首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
应用等效纬度-海拔模型进行地温及多年冻土制图   总被引:2,自引:2,他引:2  
This research presents a method for permafrost mapping in discontinuous permafrost regions based on equivalent latitude/elevation concept in interior Alaska. In winter months, study site has a strong temperature inversion in air up to 700 m elevation. Air temperature data and the effects of slope, aspect and elevation were used to create an equivalent latitude/elevation model. This model was well correlated with mean annual surface temperature (0.79). In this watershed, the thawing index (It≈1 400 ℃*days) at the ground surface and snow depth do not vary greatly from south facing to north facing slopes. The primary controlled factor that determines the mean annual surface temperature was the winter surface temperature. The permafrost stability is effectively controlled by the freezing index. We determined 37.5% of Caribou-Poker Creeks Research Watershed has unstable or thawing permafrost. At least 2.1% of the permafrost in this watershed may have disappeared in the last 90 years due to climate warming. This method makes it possible to evaluate the permafrost stability in the present, past and future.  相似文献   

2.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

3.
Takashi Ono 《冰川冻土》2004,26(Z1):64-69
Serious failure on the slope of rock ground can be caused by a cyclic action of freezing and thawing in the cold regions. The frost susceptibility and the effect of freezing and thawing onthe rock material, however, have not been well investigated. In order to find out the freezing effect on the rock materials, mortar specimens are frozen as a pseudo-rock material under the constant rate of freezing by means of controlling the temperature of both ends of specimen. The freezing process is given one-dimensionally to the cylindrical samples in the laboratory to simulate the in-situ freezing phenomena in the natural ground. Formation of ice lens, frost heave and water intake during freezing process are observed on the mortar specimen under constant freezing rate, which probably causes cracks or large deformation in the real rock ground. The values of the velocity of elastic wave propagation are compared before and after freezing process to estimate the degree of weathering due to freezing and thawing.  相似文献   

4.
刘建坤  鲍维猛  黎明  葛建军 《冰川冻土》2004,26(Z1):210-214
The design of roadbed-abutment transition part is always a challenging problem in transportation engineering, especially in permafrost distribution zone. A new type of roadbed-abutment transition part on permafrost was presented, and long-term observation was conducted for the deformation and the thermal regime of a roadbed-abutment transition part in the constructing Qinghai-Tibet Railway. In this paper, a new structure was presented and the observed settlements both in the subgrade and the base and its dependency with the thermal regime (permafrost table) were analyzed. In conclusion the roadbed-a-butment transition method for permafrost distribution zone was evaluated.  相似文献   

5.
青藏高原多年冻土区地温监测结果分析   总被引:6,自引:0,他引:6  
王绍令  赵新民 《冰川冻土》1999,21(4):351-356
Ground temperatures monitored at four observation sites in permafrost regions on the Tibetan Plateau was analyzed. It was found that the ground temperature at the depth of 12~20 m increased 0.2~0.4 K and the permafrost thickness decreased 4~5 m from the base in Xidatan Site from 1975 to 1989; and the ground temperature at the depth of 6~15 m increased 0.2~0.4 K in Kunlun Pass Site from 1982 to 1997. Contrast observations show that a sand cover, 15~20 cm in depth, can result in a ground temperature decrease of 0.1~ 0.2 K in MS66 Site; and a removal of vegetation can result in a ground temperature decrease of some 0.2 K in Hoh Xil Site. The monitor demonstrates that many factors that control permafrost developing have duality, e.g., sand and vegetation are able to increase or decrease the ground temperature. These factors, in conjunction with permafrost behaviour, play different roles under different conditions. Therefore, it is necessary to study, understand and evaluate permafrost and its engineering geological properties taking the viewpoint of dynamic variation.  相似文献   

