首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an open‐source algorithm in Mathematica application (Wolfram Research) with a transparent data reduction and Monte Carlo simulation of systematic and random uncertainties for U‐Th geochronometry by multi‐collector ICP‐MS. Uranium and thorium were quantitatively separated from matrix elements through a single U/TEVA extraction chromatography step. A rigorous calibrator‐sample bracketing routine was adopted using CRM‐112A and IRMM‐035 standard solutions, doped with an IRMM‐3636a 233U/236U ‘double‐spike’ to account for instrumental mass bias and deviations of measured isotope ratios from certified values. The mean of 234U/238U and 230Th/232Th in the standard solutions varied within 0.42 and 0.25‰ (permil) of certified ratios, respectively, and were consistent with literature values within uncertainties. Based on multiple dissolutions with lithium metaborate flux fusion, U and Th concentrations in USGS BCR‐2 CRM were updated to 1739 ± 2 and 5987 ± 50 ng g?1 (95% CI), respectively. The measurement reproducibility of our analytical technique was evaluated by analysing six aliquots of an in‐house reference material, prepared by homogenising a piece of speleothem (CC3A) from Cathedral Cave, Utah, which returned a mean age of 21483 ± 63 years (95% CI, 2.9‰). Replicate analysis of ten samples from CC3A was consistent with ages previously measured at the University of Minnesota by single‐collector ICP‐MS within uncertainties.  相似文献   

2.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

3.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   

4.
Mg/Ca and Sr/Ca ratios in calcium carbonate are important components of many palaeoclimate studies. We present an isotope dilution method relying on a single mixed spike containing 25Mg, 43Ca and 87Sr. Dozens of samples per day, as small as 10 μg of carbonate, could be dissolved, spiked and run in an ICP‐MS with a precision of 0.8% (2 RSD). Two instruments types, a sector field and a quadrupole ICP‐MS, were compared. The best long term precision found was 0.4% (2 RSD), although this increased by up to a factor of two when samples of very different Mg or Sr content were run together in the same sequence. Long term averages for the two instruments concurred. No matrix effects were detected for a range of Ca concentrations between 0.2 and 2 mmol l‐1. Accuracy, tested by measuring synthetic standard solutions, was 0.8% with some systematic trends. We demonstrate the strength of this isotope dilution method for (a) obtaining accurate results for sample sets that present a broad Mg and Sr range and (b) testing solid carbonates as candidate reference materials for interlaboratory consistency. Mg/Ca and Sr/Ca results for reference materials were in good agreement with values from the literature.  相似文献   

5.
We present the first measurements of vanadium (V) stable isotopes for six reference materials – USGS PCC‐1, BHVO‐2, BCR‐2, BIR‐1a, GSP‐2 and AGV‐2 – plus the widely available carbonaceous chondrite Allende. We present standard addition and matrix spiking tests to assess the robustness and reproducibility of our data. Standard addition utilised an enriched 50V solution designated VISSOX (Vanadium Isotope Standard Solution OXford). We further assessed the veracity of the method by spiking collected sample matrices with the same amount of a V standard solution, whose isotopic composition was defined as 0‰. Standard addition and matrix spiking tests recorded no appreciable artificial isotope fractionation. We estimate that the best currently attainable long‐term reproducibility of stable 51V/50V isotope measurements in complex matrices is 0.15‰, which is in the same order as the reproducibility achievable with standard solutions. Finally, a large range of ~ 1.2‰ in stable V isotopic composition was documented, with ~ 0.5‰ of that variation in high temperature igneous materials alone. The range and resolving power of V stable isotopes, with respect to igneous material, compared favourably with the magnitude of fractionation reported for other non‐traditional stable isotope systems, which bodes well for the utility of this new system.  相似文献   

6.
A new method using a microcolumn (20 mm length × 2.0 mm i.d.) packed with Azadirachta Indica leaf powder (Neem leaf) as an adsorbent for the preconcentration/separation of Au and Pd prior to their determination by ICP‐OES in geological samples is presented. Various factors affecting the separation and preconcentration of the target analytes such as pH, sample flow rate and volume, eluent concentration and volume and interfering ions were studied and the optimal experimental conditions were established. The adsorption capacity of Azadirachta Indica leaf for Au and Pd was found to be 39.2 and 9.8 mg g−1, respectively. The detection limits (3s) of this method for Au and Pd with an enrichment factor of 50 were 47 ng l−1 and 59 ng l−1 and the relative standard deviations were 4.8% and 5.7% (n = 7, adsorption capacity C = 5 ng ml−1), respectively. In order to validate the proposed method, the certified reference material, GBW07293, was analysed, and a good agreement was obtained between the certified and determined values.  相似文献   

