首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier studies show a strong negative relationship between Eurasian snow cover/depth and Indian summer monsoon rainfall (ISMR). In such studies, both the parameters snow and rainfall are seasonally averaged over large areas. Indian summer monsoon has its own characteristics of evolution such as onset, active, break and withdrawal phases which have been studied extensively. However, the evolution of Eurasian snow is yet to be examined. Further, it is interesting to explore the characteristics of evolution of snow over the different regions of Eurasia and their relationship with the evolution characteristics of summer monsoon. In this paper, a detailed examination has been done on the starting and the ending dates of snowfall over different regions of Eurasia and attempts have been made to explore any relationship with onset of ISMR. It is observed that the regions where snowfall started early, it also ended late. Further, in those regions maximum snow depth also occurred late. In some years, more snowfall in East Eurasia is followed by less snowfall in West Eurasia. Also snow depths particularly in the northernmost and southwest regions of East Eurasia are opposite in phase. The results of this study indicate a weak relationship between snow starting dates in Eurasia and summer monsoon onset dates in the Kerala coast. However, the relationship between the northernmost Eurasian snow depth and the summer monsoon precipitation in the Peninsular India is significant.  相似文献   

2.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

3.
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius–Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that such effects are small compared to other sources of uncertainty, although models with large Arabian Sea cold SST biases may suppress the range of potential outcomes for changes to future early monsoon rainfall.  相似文献   

4.
Summary The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). Out of the 22 models examined, 14 reproduce the observed shape of the annual cycle well with peak during the boreal summer (June through August), but with varying magnitude. Three models simulate the maximum a month later and with lower magnitudes. Only one model considerably underestimates the magnitude of the annual cycle. The remaining 4 models show some deviations from the observed. Models are unable to simulate the minimum in July with peaks in June and August associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The realistic simulation of the annual cycle does not appear to depend on the model resolution. The inter-model variation is slightly larger during summer, implying larger diversity of the models in simulating summer monsoon precipitation. The spatial rainfall patterns are reasonably well simulated by most of the models, with several models able to simulate the precipitation associated with the Meiyu-Changma-Baiu frontal zone and that associated with the location of the subtropical high over the north Pacific. Simulated spatial distribution could be sensitive to model resolution as evidenced by two versions of MIROC3.2 model. The multi-model ensemble (MME) pattern reveals an underestimation of seasonal precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions. This may be related with the mass-flux based scheme employed for convective parameterization by majority of the models. Further the inter-model variation of precipitation is about 2 times stronger south of 30° N, than north of this latitude, indicating larger diversity of the coupled models in simulating low latitude precipitation. The simulated inter-annual variability is estimated by computing the mean summer monsoon seasonal rainfall and the coefficient of variability (CV). In general the mean observed seasonal precipitation of 542 mm and CV of 6.7% is very well simulated by most of the models. Except for one model mean seasonal precipitation varies from 400 to 650 mm. However the CV varies from 2 to 9%. Future projections under the radiative forcing of doubled CO2 scenario are examined for individual models and by the MME technique. Changes in mean precipitation and variability are tested by the t-test and F-ratio respectively to evaluate their statistical significance. The changes in mean precipitation vary from −0.6% (CNRM-CM3) to about 14% (ECHO-G; UKMO-HadCM3). The MME technique reveals an increase varying from 5 to 10%, with an average of 7.8% (greater than the observed CV of 6.7%) over the East Asian region. However the increases are significant over the Korea-Japan peninsula and the adjoining north China region only. The increases may be attributed to the projected intensification of the subtropical high, Meiyu-Changma-Baiu frontal zone and the associated influx of moist air from the Pacific inland. The projected changes in the amount of precipitation are directly proportional to the projected changes in the strength of the subtropical high. Further the MME suggests a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn. The changes in precipitation could be stabilized by controlling the CO2 emissions.  相似文献   

