首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
季节冻土区正融粉质黏土强度影响因素敏感性分析   总被引:1,自引:1,他引:0  
针对季节冻土区路基填土春融时常处于强度不稳定的状态, 根据季节冻土特性选取冻结温度、 融化温度、 围压、 含水率4种影响因素, 对张家口季节冻土区粉质黏土进行了模拟正融土的常规三轴试验, 采用灰色关联分析法对试验结果进行分析, 给出了4种影响因素对强度的敏感性排序。结果表明: 含水率、 融化温度、 冻结温度的敏感性超过60%, 需要重点考虑。9%含水率时, 土样强度较高, 发生脆性破坏, 随着含水率的增大, 向延性破坏转变; 融化温度主要影响土体剪切过程中融化速度和排水固结的速度, 温度越低, 土样强度越高; 冻结温度通过改变土颗粒和冰晶体的胶结程度来影响强度, 冻结温度越低, 胶结作用越强, 但低于-10 ℃后, 强度增长缓慢; 围压越大, 土体强度越大, 不同围压影响下, 应力-应变曲线的形状和走势却大致相同, 分析结果可为季节冻土区实际工程提供一定的参考。  相似文献   

2.
黑河源区高山草甸的冻土及水文过程初步研究   总被引:10,自引:2,他引:8  
介绍了黑河源区野牛沟流域在试验点尺度和山坡尺度上所开展的冻土水文过程初步结果.冻土水文观测场建于最大冻结深度约为3.0 m的季节冻土区,近50 a来,该区降水量变化不大,器测蒸发量(Φ20)和风速呈明显的降低趋势,而气温和地表温度则分别上升约1.0℃和1.7℃.研究区季节冻土冻结上限和下限深度均与地表温度呈二次多项式关系,这表明地表温度与冻结或融化区地温变化之间有一个滞后过程.在地表融化季节,季节冻土存在两层现象.当融化深度接近最大冻结深度时,存在向上和向下的双向融化现象,但自下而上融化速率较慢.2005年9月-2006年9月,具有较高代表性的3个山坡径流场均没有观测到产流量,结合蒸散发观测和野外调查,发现夏季高山草甸具有明显的地表径流拦蓄和水源涵养作用.COUP模型能够较好的连续演算试验场生长季节高山草甸-季节冻土-大气-维水热传输和耦合过程,但因其土壤完全冻结临界温度阀值设置偏高,影响了非生长季节的计算精度.  相似文献   

3.
在唐古拉山南麓季节冻土分布极为广泛。 季节冻土是放置各种建筑物基础的场所,因此,查明季节冻结层与融化层的形成条件、过程、以及发育规律不仅具有重要理论意义,而且也为改造季节冻土提供了科学依据。  相似文献   

4.
在季节冻土区,周期性的冻结与融化作用持续改变着浅层非饱和土体的微结构和物理力学性质,从而直接影响着土与结构物之间的相互作用。土体与结构物接触面的应力-应变关系及其强度特征是确定季节冻土区基础工程承载力、安全性和分析结构与土体相互作用的基础和关键。为了更好地服务于实际工程,通过对不同含水率、不同冻融循环次数的非饱和黄土-混凝土试样进行直剪试验,并同时采用滤纸法测试相应黄土的基质吸力,获取了不同试验条件下的应力-应变关系曲线以及接触面强度参数、基质吸力随冻融循环次数的变化规律。同时,基于试验数据,建立了非饱和黄土与混凝土界面剪应力-位移-冻融循环次数的本构模型,该模型对黄土-混凝土界面经过多次冻融循环后不同压力下的剪应力-位移的关系曲线起到了很好的描述作用,为解决实际工程中季节冻土区基础承载力的数值计算提供了参考。  相似文献   

5.
我国冻土融化压缩性研究   总被引:4,自引:1,他引:4  
冻土中的热交换是冻土生存与消融最重要的因素。随着国民经济建设的发展,改变了多年冻土及季节冻土区建筑物热量和地面条件,从而加速了冻土中热迁移过程。防止冻土融化是保持多年冻土地基强度的重要措施。然而,当冻土的融化不能防止时,对冻土融化固结特性的研究就成为冻土力学研究的主要课题,其中包括冻土的融化下沉系数、融化速率、压缩系数,以及它们与冻土基本物理指标间的关系等。建筑实践经验告诉我们,融沉破坏是多年冻土区建筑物冻害的主要原因.对季节冻土区工民建筑物浅基的实施,冻土融化下沉性则成为基础埋置深度设计的重要依据。  相似文献   