7.
A simple, rapid method for the determination of Re and Os concentrations and isotope compositions using isotope dilution multi‐collector inductively coupled plasma‐mass spectrometry (ID‐MC‐ICP‐MS) combined with Carius tube digestion and sparging introduction of Os was developed. For Os measurement, four channeltron ion counters to detect different Os isotopes were used simultaneously, which led to a drastic reduction in the measurement time. Rhenium isotopes were measured by means of eight Faraday cups with solution nebulisation and an ultrasonic membrane desolvator. The representative 188Os count rate of an Os standard solution containing 50 pg of total Os was approximately 110000–120000 cps at the onset of measurement; the Re intensity of our in‐house 10 pg g?1 standard solution reached 1820 V/μg g?1 with a sample uptake rate of 95–99 μl min?1. These values indicate that the sensitivity of the method was sufficient even for samples with low Re and Os concentrations, such as chert. As the temporal variations of the amplification efficiency of the ion counters differed from one another, we adopted a sample‐calibrator bracketing method to correct the measured Re and Os isotope ratios. The Re and Os concentrations via the isotope dilution method and the 187Os/188Os ratios of two sedimentary rock reference materials (JMS‐2 and JCh‐1) on the basis of the isotope ratios determined by the MC‐ICP‐MS and by negative thermal ionisation mass spectrometry (N‐TIMS) were comparable within their ranges. Based on Os isotope measurement of the IAG reference material [Durham Romil Os (DROsS)], the average difference from the recommended value and precision of Os isotope measurements by the sparging method in combination with multi‐ion‐counters were 0.72% and 0.76% [1RSD (%), n = 29], respectively. The precisions in the 187Os/188Os ratios [1RSD (%)] of JMS‐2, JCh‐1 and DROsS were 0.35–0.71, 1.56–3.31 and 0.99–1.28%, respectively, which depended on their Os ion intensities. No systematic difference was observed between the Re and Os geochemical compositions of JCh‐1 and JMS‐2 obtained by means of digestion with inverse aqua regia and CrO3‐H2SO4 solutions, suggesting that either acid solution can be used for the sparging method of sedimentary rock samples. As CrO3‐H2SO4 solution is believed to liberate predominantly the hydrogenous Re and Os fraction from organic‐rich sediment, the sparging method combined with CrO3‐H2SO4 digestion and multi‐ion‐counters in the mass spectrometry is expected to be a powerful tool for reconstructing the secular change in marine Os isotope compositions with high sample throughput.  相似文献   

8.
Isotopic reference materials are essential to enable reliable and comparable isotope data. In the case of boron only a very limited number of such materials is available, thus preventing adequate quality control of measurement results and validation of analytical procedures. To address this situation a unique set of two boron isotope reference materials (ERM‐AE102a and ‐AE104a) and three offset δ11B reference materials (ERM‐AE120, ‐AE121 and ‐AE122) were produced and certified. The present article describes the production and certification procedure in detail. The isotopic composition of all the materials was adjusted by mixing boron parent solutions enriched in 10B or 11B with a boron parent solution having a natural isotopic composition under full gravimetric control. All parent solutions were analysed for their boron concentration as well as their boron isotopic composition by thermal ionisation mass spectrometry (TIMS) using isotope dilution as the calibration technique. For all five reference materials the isotopic composition obtained on the basis of the gravimetric data agreed very well with the isotopic composition obtained from different TIMS techniques. Stability and homogeneity studies that were performed showed no significant influence on the isotopic composition or on the related uncertainties. The three reference materials ERM‐AE120, ERM‐AE121 and ERM‐AE122 are the first reference materials with natural δ11B values not equal to 0‰. The certified δ11B values are ?20.2‰ for ERM‐AE120, 19.9‰ for ERM‐AE121 and 39.7‰ for ERM‐AE122, each with an expanded uncertainty (k = 2) of 0.6‰. These materials were produced to cover about three‐quarters of the known natural boron isotope variation. The 10B enriched isotope reference materials ERM‐AE102a and ERM‐AE104a were produced for industrial applications utilising 10B for neutron shielding purposes. The certified 10B isotope abundances are 0.29995 for ERM‐AE102a and 0.31488 for ERM‐AE104a with expanded uncertainties (k = 2) of 0.00027 and 0.00028, respectively. Together with the formerly certified ERM‐AE101 and ERM‐AE103 a unique set of four isotope reference materials and three offset δ11B reference materials for boron isotope determination are now available from European Reference Materials.  相似文献   

9.
Although initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass‐dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two‐stage chromatography procedure, Ni isotope ratios were measured by MC‐ICP‐MS and were corrected for instrumental mass bias using a double‐spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04‰, and intermediate measurement precision for NIST SRM 986 was 0.05‰ (2s). Igneous‐ and mantle‐derived rocks displayed a restricted range of δ60/58Ni values between ?0.13 and +0.16‰, suggesting an average BSE composition of +0.05‰. Manganese nodules (Nod A1; P1), shale (SDO‐1), coal (CLB‐1) and a metal‐contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06‰, whereas komatiite‐hosted Ni‐rich sulfides varied from ?0.10 to ?1.03‰.  相似文献   