5.
Changes in the water balance of Eurasia and northern Africa in response to insolation forcing at 6000 y BP simulated by five atmospheric general circulation models have been compared with observations of changes in lake status. All of the simulations show enhancement of the Asian summer monsoon and of the high pressure cells over the Pacific and Central Asia and the Middle East, causing wetter conditions in northern India and southern China and drier conditions along the Chinese coast and west of the monsoon core. All of the models show enhancement of the African monsoon, causing wetter conditions in the zone between ca 10–20 °N. Four of the models show conditions wetter than present in southern Europe and drier than present in northern Europe. Three of the models show conditions similar to present in the mid-latitude continental interior, while the remaining models show conditions somewhat drier than present. The extent and location of each of the simulated changes varies between the models, as does the mechanism producing these changes. The lake data confirm some features of the simulations, but indicate discrepancies between observed and simulated climates. For example, the data show: (1) conditions wetter than present in central Asia, from India to northern China and Mongolia, indicating that the simulated Asian monsoon expansion is too small; (2) conditions wetter than present between ca. 10–30 °N in Africa, indicating that the simulated African monsoon expansion is too small; (3) that northern Europe was drier, but the area of significantly drier conditions was more localized (around the Baltic) than shown in the simulations; (4) that southern Europe was wetter than present, apparently consistent with the simulations, but pollen data suggest that this reflects an increase in summer rainfall whereas the models show winter precipitation, and (5) that the mid-latitude continental interior was generally wetter than present. Received: 29 March 1996 / Accepted: 31 May 1996  相似文献   

6.
Summary ?This study presents the monthly climatology and variability of the INSAT (Indian National Satellite) derived snow cover estimates over the western Himalayan region. The winter/spring snow estimates over the region are related to the subsequent summer monsoon rainfall over India. The NCEP/NCAR data are used to understand the physical mechanism of the snow-monsoon links. 15 years (1986–2000) of recent data are utilized to investigate these features in the present global warming environment. Results reveal that the spring snow cover area has been declining and snow has been melting faster from winter to spring after 1993. Connections between snow cover estimates and Indian monsoon rainfall (IMR) show that spring snow cover area is negatively related with maximum during May, while snow melt during the February–May period is positively related with subsequent IMR, implying that smaller snow cover area during May and faster snow melt from winter to spring is conducive for good monsoon activity over India. NCEP/NCAR data further shows that the heat low over northwest India and the monsoon circulation over the Indian subcontinent, in particular the cross-equatorial flow, during May are intensified (weakened) when the snow cover area during May is smaller (extensive) and snow melts faster (slower) during the February–May period. The well-documented negative relationship between winter snow and summer rainfall seems to have altered recently and changed to a positive relationship. The changes observed in snow cover extent and snow depth due to global warming may be a possible cause for the weakening winter snow–IMR relationship. Received January 15, 2002; revised May 5, 2002; accepted June 23, 2002  相似文献   

7.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

8.
范广洲  罗四维 《高原气象》1997,16(2):140-142
利用一个耦合了简化的简单生物圈模式的大气环流谱模式(SSiB-GCM),初步探讨了青藏高原冬季积雪异常对东、南亚夏季季风环流和降水的影响及其机理。结果表明,高原地区积雪增加将使随后地夏季东、南来季风明显减弱,主要表现为东、南亚季风区降水减少,索马里急流、印度季风的印度西南气流弱弱。另外,还提出欧亚大陆雪盖与整个高原雪盖和高原东部雪盖对东、南亚夏季风影响的敏感问题。与欧亚大陆雪盖相比,高原雪盖是影响  相似文献   