6.
Using the long-term ground temperature monitoring data of the permafrost zone along the Qinghai-Tibet Railway from 2006 to 2020,three types of typical roadbed structures were analyzed. Traditional embankment(TE),U-shaped crushed rock embankment(UCRE)and crushed rock revetment embankment(CRRE)were included the three types of typical roadbed,which were selected to the long-term monitoring sections within the warm permafrost zones. The evolution of ground temperature field,mean annual ground temperature (MAGT)and annual maximum ground temperature(AMGT)in the depth range of 20 m under the embankment were analyzed and studied since 15 years of operation. The monitoring and analysis results show that:the growth rate of MAGT under the left and right shoulders of the TE is always higher than that of the same depth in the natural site. The MAGT under the UCRE is always lower than the natural site and always maintains a certain difference,whereas,the difference in ground temperature under the left and right shoulders is also not negligible. The MAGT of the left shoulder in the CRRE is not much different from that of the natural hole,while the MAGT of the right shoulder is always lower than that of the natural hole,and the differ in ground temperature between the left and right shoulders is smaller than that of the UCRE. The artificial permafrost table(APT)under the TE is always lower than that of in the natural site. Both the UCRE and CRRE,the APT in the left and right shoulders of them has been elevated into the embankment,and the differ of APT between the left and right shoulders is about 1. 0~1. 5 m. the differ of APT between the left and right shoulders in the CRRE is slightly lower than that of UCRE. Overall,because of the influence of thermal disturbance about engineering and climate warming,the TE in the warm permafrost zones cannot keep the thermal stability of permafrost under the embankment. Some active-cooling and reinforcement measures need to be taken. Both of the UCRE and CRRE,have a certain active-cooling effect on the permafrost under embankment,but the differ in ground temperature between the left and right shoulders still needs to be taken seriously. © 2022 Science Press (China).  相似文献   

7.
青藏铁路冻土路基沉降变形现场试验研究   总被引:3,自引:0,他引:3  
Based on the field data of ground temperature and roadway settlement observed during the construction of the experimental embankments over permafrost along the Qinghai-Tibetan Railway, this paper discusses the differences of frost process on the roadway surface from that on the natural ground surface, the changes of permafrost table under the roadway embankment, and the peculiarities of roadway settlement. Analyses of the test results show : 1) The differences of the freezing indexes between the roadway surfaces and the natural ground surfaces are less than those of the thawing indexes for all the test sections; 2) Since the measures of permafrost protection were taken, the permafrost tables under the embankments have raised after the roadway was constructed. The minimum is about 0.4 m and the maximum is 1.2 m; 3) the settlements of the roadway are mainly from the compression and creep of the icerich frozen soils under the original permafrost tables and the maximum has reached 6 ~ 8 cm during the first year after the embankments were constructed. Moreover, concerning the processes of roadway settlement, the deformation of the embankments has no obvious trend of attenuation at present. Especially,for the roadway with high embankments, the settlement may reach a remarkable value and much consideration must be given for this problem.  相似文献   

8.
Abstract: Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥ ?1°C) and massive ground ice. Under the scenarios of global warming and human activity, the permafrost under the railway will gradually thaw and the massive ground ice will slowly melt, resulting in some thaw settlement hazards, which mainly include longitudinal and lateral cracks, and slope failure. The crushed rock layer has a thermal semiconductor effect under the periodic fluctuation of natural air. It can be used to lower the temperature of the underlying permafrost along the Qinghai-Tibet railway, and mitigate the thaw settlement hazards of the subgrade. In the present paper, the daily and annual changes in the thermal characteristics of the embankment with crushed rock side slope (ECRSS) were quantitatively simulated using the numerical method to study the cooling effect of the crushed rock layer and its mitigative ability. The results showed that the ECRSS absorbed some heat in the daytime in summer, but part of it was released at night, which accounted for approximately 20% of that absorbed. Within a year, it removed more heat from the railway subgrade in winter than that absorbed in summer. It can store approximately 20% of the “cold” energy in subgrade. Therefore, ECRSS is a better measure to mitigate thaw settlement hazards to the railway.  相似文献   

9.
张钊 《冰川冻土》2004,26(Z1):184-188
The effective and assured measures in criteria of formulation, procedures, techniques and methods for geological prospecting of Qinghai-Xizang Railway have been made. The permafrost engineering geological investigation indicate the talik and those sections with annual average ground temperature higher than 1 ℃ takes up 68.8% of total amount; the high ice content permafrost also account for 50% of real permafrost section. The distribution of permafrost characteristics is obviously influenced by altitude and latitude. The prospecting also shows the distribution of permafrost characteristics is rather complicated. Based on two predications of air temperature-rising tendency, by calculating climate model of permafrost thermal status, and comparing and analyzing geological distribution of Qinghai-Xizang Railway, the tendency of permafrost recession range has been predicated.  相似文献   

