首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On 18 January 2010, 15:56 UTC, a M w ?=?5.1 (National Observatory of Athens; NOA) earthquake occurred near the town of Efpalion (western Gulf of Corinth, Greece), about 10 km to the east of Nafpaktos, along the north coast of the Gulf. Another strong event occurred on 22 January 2010, 00:46 UTC with M w ?=?5.1 (NOA) approximately 3 km to the NE of the first event. We processed the seismological and geodetic data to examine fault plane geometry, dip direction, and earthquake interactions at the western tip of the Corinth rift. Our data include relocated epicenters of 1,760 events for the period January–June 2010 and daily global positioning system observations from the Efpalio station for the period 1 December 2009–1 March 2010. We suggest that the first event ruptured a blind, north-dipping fault, accommodating north–south extension of the Western Gulf of Corinth. The dip direction of the second event is rather unclear, although a south dip plane is weakly imaged in the post-22 January 2010 aftershock distribution. A Coulomb stress model based on homogeneous slip distribution of the first event showed static stress triggering of the second event of the order of 22–34 KPa that was transferred along the plane of failure. We also point out the existence of north dipping, high-angle faults at 10–15 km depths, which were reactivated because of Coulomb stress transfer, to the west and south of Efpalion. The January 2010 earthquakes ended a 15-year-old quiescence in that area of the Gulf. The crustal volume near Efpalion was also characterized by b values in the range 0.6–0.8 (1970–2010 period).  相似文献   

2.
The western part of the Corinth Gulf attracts attention because of its seismically active complex fault system and considerable seismic hazard. Close to the city of Aegion, damaged by the M L 6.2 earthquake of 1995, a sequence of small earthquakes occurred from February to May 2001. The sequence, comprising 171 events of M L 1.8 to 4.7, was recorded by a short-period network of the University of Patras, PATNET. As most stations have single component-recording, the S-wave arrival time readings were scarce. A sub-set of 139 events was recorded by at least 5 stations, and in this study we limit ourselves just to that sub-set. A preliminary location is performed by a standard linearized kinematic approach, with several starting depths and crustal models. Then the mainshock is re-located, and finally it is used as a master event to locate the remaining events. The mainshock relocation is performed by a systematic 3D grid search, and the trade-off between depth and origin time is eliminated by a special procedure, the so-called station difference (SD) method. In the SD method, instead of inverting arrival times directly, their intra-station differences are employed. The station corrections, determined from the master event, are also used. As a result, the sub-set is imaged as a relatively tight cluster, occupying space of about 5 by 5 km horizontally and 10 km vertically, with the mainshock inside (at a depth of 7 km). The results should be interpreted with caution, mainly as regards the absolute depth position of the cluster. A more accurate location would require a local network with both P and S readings.  相似文献   

3.
The Stone Canyon earthquake sequence started during August 1982 and lasted for about four months. It contained four mainshocks withM L 4, each with an aftershock zone about 4 km long. These mainshocks, progressing from southeast to northwest, ruptured a segment of the fault approximately 20 km long leaving two gaps, which were later filled by theM L =4.6 mainshocks of January 14, and May 31, 1986. The equivalent magnitude of the sequence isM L =5.0.Precursory seismic quiescence could be identified in: (1) the northernmost 10 km of the aftershock zone which contained three of the mainshocks; and (2) the southern gap in the aftershock zone. The fault segment containing the first mainshock and its aftershocks did not show quiescence. This pattern of precursory quiescence is very similar to two cases in Hawaii where the rupture initiation points of the mainshocks (M S =7.2 and 6.6, respectively) were located in volumes of constant seismicity rate, surrounded by volumes with pronounced precursory quiescence.The precursory quiescence before the August 1982 Stone Canyon earthquakes lasted for 76 weeks, amounted to a reduction in rate of about 60%, and could be recognized without any false alarms. That is, the anomaly was unique within the 60 km study segment of the fault and in the years 1975 through August 1982. Eighteen foreshocks occurred between July 27 and August 7, 1982. We conclude that the August 1982 mainshocks could have been predicted, based on seismic quiescence and foreshocks.  相似文献   

