首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
淮北临涣矿采煤沉陷区不同水体水化学特征及其影响因素   总被引:3,自引:0,他引:3  
为研究淮北临涣矿采煤沉陷区不同水体的补给水源及溶质来源,在现场调查的基础上,系统采集丰水期、平水期、枯水期沉陷区积水、地表河水和浅层地下水样进行测试分析,采用Piper三线图、Gibbs图和因子分析方法,对不同水体水化学特征及其影响因素进行讨论.结果表明:地表水水体总溶解性固体(TDS)质量浓度表现为枯水期丰水期平水期,浅层地下水表现为枯水期平水期丰水期,地表水TDS质量浓度明显高于浅层地下水.地表水中主要阴阳离子为Na~+、Cl~-和SO_4~(2-),水化学类型主要为SO_4~(2-)-Cl~--Na~+型;浅层地下水离子以HCO_3~-、Ca~(2+)和Mg~(2+)为主,表现为HCO_3~--Ca~(2+)-Mg~(2+)型.结合Gibbs图和因子分析可知,地表水受蒸发作用、地表径流以及采煤活动等因素影响,浅层地下水在一定程度上体现出大气降水和地表水补给的特点,受岩石风化作用影响较为明显.  相似文献   

2.
结合淮河流域平原区水文地质条件,阐述了淮河流域平原区铁锰元素在浅层地下水(埋深0~50 m)中的赋存特征和分布规律.结合前人研究成果并总结现有水质资料,认为淮河流域地下水中铁锰的形成和分布特征除了受含水介质成分、上覆土层性质、酸碱条件等影响外,主要受氧化还原环境控制.建议通过适当除铁锰工艺或改变地下水循环条件等方式来改变研究区浅层水地下水水质状况.  相似文献   

3.
1976年7月28日3点42分,在唐山发生了7.8级强烈地震.震前本区浅埋封存咸水层与深层承压淡水层,(自扩口井)的水位,在年动态变化背景上,于72年初普遍出现长期大幅度同步下降异常,并在时间上具有长中短临阶段性显示,在空间上表现出一定的规律性.本文试图通过对地下水位动态特征的粗浅分析,探讨其异常的时空分布规律与地震三要素的某些关系,以期进一步提高分析予报水平.一、地下水位动态类型及特征本区地震地下水位观测资料表明,大多数观测井水位动态,受自然因素(降水、蒸发、气压等),人为因素(河渠放水、蓄水、农田灌溉、工农业开发地下水等)的影响和地质构造及水文地质条件的控制,从而导致地下水位反映出不同的动态特征并表现为不同的类型,而它们反映地震的效果又有着很大的差别.为正确认识地震信息,辨认异常与干扰,首先按水文地质条件及影响因素,将全区地震观测井划分为五种水位动态类型.  相似文献   

4.
以安徽淮南采煤沉陷积水为研究对象,通过样品采集与测试,研究不同沉陷年限及类型积水水文地球化学和氢氧稳定同位素组成特征及影响因素.结果表明:(1)研究区水化学类型主要为Cl-Na、HCO3·Cl-Na型,沉陷积水中常量离子主要来源于蒸发岩溶解和硅酸盐风化,受蒸发作用和人为活动的影响明显,水化学组成随沉陷时间和类型变化不大.(2)淮南大气降水线方程为:δD=8.85δ18O+18.73,沉陷区积水氢氧稳定同位素值在淮南大气降水线右下方依次分布并接近降水线,表明沉陷积水主要来源于大气降水.(3)在降水稀释、水体蒸发及地下水补给的作用下,随着沉陷年限的增加,积水中重同位素越来越贫化,同一年限不同类型的积水同位素值变化较小.  相似文献   

5.
以贺兰山东麓断裂带内地下水为研究对象,运用Piper三线图、离子比值等方法对研究区内丰水期与枯水期地下水的水化学特征进行分析,探讨了断裂与水化学组成及地震活动的关系,并建立贺兰山东麓地区地下水成因模型。结果表明:(1)区域地下水总体偏弱碱性,阳离子以Ca2+和Na+为主,阴离子以HCO-3和SO2-4为主;(2)区域地下水主要受大气降水补给,补给高程为1.07~2.04 km。Na-K-Mg三角图显示,研究区地下水为“未成熟水”。绝大多数水样的矿物饱和指数SI<0,表明区域地下水中各个离子含量大体处于未饱和状态。利用温标法估算该区域地下水的热储温度为74.6℃~114.1℃,循环深度为1.7~2.8 km;(3)地下水样中的Sr、Ba、Li等微量元素富集因子EF>1,富集程度高,其余大部分微量元素含量较低,说明当地地下水为未成熟水,矿化度低,水岩反应程度不强。(4)研究区地下水出露点主要沿贺兰山东麓断裂展布,水温、矿化度、矿物饱和指数及水循环深...  相似文献   