10.
Permafrost along the Qinghai-Tibet railway is featured by abundant ground ice and high ground temperature. Under the influence of climate warming and engineering activities, the permafrost is under degradation process. The main difficulty in railway roadbed construction is how to prevent thawing settlement caused by degradation of permafrost. Therefore the proactively cooling methods based on controlling solar radiation, heat conductivity and heat convection were adopted instead of the traditional passive methods, which is simply increasing thermal resistance. The cooling methods used in the Qinghai-Tibet railway construction include sunshine-shielding roadbeds, crushed rock based roadbeds, roadbeds with rock revetments, duct-ventilated roadbeds, thermosyphon installed roadbeds and land bridges. The field monitored data show that the cooling methods are effective in protecting the underlying permafrost, the permafrost table was uplifted under the embankments and therefore the roadbed stability was guaranteed.  相似文献   

11.
Lenses of water-saturated unfrozen rocks (taliks) in permafrost are important sources of freshwater in high-latitude regions. Taliks stand out against the host frozen rocks in much lower resistivity and thus are detectable by resistivity surveys. TEM soundings are especially efficient in this application as they can go without galvanic grounding, have small offsets, and are sensitive to buried conductors. Early-time TEM data in the Taz area of the Yamal-Nenets district bear strong effects of fast-decaying inductively induced polarization (IIP), which rules out the use of nonpolarizable earth assumption for their interpretation. The TEM responses are inverted by means of the TEM-IP software using the model of a polarizable earth with Cole-Cole complex frequency-dependent conductivity. The resulting earth model mainly includes three layers, with a 100 to 250 m thick highly resistive polarizable upper layer. The polarization parameters of the layer (chargeability, time constant and exponent) are typical of frozen sedimentary rocks, while the presence of a talik reduces notably the effective resistivity and chargeability. This feature can be used as a guide to taliks, as it was confirmed by TEM surveys and subsequent drilling.© 2014, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

12.
冯晓琳  张艳林  常晓丽 《冰川冻土》2021,43(5):1468-1479
大兴安岭北部是我国唯一的中高纬度多年冻土区,其水热特征分析对陆气能量交换、生态系统和气候变化等研究有重要意义。基于2011—2020年期间对大兴安岭森林生态站附近的湿地多年冻土开展的气温和0~2 m地温和土壤含水量数据,对大兴安岭湿地多年冻土活动层的水热特征进行了分析。结果表明:湿地多年冻土活动层内地温的变幅随深度减小,且具有滞后性。融化期地表温度高于深层地温,冻结期相反。2012年、2013年、2019年和2020年的平均融化速率分别为0.49、0.61、0.47和0.56 cm·d-1,向上平均冻结速率分别为1.34、2.12、2.58和1.65 cm·d-1。向下平均冻结速率分别为1.69、1.02、3.32和1.00 cm·d-1,最大融化深度分别为78.73、85.65、66.22和74.94 cm。2012年5月—2013年5月期间,土壤未冻水含量随地温变化的拟合关系较好,相关系数大于0.90,且深层拟合效果优于表层。融化期土壤水分变化幅度大,与地温的相关性差,随深度增加相关性减弱。湿地充足的水分为多年冻土的双向冻结提供了条件。研究成果可为大兴安岭湿地多年冻土区的冻融循环、水热耦合机理和模拟研究提供数据基础和理论依据。  相似文献   

13.
地温年变化深度的准确判断对于多年冻土发育特征评估、寒区冻土模式下边界深度的确定具有重要意义.通过对青藏高原地区典型钻孔地温数据进行分析,初步揭示了多年冻土地温年变化深度的变化规律及其影响因素,并提出一种简化了地表和活动层状态影响的地温年变化深度估算方法.结果表明:研究区低温冻土的地温年变化深度平均值比高温冻土大4.6 m,随着冻土温度升高,地温年变化深度基本上呈减小趋势,部分低温冻土钻孔由于土层含水率过高导致地温年变化深度相对较小;由于活动层水热动态和冻融过程的影响,地温年变化深度与浅层(0.5 m)温度年较差相关性不显著,而与多年冻土上限附近温度年较差的大小呈显著正相关关系;地层介质的热扩散率差异是导致地温年变化深度区域差异和变化的主要原因,土层含水率、温度、质地以及水的相态是影响地层热物理性质重要因素.  相似文献   