4.
A shallow earthquake ofM S=6.2 occurred in the southern part of the Peloponnesus, 12 km north of the port of the city of Kalamata, which caused considerable damage. The fault plane solution of the main shock, geological data and field observations, as well as the distribution of foci of aftershocks, indicate that the seismic fault is a listric normal one trending NNE-SSW and dipping to WNW. The surface ruptures caused by the earthquake coincide with the trace of a neotectonic fault, which is located 2–3 km east of the city of Kalamata and which is related to the formation of Messiniakos gulf during the Pliocene-Quaternary tectonics. Field observations indicate that the earthquake is due to the reactivation of the same fault.A three-days aftershock study in the area, with portable seismographs, recorded many aftershocks of which 39 withM S1.7 were very well located. The distribution of aftershocks forms two clusters, one near the epicenter of the main shock in the northern part of the seismogenic volume, and the other near the epicenter of the largest aftershock (M S=5.4) in the southern part of this volume. The central part of the area lacks aftershocks, which probably indicates that this is the part of the fault which slipped smoothly during the earthquake.  相似文献   

5.
The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M?>?2 (up to M4.4) that occurred during the 24?h preceding the mainshock. The foreshocks occurred along a north?Csouth trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15?s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120?km from the south end of the Elsinore fault zone north of the US?CMexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50?km long, as well as a 10?km north?Csouth aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific?CNorth America plate motion from the Gulf of California in the south into the southernmost San Andreas fault system to the north. We propose that the location of the 2010 El Mayor-Cucapah, as well as the 1992 Landers and 1999 Hector Mine earthquakes, may have been controlled by the bends in the plate boundary.  相似文献   

6.
On July 20, 1995, an earthquake of M L=4.1 occurred in Huailai basin, northwest of Beijing, with epicenter coordinates 40.326°N, 115.448°E and focal depth 5.5 km. Following the main shock, seismicity sharply increased in the basin. This earthquake sequence was recorded by Sino-European Cooperative Huailai Digital Seismograph Network (HDSN) and the hypocentres were precisely located. About 2 hours after the occurrence of the main shock, a smaller event of M L=2.0 took place at 40.323°N, 115.447°E with a focal depth of 5.0 km, which is very close to the main shock. Using the M L=2.0 earthquake as an empirical Green’s function, a regularization method was applied to retrieve the far-field source-time function (STF) of the main shock. Considering the records of HDSN are the type of velocity, to depress high frequency noise, we removed instrument response from the records of the two events, then integrated them to get displacement seismogram before applying the regularization method. From the 5 field stations, P phases in vertical direction which mostly are about 0.5 s in length were used. The STFs obtained from each seismic phases are in good agreement, showing that the M L=4.1 earthquake consisted of two events. STFs from each station demonstrate an obvious “seismic Doppler effect”. Assuming the nodal plane striking 37° and dipping 40°, determined by using P wave first motion data and aftershock distribution, is the fault plane, through a trial and error method, the following results were drawn: Both of the events lasted about 0.1 s, the rupture length of the first one is 0.5 km, longer than the second one which is 0.3 km, and the rupture velocity of the first event is 5.0 km/s, larger than that of the second one which is about 3.0 km/s; the second event took place 0.06 s later than the first one; on the fault plane, the first event ruptured in the direction γ=140° measured clockwise from the strike of the fault, while the second event ruptured at γ=80°, the initial point of the second one locates at γ=−100° and 0.52 km from the beginning point of the first one. Using far-field ground displacement spectrum measurement method, the following source parameters about the M L=4.1 earthquake were also reached: the scalar earthquake moment is 3.3×1013 N·m, stress drop 4.6 MPa, rupture radius 0.16 km. Contribution No. 99FE2022, Institute of Geophysics, China Seismological Bureau. This study is supported by the Chinese Joint Seismological Science Foundation (95-07-411).  相似文献   