6.
青藏高原季节冻土区土壤冻融过程水热耦合特征   总被引:8,自引:5,他引:3  
青藏高原被誉为“中华水塔”, 其广泛分布的多年冻土和季节冻土在保证我国水资源安全上具有重要的地位。基于2015年7月 - 2016年6月青海海北站季节冻土的水热监测数据(土壤含水量为未冻水含量), 分析了冻结深度的季节变化和冻融过程水热运移特征。结果表明: 各土层土壤温度与土壤水分含量变化均表现为“U”型。土壤温度变化规律与日平均气温基本一致, 但滞后于日平均气温的变化, 滞后时间取决于土层深度。与多年冻土冻融规律不同, 海北站季节冻土表现为单向冻结、 双向融化特征, 冻融过程大致可划分为三个阶段: 冻结初期、 冻结稳定期和融化期。同时, 季节冻土消融速率大于冻结速率, 且融化过程中以浅层土壤融化为主。在冻结过程中, 土壤水分沿上、 下两个方向分别向冻结锋面迁移, 各土层土壤含水量迅速下降。而在融化过程中, 各土层土壤含水量逐渐增加, 且在浅层土壤形成一个土壤水分的高值区。土壤冻融过程中未冻水含量与各土层土壤温度具有较好的相关关系, 且浅层土壤拟合效果优于深层土壤。本研究对揭示高原关键水文过程以及寒区水热耦合模型构建具有重要意义。  相似文献   

7.
季节冻土是气候变化的重要指示器,对区域气候变化具有重要的表征作用。本文利用青海省三江源地区20个位于季节冻土区的气象观测站点数据,通过计算最大冻结深度、冻结开始日期、完全融化日期和冻融期4个指标,分析了1961—2019年期间三江源地区季节冻土冻融状态时空变化特征;并通过计算空气冻结、融化指数及其变化趋势,结合地理因子(海拔、经度和纬度)和气候因子(气温、降水和雪深)评估了三江源地区季节冻土最大冻结深度与冻融状态的影响因素。结果表明:三江源地区季节冻土最大冻结深度为64.7~214.1 cm,冻结开始日期为9月初—10月底,完全融化日期为3月下旬—6月底,冻融期为144.7~288.4 d;1961—2019年期间三江源地区季节冻土最大冻结深度呈显著减小趋势[2.5 cm·(10a)-1],冻结开始日期显著推迟[2.9 d·(10a)-1],完全融化日期显著提前[2.6 d·(10a)-1],冻融期显著缩短[5.5 d·(10a)-1];三江源地区季节冻土冻融状态变化主要受温度变化的影响,表现为冷季...  相似文献   

8.
土三轴压缩试验试验方法的对比探讨   总被引:2,自引:0,他引:2  
土的抗剪强度在岩土工程设计中是一个很重要的指标。三轴压缩试验是测定抗剪强度的方法之一。本文就三轴压缩试验的常规方法和一个试样多级加荷方法进行的固结不排水剪(CU)的试验结果,分析它们之间的差异,探讨了形成差异的原因。  相似文献   

9.
冻融作用对饱和粉质黏土抗剪性能的影响   总被引:4,自引:0,他引:4  
为研究季节冻土地区冻融作用对道路边坡土体抗剪性能的影响规律,在不同冻结和融化温度、不同冻融循环次数、开放和封闭体系条件下对冻融饱和原状粉黏土试样进行了不固结、不排水剪切试验。试验结果表明:饱和原状粉质黏土冻融后,黏聚力降低,内摩擦角增大,冻结温度越低,冻融作用对黏聚力和内摩擦角的影响越小,随着冻融循环次数的增加,5~7次冻结循环后二者的变化逐渐趋于稳定。水分补给会强化冻融作用对试验土抗剪性能的影响;融化温度对试验土的抗剪性能影响很小。  相似文献   

10.
青海高原冻土退化的若干事实揭示   总被引:35,自引:14,他引:21  
利用地理信息系统技术和数理统计学方法,分析了青海高原冻土分布的时空演变规律,揭示了其退化的若干事实.研究表明:季节冻土和多年冻土在青海高原分布十分广泛;季节冻土具有显著的年内变化特征,冻土的融化过程通常较冻结过程复杂的多,且与地形因子和土壤特性等具有密切的关系.近几十年来,冻土表现为地温显著升高、冻结持续日数缩短、最大冻土深度减小和多年冻土面积萎缩、季节冻土面积增大以及冻土下界上升等总体退化的趋势.  相似文献   