10.
We report an approach for the accurate and reproducible measurement of boron isotope ratios in natural waters using an MC‐ICP‐MS (Neptune) after wet chemistry sample purification. The sample matrix can induce a drastic shift in the isotopic ratio by changing the mass bias. It is shown that, if no purification is carried out, the direct measurement of a seawater diluted one hundred times will induce an offset of ?7‰ in the isotopic ratio, and that, for the same concentration, the greater the atomic mass of the matrix element, the greater the bias induced. Whatever the sample, it is thus necessary to remove the matrix. We propose a method adapted to water samples allowing purification of 100 ng of boron with a direct recovery of boron in 2 ml of 3% v/v HNO3, which was our working solution. Boron from the International Atomic Energy Agency IAEA‐B1 seawater reference material and from the two groundwater reference materials IAEA‐B2 and IAEA‐B3, was chemically purified, as well as boron from the certified reference material NIST SRM 951 as a test. The reproducibility of the whole procedure (wet chemistry and MC‐ICP‐MS measurement) was ± 0.4‰ (2s). Accuracy was verified by comparison with positive‐TIMS values and with recommended values. Seawater, being homogeneous for boron isotope ratios, is presently the only natural water material that is commonly analysed for testing accuracy worldwide. We propose that the three IAEA natural waters could be used as reference samples for boron isotopes, allowing a better knowledge of their isotopic ratios, thus contributing to the certification of methods and improving the quality of the boron isotopic ratio measurements for all laboratories.  相似文献   

11.
The interest in variations of barium (Ba) stable isotope amount ratios in low and high temperature environments has increased over the past several years. Characterisation of Ba isotope ratios of widely available reference materials is now required to validate analytical procedures and to allow comparison of data obtained by different laboratories. We present new Ba isotope amount ratio data for twelve geological reference materials with silicate (AGV‐1, G‐2, BHVO‐1, QLO‐1, BIR‐1, JG‐1a, JB‐1a, JR‐1 and JA‐1), carbonate (IAEA‐CO‐9) and sulfate matrices (IAEA‐SO‐5 and IAEA‐SO‐6) relative to NIST SRM 3104a. In addition, two artificially fractionated in‐house reference materials BaBe12 and BaBe27 (δ137/134Ba = ?1.161 ± 0.049‰ and ?0.616 ± 0.050‰, respectively) are used as quality control solutions for the negative δ‐range. Accuracy of our data was assessed by interlaboratory comparison between the University of Bern and the United States Geological Survey (USGS). Data were measured by MC‐ICP‐MS (Bern) and TIMS (USGS) using two different double spikes for mass bias correction (130Ba–135Ba and 132Ba–136Ba, respectively). MC‐ICP‐MS measurements were further tested for isobaric and non‐spectral matrix effects by a number of common matrix elements. The results are in excellent agreement and suggest data accuracy.  相似文献   

12.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

13.
A two‐step Th isolation protocol, involving micro‐columns of TRU‐Spec extraction chromatography material and AG1 resin, was evaluated. The MC‐ICP‐MS procedure included 232Th tailing characterisation and correction, and calibrator bracketing using an in‐house standard solution (ThS1) to correct for instrumental mass bias and Faraday cup to secondary electron multiplier relative gain. Repeated analyses of reference solutions (UCSC Th ‘A’, WUN, OU Th ‘U’, IRMM‐36) were consistent with published data. Six reference materials (A‐THO, BCR‐2, AGV‐2, BHVO‐2, BE‐N and BIR‐1) were processed. The average 230Th/232Th values obtained for these samples are in excellent agreement with published data. In addition, we report the first 230Th/232Th values for BE‐N and BIR‐1. The intermediate precisions for rock samples ranged from ± 0.24 to ± 0.49% (2 RSD) and were similar to those achieved for synthetic solutions, thereby supporting the overall validity of the chemical separation, data acquisition and reduction procedures. Counting statistics on the 230Th isotope was the most significant source of uncertainty. The intermediate precision of the mean 230Th/232Th for the Th‐depleted BIR‐1 (5.64 × 10?6 ± 0.27%, 2 RSD) is in the range of the analyses of other reference materials analysed in this study.  相似文献   