7.
An earthquake sequence comprising almost 2000 events occurred in February–July 2001 on the southern coast of the Corinth Gulf.Several location methods were applied to 171 events recorded by the regional network PATNET. The unavailability of S-wave readings precluded from reliable depth determination. For the mainshock of April 8, ML= 4.7, the depth varied from 0 to 20 km. The amplitude spectra of complete waveforms at three local stations (KER,SER, DES; epicentral distances 17, 26 and 56 km) were inverted between 0.1 and 0.2 Hz for double-couple focal mechanism and also for the depth. The optimum solution (strike 220°, dip 40°, rake ‒160°, and depth of 8 km) was validated by forward waveform modeling.Additionally, the mainshock depth was further supported by the P- and S-wave arrival times from the local short-period network CRLNET (Corinth Rift Laboratory).The scalar seismic moment was 2.5e15 Nm,and the moment rate function was successfully simulated by a triangle of the 0.5 second duration. This is equivalent to a 1–1.5 km fault length, and a static stress drop 2–6 MPa. This value is important for future strong ground motion simulation of damaging earthquakes in Aegion region, whose subevents may be modeled according to the studied event. The T axis of the mainshock (azimuth 176° and plunge 67°), is consistent with the regional direction of extension N10°. However, none of the nodal planes can be associated to an active structure seen at the surface. The relationship of this earthquake sequence with deeper faults (e.g. possible detachment at about 10 km) is also unclear.  相似文献   

8.
Aftershock rates seem to follow a power law decay, but the assessment of the aftershock frequency immediately after an earthquake, as well as during the evolution of a seismic excitation remains a demand for the imminent seismic hazard. The purpose of this work is to study the temporal distribution of triggered earthquakes in short time scales following a strong event, and thus a multiple seismic sequence was chosen for this purpose. Statistical models are applied to the 1981 Corinth Gulf sequence, comprising three strong (M = 6.7, M = 6.5, and M = 6.3) events between 24 February and 4 March. The non-homogeneous Poisson process outperforms the simple Poisson process in order to model the aftershock sequence, whereas the Weibull process is more appropriate to capture the features of the short-term behavior, but not the most proper for describing the seismicity in long term. The aftershock data defines a smooth curve of the declining rate and a long-tail theoretical model is more appropriate to fit the data than a rapidly declining exponential function, as supported by the quantitative results derived from the survival function. An autoregressive model is also applied to the seismic sequence, shedding more light on the stationarity of the time series.  相似文献   

9.
Source extent parameters of the 1988 Lancang earthquake (M s=7.6) were estimated by computing the second-central moment of displacement pulses of far field long period SH waves. We inverted the source duration T, the fault length L and the directivity parameter D by the least squares, and obtained that T=11.77 s, D=15.05 km·s, and L=70.94 km. We also find that this event is a symmetrically bilateral rupture and fault segments in two opposite rupture directions have the same value of 35 km in length. Combining analysis of aftershock distribution, the results would imply that there is an area in the joint part of the rupture area of two main shocks, which is not broken yet during the main shocks. Due to the dislocation accompanied during the main shocks, the strain would be rearranged. The joint part has enough strength to accumulate enough strain energy to excite a larger aftershock.  相似文献   

10.
The earthquake was modeled using regional broad-band stations in Greece (epicentral distances up to 340 km). Inversion of the amplitude spectra of complete waveforms (0.05–0.08 Hz), later confirmed by the forward waveform modeling, provided strike = 150°, dip = 70°, rake = 10°, scalar moment M o = 4.1e18 Nm, and depth of 8 km. As the aftershock distribution had the same strike, the earthquake was interpreted as a left-lateral strike slip. The fault length was estimated by combining observed mainshock spectra and synthetic spectra of a weak event, representing impulse response of the medium. This gave the fault length estimate of 16 to 24 km. Similar results were obtained by means of a true M w = 5 aftershock. The waveform modeling (0.05–0.20 Hz) was performed for the 20 × 10 km finite-extent fault, with a homogenous slip of 0.63 m. It showed that the rupture propagation along the 150° strike was predominantly unilateral, from NW to SE.  相似文献   

11.
IntroductionSince the late 1970s, the quickly developed global digital seismograph network has been providing high quality recordings of large earthquakes in global scale, based on which digital seismology has made great progress. Compared with large earthquakes, moderate and small sized shocks have more frequent occurrence, and comprise clues to geological tectonics and tectonic stress field in a region. Preceding and following a large earthquake, usually occur numbers of small events that im…  相似文献   