11.
全球气候变暖背景下,活动层厚度的加深是多年冻土退化最主要表现特征之一,但其变化存在强烈的空间异质性,尤其是在复杂山地环境显得更为突出。以祁连山黑河流域俄博岭为研究区,采用钎探的方法,在样方尺度上探究冻胀草丘和热融洼地两种微地貌下伏活动层融化深度的差异性。结果表明:6—10月,冻胀草丘和热融洼地活动层融化深度的变化范围分别为(44.48±4.97)~(118.38±20.94) cm和(29.22±7.42)~(93.40±15.45) cm,且冻胀草丘活动层融化深度加深的速度快于热融洼地。样方尺度上,两种微地貌下伏活动层最大融化深度差异比较明显,冻胀草丘处的活动层融化深度是热融洼地的2倍之多,这主要由不同微地貌之间土壤含水量的差异而导致的。另外,借助一维热传导模型模拟了两种微地貌下的活动层热状态,结果表明土壤水分差异性致使热融洼地的融化深度较冻胀草丘浅。山地环境条件下,不同微地貌之间活动层融化深度差异性研究有助于为未来开展高精度活动层融化深度制图提供可靠的技术支撑。  相似文献   

12.
冻土融化体积压缩系数的经验确定方法   总被引:1,自引:0,他引:1  
杨凤学  张喜发  冷毅飞  赵意民 《岩土力学》2011,32(11):3432-3436
融沉变形破坏是多年冻土区建筑物冻害的主要原因之一,实际的融沉量是热融沉陷与压缩沉降量的叠加:冻土融化体积压缩系数是估算冻土融后压缩沉降变形量的关键计算参数。根据286个冻土原状样融沉压缩试验数据资料,对细砾土、砂土、粉土、黏性土、泥炭化黏性土和泥炭质土等6类土,分别提出了在0~100 kPa和0~200 kPa压力段两种条件下的体积压缩系数和干密度之间的线性、二项式和对数式回归分析方程式。在此基础上,给出了确定6类土体积压缩系数的经验数据表。此外,还指出了现有规范推荐方法和建议值所存在的问题  相似文献   

13.
温度-湿度-荷载综合作用下路基冻融过程试验研究   总被引:5,自引:3,他引:2  
为了研究季节冻土路基内部温度场、水分场及应力场综合效应的变化特性,基于自主研发的温度-湿度-荷载综合模型试验测试系统,进行室内路基模型的冻结与融化循环试验,分析了冻融循环过程路基内部土体水、热及力学性能的变化特性.试验表明:冻结过程中,初期温度变化大,温度梯度从顶端向底部逐渐递减;路基顶冻结后,0℃冻结锋面不断往下移动,0℃分界线两段内温度梯度差异大;路基含水率分为冻结区未冻水含量似稳定段、过渡区未冻水快速相变段、未冻结区含水率减小段.融化过程中,温度变化先大后小,未冻结水含量与温度大小相关,路基内部含水量呈现中间增大,两端减小的情形.水热综合作用下,应力场表现:冻融过程中,路基回弹模量随着冻结深度的增大呈线性增加,随融化深度的增加而减小;路基回弹模量随冻融循环次数增加而衰减,当达到6次时,衰减趋于稳定.结果表明,土体水热耦合作用是影响路基土体力学性能的关键因素.  相似文献   

14.
青藏公路沿线通信光缆埋设地段冻土工程地质条件及评价   总被引:1,自引:5,他引:1  
王家澄  吴紫汪 《冰川冻土》1997,19(3):240-244
青藏公路沿线季节冻土和多年冻土的总长度为760km,根据气温冻结指数和融化指数可估算最大季节冻结深度和最大季节融化深度。根据含水量划分出5种冻土类型和5个冻胀敏感性等级。提出了光缆埋设若干选线和施工建议。  相似文献   

15.
水泥改良冻土在融化压缩下的微观孔隙演变特征研究,对了解水泥改良冻土的过程具有重要意义。将水泥改良后的冻土进行融化压缩实验,通过冷冻干燥法对试验后的土样进行电镜样品制取并获取其微观特征图像。对试验土样进行比重测试,得到土样真实的三维孔隙比。最后以真实孔隙比作参考,确定图像分割所选取的灰度值并提取其孔隙特征。结合融化压缩试验结果,对水泥改良冻土的孔隙数量、面积、定向角及丰度值随改良土压缩量的变化关系进行了分析。研究结果表明:经过水泥改良后的冻土,大孔隙结构强度增大明显;随着水泥掺量及养护龄期的增加,孔隙比与孔隙面积变大,压缩量变小;随着土体压缩量的增大,孔隙的定向角分布逐渐由均匀状向锯齿状发展;土样压缩过程中,丰度值大于0.5的孔隙发生压缩明显,孔隙逐渐趋于细长状,并且随着压缩量的增大,孔隙丰度值的分布越来越趋于正态分布。孔隙微观结构演变研究为阐释水泥改良冻土宏观力学特性增强的机制提供了科学依据。  相似文献   