6.
利用环境同位素及水化学分析方法研究发现,岱海除了接受降水的直接补给之外,还接受泉水的补给.岱海周边泉水与井水的δD、δ18O值比当地降水明显贫化,泉水、井水显然不是来自于当地降水的补给;通过对岱海周边包气带土壤水中的氢氧稳定同位素分析发现,土壤水中的δD、δ18O值比当地降水值贫化,在地表埋深1 m附近,土壤中的盐分发生了累积,土壤水中的含盐量明显超过了土壤受蒸发所引起的增加量.研究表明岱海周边地区的大气降水不能入渗补给到潜水中,补给岱海的泉水不是来自于当地降水,而是具有同位素贫化特征的外源水.由此推断,在地层中可能存在一种地下水深循环的跨流域补给方式.在内蒙古高原地区,深循环地下水是维系湖泊不可或缺的补给源.  相似文献   

7.
华北地区地下流体中期和转折型短期异常成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
结合观测井孔的水文地质条件、大气降水资料 ,深入剖析了华北地区水位、水氡的中期和转折型短期异常变化的直接原因 ,认为水位异常是由于降水量的增大与减少造成的 ,其形成机制主要为降水渗入补给 ;水氡异常的形成原因主要为降水渗入 -混合机制。进而提出“深浅构造的互动作用” ,用以解释流体异常与地震的关系 ,其论点是 :降水、地下水变化可诱发 (活化 )浅层的构造变动 ,而浅层构造活动又引发深部构造活动和地震的发生 ;反之 ,深部构造的活动和地震的孕育 ,使浅层岩石的应力增强 ,在降水、地下水的诱发作用下 ,可导致浅层的构造活动。降水引起的地下水异常是一种广义的地震前兆  相似文献   

8.
唐山地震震害的若干地质问题   总被引:1,自引:0,他引:1  
唐山震区的震害分布,在发震断裂控制的背景上,明显地受地质条件的影响,自北向南呈有规律的变化:山间盆地地区多为震害高异常区,并从盆地边缘到盆地的沉积中心,随着覆盖土层的逐渐增厚和地下水逐渐变浅,震害不断加重;平原区出现的砂土液化,区域上受地质地貌条件控制,小范围场地受砂土层顶板埋深及厚度的影响。  相似文献   

9.
金沙江下游梯级水电站水库地震地下水动态监测网(简称金沙江水网),是中国第2个专门用于水库区地震前兆监测与研究为目的的企业地下水动态监测网.文中简要介绍了该网的布设、观测网的技术构成、观测井与观测含水层的基本特征及试运行的基本结果,从观测井-含水层特征及观测到的水位与水温多月、月、日动态特征,评估了其地震前兆监测能力.  相似文献   

10.
民勤绿洲地下水开采时空动态模拟   总被引:7,自引:0,他引:7  
地统计学方法的应用已由最初的地质学领域广泛推广到土壤学、生态学等领域, 但在地下水特征的时空模拟方面应用还较少, 结合地理信息系统(GIS), 运用地统计学方法分析了石羊河下游民勤绿洲近15年来地下水特征的时空变异规律及其与土地利用变化的关系, 并对其变化趋势进行了预测. 得到了如下结果: (1) 地下水埋深的随机变异特征随着开采强度的不断增大, 从1987年的26.32%降到了2001年的0.03%, 完全被较大尺度上的结构性变异所取代; 而矿化度一直是中尺度上的结构性变异高达99.9%. (2) Kriging插值结果表明, 民勤绿洲地下水埋深的分布一直是水质较好的绿洲南部最深厚, 从南到北随着水质变差, 埋深也变浅. 地下水矿化度在空间分布上从南到北逐渐增大; 在变化趋势上, 高矿化度等值线由北向南持续推进. (3) 民勤绿洲近15年来耕地面积增加了3.1×104 hm2, 使得分布于地下水埋深17 m以上的耕地面积净增528.3 km2, 分布于地下水埋深11 m以下的林地减少200 km2. 同样, 分布于地下水矿化度3.0 g/L以上的耕地面积净增2×104 hm2, 其中>4.5 g/L的增加了1.072×104 hm2. (4) 预测至2015年, 地下水埋深下降趋势明显, 分布于地下水埋深20 m以上的绿洲面积将净增1689.88 km2, 达整个绿洲面积的68%; 至2015年地下水矿化度高于5.0 g/L的绿洲面积将达578.15 km2, 全部集中在水质较差的绿洲湖区最北部, 部分区域甚至高达7.0 g/L以上.  相似文献   