12.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

13.
Introduction On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. In total 87 events with ML3.0 were recorded by Beijing Telemetry Seismic Network (BTSN) before March of 1999. Before relocation the preliminary hypocenters determined by BTSN showed an epicentral distribution of 25 km long and 25 km wide without any predominate orientation. The epicentral a…  相似文献   

14.
Vrancea is one of the few singular seismic regions of the world where intermediate-depth earthquakes are permanently generated (around 10 events/month with M L > 3) within an extremely confined focal volume. This particularity and the relatively large number of short-period waveforms recorded by the Romanian local network provides us the opportunity to test the performance of the empirical Green's function technique in retrieving the source time function and source directivity of the Vrancea earthquakes. Three earthquakes that occurred on March 11, 1983 (M L = 5.4), April 12, 1983 (M L = 5.1) and August 7, 1984 (M L = 5.1) in the lower part of the subducting lithosphere (h 150 km) were analyzed. A set of 28 adjacent events (3.0 < M L < 4.4) which occurred between 1981 and 1997 were selected as corresponding empirical Green's functions. To test the confidence of the retrieved source time function, we compare the deconvolved pulses using Green's functions of different sizes and recorded simultaneously by short-period and broad-band instruments. Our tests show that the durations of the source time function is well-constrained and is not affected by the limited frequency range of the short-period instruments, or by the relative difference in the focal mechanism between the main event and Green's event. The apparent duration of the source time function outlines source directivity effects, and when these effects are sufficiently strong, they can identify the real fault plane. Relatively short source duration and correspondingly high stress drop values are in agreement with other previous results emphasizing a specific seismic regime in the lower part of the Vrancea subducting lithosphere.  相似文献   

15.
Aftershock activity following the April 25, 1989 (M S =6.9) earthquake near San Marcos, Guerrero, Mexico, was monitored by a temporary network installed twelve hours after the mainshock and remaining in operation for one week. Of the 350 events recorded by this temporary array, 103 were selected for further analysis in order to determine spatial characteristics of the aftershock activity. An aftershock area of approximately 780 km2 is delimited by the best quality locations. The area of highest aftershock density lies inside an area delimited by the aftershocks of the latest large event in the region in 1957 (M S =7.5) and it partially overlaps the zone of maximum intensity of the earlier 1907 (M S =7.7) shock. Aftershocks also appear to cluster close to the mainshock hypocenter. This clustering agrees with the zone of maximum slip during the mainshock, as previously determined from strong motion records. A low angle Benioff zone is defined by the aftershock hypocenters with a slight tendency for the slab to follow a subhorizontal trajectory after a 110 km distance from the trench axis, a feature which has been observed in the neighboring Guerrero Gap. A composite focal mechanism for events close to the mainshock which also coincides with the zone of largest aftershock density, indicates a thrust fault similar to the mainshock fault plane solution.The San Marcos event took place in an area which could be considered as a mature seismic gap. Due to the manner in which strain release has been observed to previously occur, the occurrence of a major event, overlapping both the neighboring Guerrero Gap and the San Marcos Gap segments of the Mexican thrust, cannot be overlooked.  相似文献   

16.
The 2022 Menyuan MS6.9 earthquake, which occurred on January 8, is the most destructive earthquake to occur near the Lenglongling (LLL) fault since the 2016 Menyuan MS6.4 earthquake. We relocated the mainshock and aftershocks with phase arrival time observations for three days after the mainshock from the Qinghai Seismic Network using the double-difference method. The total length and width of the aftershock sequence are approximately 32 km and 5 km, respectively, and the aftershocks are mainly concentrated at a depth of 7–12 km. The relocated sequence can be divided into 18 km west and 13 km east segments with a boundary approximately 5 km east of the mainshock, where aftershocks are sparse. The east and west fault structures revealed by aftershock locations differ significantly. The west fault strikes EW and inclines to the south at a 71º–90º angle, whereas the east fault strikes 133º and has a smaller dip angle. Elastic strain accumulates at conjunctions of faults with different slip rates where it is prone to large earthquakes. Based on surface traces of faults, the distribution of relocated earthquake sequence and surface ruptures, the mainshock was determined to have occurred at the conjunction of the Tuolaishan (TLS) fault and LLL fault, and the west and east segments of the aftershock sequence were on the TLS fault and LLL fault, respectively. Aftershocks migrate in the early and late stages of the earthquake sequence. In the first 1.5 h after the mainshock, aftershocks expand westward from the mainshock. In the late stage, seismicity on the northeast side of the east fault is higher than that in other regions. The migration rate of the west segment of the aftershock sequence is approximately 4.5 km/decade and the afterslip may exist in the source region.  相似文献   