9.
This study examines the influence of the mid-latitude circulation on the surface heat low (HL) and associated monsoon rainfall over northwestern India and Pakistan using the ERA40 data and high resolution (T106L31) climate model ECHAM5 simulation. Special emphasis is given to the surface HL which forms over Pakistan and adjoining areas of India, Iran and Afghanistan during the summer season. A heat low index (HLI) is defined to depict the surface HL. The HLI displays significant correlations with the upper level mid-latitude circulation over western central Asia and low level monsoon circulation over Arabian Sea and acts as a bridge connecting the mid-latitude wave train to the Indian summer monsoon. A time-lagged singular value decomposition analysis reveals that the eastward propagation of the mid-latitude circumglobal wave train (CGT) influences the surface pressure anomalies over the Indian domain. The largest low (negative) pressure anomalies over the western parts of the HL region (i.e., Iran and Afghanistan) occur in conjunction with the upper level anomalous high that develops over western-central Asia during the positive phase of the CGT. The composite analysis also reveals a significant increase in the low pressure anomalies over Iran and Afghanistan during the positive phase of CGT. The westward increasing low pressure anomalies with its north?Csouth orientation provokes enormous north?Csouth pressure gradient (lower pressure over land than over sea). This in turn enables the moist southerly flow from the Arabian Sea to penetrate farther northward over northwestern India and Pakistan. A monsoon trough like conditions develops over northwestern India and Pakistan where the moist southwesterly flow from the Arabian Sea and the Persian Gulf converge. The convergence in association with the orographic uplifting expedites convection and associated precipitation over northwestern India and Pakistan. The high resolution climate model ECHAM5 simulation also underlines the proposed findings and mechanism.  相似文献   

10.
The present study is aimed at revisiting the possible influence of the winter/spring Eurasian snow cover on the subsequent Indian summer precipitation using several statistical tools including a maximum covariance analysis. The snow–monsoon relationship is explored using both satellite observations of snow cover and in situ measurements of snow depth, but also a subset of global coupled ocean–atmosphere simulations from the phase 3 of the Coupled Model Intercomparison Project (CMIP3) database. In keeping with former studies, the observations suggest a link between an east–west snow dipole over Eurasia and the Indian summer monsoon precipitation. However, our results indicate that this relationship is neither statistically significant nor stationary over the last 40 years. Moreover, the strongest signal appears over eastern Eurasia and is not consistent with the Blanford hypothesis whereby more snow should lead to a weaker monsoon. The twentieth century CMIP3 simulations provide longer timeseries to look for robust snow–monsoon relationships. The maximum covariance analysis indicates that some models do show an apparent influence of the Eurasian snow cover on the Indian summer monsoon precipitation, but the patterns are not the same as in the observations. Moreover, the apparent snow–monsoon relationship generally denotes a too strong El Niño-Southern Oscillation teleconnection with both winter snow cover and summer monsoon rainfall rather than a direct influence of the Eurasian snow cover on the Indian monsoon.  相似文献   

11.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

12.
Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007–2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by ~90 and ~200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3–5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.  相似文献   

13.
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Ni?o-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.  相似文献   

14.
Some evidence of climate change in twentieth-century India   总被引:1,自引:0,他引:1  
The study of climate changes in India and search for robust evidences are issues of concern specially when it is known that poor people are very vulnerable to climate changes. Due to the vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India are floods and droughts, monsoon depressions and cyclones, heat waves, cold waves, prolonged fog and snowfall. Results of this comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively. Also decrease in the minimum temperature during summer monsoon and its increase during post-monsoon months have created a large difference of about 0.8°C in the seasonal temperature anomalies which may bring about seasonal asymmetry and hence changes in atmospheric circulation. Opposite phases of increase and decrease in the minimum temperatures in the southern and northern regions of India respectively have been noticed in the interannual variability. In north India, the minimum temperature shows sharp decrease of its magnitude between 1955 and 1972 and then sharp increase till date. But in south India, the minimum temperature has a steady increase. The sea surface temperatures (SST) of Arabian Sea and Bay of Bengal also show increasing trend. Observations indicate occurrence of more extreme temperature events in the east coast of India in the recent past. During summer monsoon months, there is a decreasing (increasing) trend in the frequency of depressions (low pressure areas). In the last century the frequency of occurrence of cyclonic storms shows increasing trend in the month of November. In addition there is increase in the number of severe cyclonic storms crossing Indian Coast. Analysis of rainfall amount during different seasons indicate decreasing tendency in the summer monsoon rainfall over Indian landmass and increasing trend in the rainfall during pre-monsoon and post-monsoon months.  相似文献   