14.
Using surface soil daily minimum temperature from 845 meteorological stations across China, the long-term (1971-2000) mean and spatial distribution of the near-surface soil freezing days were estimated with annual values of the number of near surface soil freezing days. The time series for the number of freezing days were constructed and compared with air temperatures in the same period.Resultsshowed that long term mean value in the number of the near surface soil freezing days increased with the increasing latitudes and altitudes over China. Near-surface soils were frozen for more than 200 days in the Qinghai Tibet Plateau, northern Xinjiang and northeast of China. The boundaries of permafrost zones coincide with the contour of (220±10) days of near-surface soil freezing. Using the mean number of 15 days of near-surface soil freezing as criterion, we found that the southern boundary of seasonally frozen ground is around the 25°N line, and the regions south of 22°N are essentially unfrozen regions. The time series of the number of freezing days showed a significant linear trend with change with a slope of -0.22days/year over a period from 1956 through 2006. After the 1990s, the linear slope was up to -1.02 days / year, indicating that the rate of decrease in the number of near-surface soil freezing days has accelerated. Changes in the number of near surface soil freezing were in a negative correlation with air temperature, i.e., the number of near-surface soil freezing days decreases with increase in air temperature.Backgroundcolor represents the contour values of the departure of near-surface soil freezing days from the 1971-2000 mean; Black dashed line is the boundary of permafrost regions, red dashed line is the boundary between frozen and unfrozen ground regions in China  相似文献   

15.
 Data from a direct current resistivity survey and geologic logs from boreholes were used to map the top of permafrost at a remote air force installation in Alaska. This study resulted from a remedial investigation that was conducted at Eielson Air Force Base near Fairbanks, Alaska, under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The depth and continuity of the permafrost was important in determining the fate of petroleum contamination that was inadvertently discharged to the ground during earlier air force operations. The results indicate that the top of permafrost forms a highly irregular surface. In general, however, the top of permafrost forms a diagonal ridge at the center of the contour grid that is bordered on each side by troughs. Received: 21 November 1995 · Accepted: 5 March 1996  相似文献   

16.
Seismiv surveys have been applied to investigate the structure of frozen ground, to identify and contour natural and man-caused unfrozen layers in permafrost (taliks), to constrain the position of the permafrost table in the Arctic inner shelf, and to study the related coastal stability. They are the classic methods common in shallow seismic exploration and new techniques specially designed at the Institute of Earth’s Cryosphere (Tyumen’) for different wave components. The joint use of compressional and shear waves provides a higher-quality interpretation of seismic data in permafrost applications. In the case of a single wave component, shear waves are advantageous over P waves.  相似文献   

17.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

18.
Fundamental knowledge of groundwater systems in areas of permafrost is often lacking. The likelihood of finding good quality groundwater resources of acceptable quantities generally decreases as the areal coverage of permafrost increases. In areas of continuous permafrost, the probability of finding areas of groundwater recharge and discharge are minimal. Still, in northeastern Alaska (USA), the presence of numerous springs and associated downstream aufeis formations clearly indicates that there has to be a groundwater system with the required complementary areas of groundwater recharge and transmission. Recharge zones and transmission pathways in this area of extensive permafrost, however, are essentially unknown. This study shows that the recharge occurs on the south side of the Brooks Range in northeastern Alaska, where extensive limestone outcrops are found. The transmission zone is beneath the permafrost, with discharge occurring through the springs via taliks through the permafrost (where faults are present) and also likely at the northern edge of the permafrost along the Beaufort Sea coast.  相似文献   

19.
《Computers and Geotechnics》2006,33(6-7):330-340
Artificial ground freezing is an effective ground improvement technique to deal with diverse geotechnical construction problems as it serves to cut off the water and also improves the ground soil strength. However, ground freezing may produce frost heave and thaw settlement at the ground surface. Predicting and controlling the frost heave is a challenge to engineering construction in a heavily populated city. This paper proposes an analysis model that couples the water freezing, temperature and stress fields. This model is first applied to an underground excavation problem of a corridor where ground freezing is used. The numerical predictions are compared with field measurements. It is then applied for a model tunnel problem to study the effect of the overlying soil thickness, frozen soil wall thickness, excavation radius and brine temperature on the frost heave. It is found that the vertical component of the frost heave follows a normal distribution with a maximum at the tunnel axis, while the horizontal component reaches a maximum at a distance from the tunnel axis. This distance is directly proportional to the thickness of the overlying soil. A critical brine temperature is also found at which the frost heave at the ground surface reaches a maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号