east of …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号