15.
东亚季风近几十年来的主要变化特征   总被引:14,自引:4,他引:10  
王会军  范可 《大气科学》2013,37(2):313-318
本文简要综述了关于东亚夏季风和冬季风近几十年来的主要变化特征的若干研究结果,特别是关于其年代际变化方面.夏季风及夏季气候的主要变化特征有:1970年代末之后东亚夏季风的年代际时间尺度的减弱以及相应的我国夏季降水江淮流域增多而华北减少、1992年之后我国华南夏季降水增多、1999年之后我国长江中下游夏季降水减少而淮河流域夏季降水增多、东亚夏季风和ENSO之间的年际变化相关性存在不稳定性.而关于东亚冬季风与冬季气候的主要变化特征有:1980年代中期之后东亚冬季风及其年际变率减弱、1970年代中期之后冬季风和ENSO的年际变化相关性较弱、近年来的北极秋季海冰减少对北半球冬季积雪增多有显著贡献、东北冬季积雪在1980年代中期以后增多.与上述变化有关的极端气候和物候都发生了多方面的变化.  相似文献   

16.
利用耦合模式比较计划(CMIP3)提供的20世纪气候模拟试验(20C3M)及A1B情景预估试验,讨论了全球增暖情景下21世纪中期中国气候的可能变化。结果表明,A1B情景下,中国夏季降水变化在-0.1~1.1mm/d,冬季降水变化在-0.2~0.2mm/d。模式对降水变化的预估存在较大不确定性。无论冬夏,预估的全国表面气温都将升高,升温幅度在1.2~2.8℃;随纬度升高,增暖幅度相应增大。模式对表面气温变化的预估能力强于对降水变化的预估能力。在A1B情景下,东亚夏季风增强,而冬季风则略为减弱,东亚夏季风雨带到达最北后南撤的时间较之20C3M滞后约一个月。  相似文献   

17.
The variations of both total and extreme precipitations over Asia are characterized by large regional features and seasonality. Extreme precipitation mainly occurs in summer and then in autumn over South Asia but it is a prominent phenomenon in all seasons over Southeast Asia. It explains above 40% of the total precipitation in winter over India, while the ratio of extreme precipitation to total precipitation is 30% or smaller in all seasons over southern-central China. Over Southeast Asia, the largest ratio appears in winter. The extreme precipitation over Southeast Asia (EPSEA) exhibits significant positive trends in all seasons except autumn. The long-term increase in summer EPSEA is associated with significant surface warming over extratropical Asia and the Indo-Pacific oceans and linked to a large-scale anomalous cyclonic pattern over Southeast Asia. An increase in de-trended summer EPSEA is associated with less significant surface warming. However, it is still clearly linked to an anomalous cyclonic pattern over Southeast Asia, contributed by intensifications of monsoon flow from the west, trade wind from the east, and cross-equatorial flow over Indonesia. The antecedent features of increased summer EPSEA include an overall warming over the tropical–subtropical northern hemisphere and an anomalous cyclonic pattern over Southeast Asia in winter and spring. When the large-scale Asian monsoon (measured by the Webster-Yang monsoon index) or the South Asian monsoon is strong, summer extreme precipitation mainly increases over tropical Asia. When monsoon is strong over Southeast Asia or East Asia, extreme precipitation increases over Southeast Asia and decreases over East Asia. A strong summer monsoon over Southeast Asia or East Asia is also followed by decreased autumn extreme precipitation over Southeast Asia.  相似文献   