16.
季节冻土在高寒山区广泛分布,其冻融过程会对水文水资源和生态环境产生深刻影响。研究气候变化背景下高寒山区季节冻土冻融特征参数变化及影响机理,可为高寒山区水资源管理和生态保护提供科学依据。本文选择天山南坡作为研究区,基于13个气象站点1958年以来季节冻土冻融参数(最大冻深、冻结期、始冻日、解冻日)、气温、地表温度、降雨和积雪等数据,使用空间分析和多元线性回归统计等方法对冻融参数的时空变化特征进行分析,量化不同气候因素对季节冻土冻融变化的影响权重。结果表明,季节冻土最大冻深在(48.5±11.4)~(96.8±8.5) cm之间,冻结天数在(102±10)~(141±14) d之间,多年平均始冻日在11月7日至19日之间,多年平均解冻日在3月1日至28日之间。1950年代至2010年代期间,始冻日逐渐推迟,解冻日逐渐提前,冻结天数缩短。空间分布上,最大冻深有“海拔高,最大冻深大”的规律;空间变化趋势上,最大冻深在研究区中部显著增加;冻结天数在研究区内大范围显著缩短。季节冻土冻融变化与气温相关性最强,温度(气温和地表温度)是季节冻土冻融变化的主导因子。定量评价发现,气温影响占比(24.1±3...  相似文献   

17.
压缩系数、压缩模量是评价土的压缩性的两个非常重要的参数指标,对于地基沉降计算具有重要意义。然而在实际工作中对于确定压缩性指标的方法上还存在一定的问题。本文从压缩系数、压缩模量的定义出发,对土的压缩模量、压缩系数及孔隙比之间的关系进行理论分析,推导了三者之间的两种关系式,分析了三者之间的对应关系。以合肥地区的弱膨胀性黏土为研究对象,通过6组不同饱和度下的黏性土样的多循环加卸载快速固结试验,讨论了快速固结试验中常用的变形量校正方法存在的问题,提出了改进的校正系数计算方法。探讨了土样压缩指标与加卸载循环次数及土样饱和度的关系,对压缩模量与饱和度之间的关系采用指数函数进行了曲线拟合,并对曲线拟合系数进行了概率统计分析。研究结果表明:随着加卸载循环次数的增加,土样由塑性状态向弹性状态过渡;压缩模量随着饱和度的增加而减少,并逐渐趋于稳定。  相似文献   

18.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

19.
不同的覆盖条件下,季节冻土的特征会存在差异。为了分析积雪与森林/草地覆盖条件下季节冻土的特征,在新疆天山西部巩乃斯河上游的中国科学院天山积雪雪崩研究站的实验场地监测了森林-积雪,草地-积雪,以及草地覆盖条件下季节冻土的冻结深度,并对有无积雪覆盖条件下季节冻土发育过程中的土壤温度和土壤含水量进行了跟踪测量。结果表明:森林-积雪覆盖条件下季节冻土的冻结深度最浅,草地-积雪覆盖条件下次之,草地覆盖条件下最深。积雪的存在可以改变季节冻土的冻结深度,还会影响土壤温度和土壤含水量变化。在季节冻土的发育阶段,积雪的隔热作用使得有积雪覆盖条件下土壤温度和土壤含水量较高;在积雪消融阶段,由于积雪融水的补给,土壤含水量也相应地增加,积雪消失后由于蒸发的存在导致土壤含水量减少。  相似文献   

20.
青藏高原冬春积雪和季节冻土年际变化差异的成因分析   总被引:22,自引:13,他引:9  
高荣  韦志刚  董文杰 《冰川冻土》2004,26(2):153-159
利用青藏高原上72个常规气象观测站的逐日积雪厚度、冻结深度、气温、降水和地表温度资料,分析了高原积雪和季节冻土年际变化差异的原因.结果表明:气温和地表温度对高原积雪和季节冻土都有重要的影响,而降水对积雪的影响很重要,但是对季节冻土的影响则比较小.高原积雪对季节冻土有较大的影响,在积雪达到一定厚度以后,积雪的保温作用会影响冻结深度的变化,积雪越厚,保温作用越强;积雪越浅,保温作用越弱,当积雪小于某一厚度时其主要起降温作用.积雪的保温作用可能是积雪与季节冻土年际变化差异的原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号