17.
The Gulf of Aqaba earthquake occurred on 22/11/1995 with M W = 7.2 and was the largest event to occur along the Dead Sea Transform in at least a century. We determined the source mechanism of the event based on the inversion of the P and SH waveforms observed by teleseismic stations. Our solution consists of 2 similar subevents, where the first exhibits a left-lateral strike-slip motion with a normal component and the second subevent shows an almost pure left-lateral strike-slip motion along the gulf major fault system. The total seismic moment is 7.7 × 1026 dyne-cm, with source duration of 15 seconds. The aftershock sequence was recorded by the regional broad band stations BGIO and JER, of the Israel Seismic Network, and KEG, of the MEDNET regional network for earthquakeswith M W > 4.0. Aftershock epicenter seems to cluster mainly in the Eilat basin and the Aragonese basin. The dominant mechanism indicates left-lateral strike slip motion along the gulf trend, similar to the mainshock.  相似文献   

18.
Focal properties of the Monte Negro earthquake (15 April 1979,M=7.1) and its seismic sequence (foreshocks and aftershocks), which occurred near the southwestern coast of Yugoslavia, are investigated. Fault plane solutions of the main shock and its largest aftershock (24 May 1979,M=6.3) and the spatial distribution of the shocks of this sequence show that the seismic fault strikes about southeast-northwest (parallel to the coast) and dips northeast (towards the continent). It is a strike-slip left-lateral fault with a considerable thrust component. Its length is 95 km and its width 12 km. An aseismic belt, which separated the aftershock foci into two groups (the northwestern and southeastern), is interpreted as a section of the fault that slipped smoothly during the main shock. The aftershock foci were barriers where stress had been induced. One of these barriers broke later and produced the largest aftershock of 24 May.  相似文献   

19.
The 9th of July 1998 Faial Island (Azores,North Atlantic) seismic sequence   总被引:2,自引:0,他引:2  
The Faial earthquake (M L 5.8) that occurred on the 9th of July, 1998, in the Azores region (north Atlantic), caused nine casualties and severe destruction affecting more than 5,000 people. The main shock was located at sea, 10 km NE of the Faial Island, and triggered a seismic sequence that lasted for several weeks and was characterized by an unusual high p-value of 1.40 for the modified Omori law. We present here the results of a joint inversion of hypocenters and 1D velocity model performed on the data collected by the permanent network complemented with a temporary network installed shortly after the occurrence of the main event. The 1D velocity model shows a heterogeneous upper crust, testified by the observed differences in site effects at the stations, while the middle crust from ∼2.5 to 8 km in depth is quite homogeneous. The Moho is located at a depth of about 12–13 km and the Vp/Vs ratio is found to be around 1.78. The events at depth are mainly concentrated in the middle-lower crust (8–12 km), while their spatial distribution shows a main cluster, visible after relocation, SSE trending. This direction of elongation is consistent with one of the fault planes (N151°E) of the centroid moment tensor (CMT) solution for the main shock. The same plane is the preferred main shock fault plane inferred after a Coulomb failure function analysis on the aftershock distribution. The main event relocation points to a focal depth shallower than 5 km. The aftershocks pattern shows that several fault systems were reactivated by the stress perturbation induced by the main shock. Besides the two main tectonic directions, trending WNW–ESE and NNW–SSE, observed in the tectonics of Faial, Pico, and S. Jorge, there is also evidence of a new tectonic direction trending WSW–ENE.  相似文献   

20.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号