18.
We investigate the future changes of Asian-Australian monsoon (AAM) system projected by 20 climate models that participated in the phase five of the Coupled Model Intercomparison Project (CMIP5). A metrics for evaluation of the model’s performance on AAM precipitation climatology and variability is used to select a subset of seven best models. The CMIP5 models are more skillful than the CMIP3 models in terms of the AAM metrics. The future projections made by the selected multi-model mean suggest the following changes by the end of the 21st century. (1) The total AAM precipitation (as well as the land and oceanic components) will increase significantly (by 4.5 %/°C) mainly due to the increases in Indian summer monsoon (5.0 %/°C) and East Asian summer monsoon (6.4 %/°C) rainfall; the Australian summer monsoon rainfall will increase moderately by 2.6 %/°C. The “warm land-cool ocean” favors the entire AAM precipitation increase by generation of an east-west asymmetry in the sea level pressure field. On the other hand, the warm Northern Hemisphere-cool Southern Hemisphere induced hemispheric SLP difference favors the ASM but reduces the Australian summer monsoon rainfall. The combined effects explain the differences between the Asian and Australian monsoon changes. (2) The low-level tropical AAM circulation will weaken significantly (by 2.3 %/°C) due to atmospheric stabilization that overrides the effect of increasing moisture convergence. Different from the CMIP3 analysis, the EA subtropical summer monsoon circulation will increase by 4.4 %/°C. (3) The Asian monsoon domain over the land area will expand by about 10 %. (4) The spatial structures of the leading mode of interannual variation of AAM precipitation will not change appreciably but the ENSO-AAM relationship will be significantly enhanced.  相似文献   

19.
The impact of increased greenhouse gases (GHG) and aerosols concentrations upon the West African monsoon (WAM) is investigated for the late twenty-first century period using the Météo-France ARPEGE-IFS high-resolution atmospheric model. Perturbed (2070–2100) and current (1961–2000) climates are compared using the model in time-slice mode. The model is forced by global sea surface temperatures provided by two transient scenarios performed with low-resolution coupled models and by two GHG evolution scenarios, SRES-A2 and SRES-B2. Comparing to reanalysis and observed data sets, the model is able to reproduce a realistic seasonal cycle of WAM despite a clear underestimation of the African Easterly Jet (AEJ) during the boreal summer. Mean temperature change indicates a global warming over the continent (stronger over North and South Africa). Simulated precipitation change at the end of the twenty-first century shows an increase in precipitation over Sudan-Sahel linked to a strong positive feedback with surface evaporation. Along Guinea Gulf coast, rainfall regimes are driven by large-scale moisture advection. Moreover, results show a mean precipitation decrease (increase) in the most (less) enhanced GHG atmosphere over this region. Modification of the seasonal hydrological cycle consists in a rain increase during the monsoon onset. There is a significant increase in rainfall variance over the Sahel, which extends over the Guinea coast region in the moderate emission scenario. Enhanced precipitation over Sahel is linked to large-scale circulation changes, namely a weakening of the AEJ and an intensification of the Tropical Easterly Jet.  相似文献   

20.
Summary This study investigates the capabilities of two regional models (the ICTP RegCM3 and the climate version of the CPTEC Eta model – EtaClim) in simulating the summer quasi-stationary circulations over South America during two extreme cases: the 1997–1998 El Ni?o and 1998–1999 La Ni?a. The results showed that both the models are successful in simulating the interannual variability of summer quasi-stationary circulation over South America. Both the models simulated the intensification of subtropical jet stream during the El Ni?o event, which favoured the blocking of transient systems and increased the precipitation over south Brazil. The models simulated the increase (decrease) of precipitation over north (west) Amazonia during the La Ni?a (El Ni?o) event. The upper level circulation is in agreement with the simulated distribution of precipitation. In general, the results showed that both the models are capable of capturing the main changes of the summer climate over South America during these two extreme cases and consequently they have potential to predict climate anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号