14.
We report homogeneity tests on large natural apatite crystals to evaluate their potential as U reference materials for apatite fission‐track (AFT) thermochronology by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS). The homogeneity tests include the measurements of major element concentrations by electron probe microanalysis (EPMA), whereas for U concentration, isotope dilution (ID) ICP‐MS and laser ablation (LA) ICP‐MS were employed. Two apatite crystals are potential reference materials for LA‐ICP‐MS analysis: a 1 cm3 fraction of a Durango crystal (7.5 μg g?1 U) and a 1 cm3 Mud Tank crystal (6.9 μg g?1 U). The relative standard deviation (1 RSD) of the U concentration determined by ID‐ICP‐MS of both apatite crystals was ≤ 1.5%, whereas 1 RSD for the LA‐ICP‐MS results was better than 4%, providing sufficient homogeneity for fission‐track dating. The results on the U homogeneity for two different apatite samples are an important step towards establishing in situ dating routines for AFT analysis by LA‐ICP‐MS.  相似文献   

15.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2s level for outliers, were 87Sr/86Sr = 0.705000 ± 11 (2s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/144Nd = 0.512637 ± 13 (2s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/177Hf = 0.282866 ± 11 (2s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots (n = 26, twelve digestions, two outliers) were 206Pb/204Pb = 18.8029 ± 10 (2s, 55 ppm), 207Pb/204Pb = 15.6239 ± 8 (2s, 52 ppm), 208Pb/204Pb = 38.8287 ± 25 (2s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions.  相似文献   

16.
Geological reference materials (RMs) with variable compositions and NIST SRM 612 were analysed by isotope dilution mass spectrometry for bulk rock concentrations of chalcogen elements (sulfur, selenium and tellurium), rhenium and platinum‐group elements (PGEs: Ru, Pd, Os, Ir and Pt), including the isotope amount ratios of 187Os/188Os. All concentrations were obtained from the same aliquot after HCl‐HNO3 digestion in a high pressure asher at 320 °C. Concentrations were determined after chemical separation by negative TIMS, ICP‐MS and hydride generation ICP‐MS (Se, Te). As in previous studies, concentrations of the PGEs in most RMs were found to be highly variable, which may be ascribed to sample heterogeneity at the < 1 g level. In contrast, S, Se and Te displayed good precision (RSD < 5%) in most RMs, suggesting that part of the PGE budget is controlled by different phases, compared with the chalcogen budget. The method may minimise losses of volatile chalcogens during the closed‐system digestion and indicates the different extent of heterogeneity of chalcogens, Re and PGEs in the same sample aliquot. OKUM, SCo‐1, MRG‐1, DR‐N and MAG‐1 are useful RMs for the chalcogens. NIST SRM 612 displays homogenous distribution of S, Se, Te, Pt and Pd in 30 mg aliquots, in contrast with micro‐scale heterogeneity of Se, Pd and Pt.  相似文献   

17.
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass‐dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first‐order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and ?0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s).  相似文献   

18.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

19.
The high abundances of the high field‐strength elements in ilmenite and rutile make these minerals particularly suitable for hafnium isotopic investigations. We present a technique for separating Hf by ion exchange chemistry from high‐TiO2 (> 40% m/m) minerals to achieve precise Hf isotopic composition analyses by MC (multiple collector)‐ICP‐MS. Following digestion and conversion to chlorides, the first elution column is used to separate iron and the rare earth elements, the second column is designed to separate most of the titanium from Hf, an evaporation step using HClO4 is then performed to remove any trace of HF in preparation for the third column, which is needed to eliminate any remaining trace of titanium. The modified chemistry helped to improve the yields from < 10 to > 78% as well as the analytical precision of the processed samples (e.g., sample 2033‐A1, 176Hf/177Hf = 0.282251 ± 25 before vs. 0.282225 ± 6 after). The technique was tested on a case study in which the Hf isotopic ratios of ilmenite and rutile (analysed prior to the chemistry improvement) were determined and permitted to evaluate that the origin of rutile‐bearing ilmenite deposits is from the same or similar magma than their, respectively, associated Proterozoic anorthosite massifs (Saint‐Urbain and Lac Allard) of the Grenville Province in Québec, Canada.  相似文献   

20.
In this contribution, we report Hf isotopic data and Lu and Hf mass fractions for thirteen Chinese rock reference materials (GBW07 103–105, 109–113 and 121–125, that is GSR 1–3, 7–11 and 14–18, respectively) that span a broad compositional range. Powdered samples were spiked with a 176Lu‐180Hf enriched tracer and completely digested using conventional HF, HNO3 and HClO4 acid dissolution protocols. Fluoride salts were dissolved during a final H3BO3 digestion, and chemical purification was performed using a single Ln resin. All measurements were carried out on a MC‐ICP‐MS. This work provides the first comprehensive report of the Lu‐Hf isotopic composition of Chinese geochemical rock reference materials, and results indicate that they are of comparable quality to the well‐characterised and widely used USGS and GSJ rock reference materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号