11.
Abstract

Many of the hydrological and ecological functions of alluvial flood plains within watersheds depend on the water flow exchanges between the vadoze soil zone and the shallow groundwater. The water balance of the soil in the flood plain is investigated, in order to evaluate the main hydrological processes that underlie the temporal dynamics of soil moisture and groundwater levels. The soil moisture and the groundwater level in the flood plain were monitored continuously for a three-year period. These data were integrated with the results derived from applying a physically-based numerical model which simulated the variably-saturated vertical water flow in the soil. The analysis indicated that the simultaneous processes of lateral groundwater flow and the vertical recharge from the unsaturated zone caused the observed water table fluctuations. The importance of these flows in determining the rises in the water table varied, depending on soil moisture and groundwater depth before precipitation. The monitoring period included two hydrological years (September 2009–September 2011). About 13% of the precipitation vertically recharged the groundwater in the first year and about 50% in the second. The difference in the two recharge coefficients was in part due to the lower groundwater levels in the recharge season of the first hydrological year, compared to those observed in the second. In the latter year, the shallow groundwater increased the soil moisture in the unsaturated zone due to capillary rise, and so the mean hydraulic conductivity of the unsaturated soil was high. This moisture state of soil favoured a more efficient conversion of infiltrated precipitation into vertical groundwater recharge. The results show that groundwater dynamics in the flood plain are an important source of temporal variability in soil moisture and vertical recharge processes, and this variability must be properly taken into account when the water balance is investigated in shallow groundwater environments.

Citation Pirastru, M. and Niedda, M., 2013. Evaluation of the soil water balance in an alluvial flood plain with a shallow groundwater table. Hydrological Sciences Journal, 58 (4), 898–911.  相似文献   

12.
Scenario‐neutral assessments of climate change impact on floods analyse the sensitivity of a catchment to a range of changes in selected meteorological variables such as temperature and precipitation. The key challenges of the approach are the choice of the meteorological variables and statistics thereof and how to generate time series representing altered climatologies of the selected variables. Different methods have been proposed to achieve this, and it remains unclear if and to which extent they result in comparable flood change projections. Here, we compare projections of annual maximum floods (AMFs) derived from three different scenario‐neutral methods for a prealpine study catchment. The methods chosen use different types of meteorological data, namely, observations, regional climate model output, and weather generator data. The different time series account for projected changes in the seasonality of temperature and precipitation, in the occurrence statistics of precipitation, and of daily precipitation extremes. Resulting change in mean AMF peak magnitudes and volumes differs in sign between the methods (range of ?6% to +7% for flood peak magnitudes and ?11% to +14% for flood volumes). Moreover, variability of projected peak magnitudes and flood volumes depends on method with one approach leading to a generally larger spread. The differences between the methods vary depending on whether peak magnitudes or flood volumes are considered and different relationships between peak magnitude and volume change result. These findings can be linked to differing flood regime changes among the three approaches. The study highlights that considering selected aspects of climate change only when performing scenario‐neutral studies may lead to differing representations of flood generating processes by the approaches and thus different quantifications of flood change. As each method comes with its own strengths and weaknesses, it is recommended to combine several scenario‐neutral approaches to obtain more robust results.  相似文献   

13.
1990年以来北京密云水库主要水环境因子时空分布特征   总被引:3,自引:0,他引:3  
根据19902011年密云水库共12个监测点的月监测资料,采用聚类分析研究各监测点水环境相似性及空间分布特征,采用因子分析识别影响水质的主要因子并评价各采样点的综合水质.通过绝对主成分多元回归分析,获得汛期和非汛期各因子对各水质指标的贡献率.利用季节性Kendall检验及流量调节检验对密云水库库区水化学特征和水质状况时空分布特征进行了研究.结果表明:汛期水质主要受到农业营养物质的影响,其次为生物化学因素和有机物的影响.非汛期水质主要受到农牧业排放因素的影响,其次为人类活动和生物化学因素的影响.因子得分综合评价显示,汛期辛庄桥、内湖和大关桥综合水质较差,潮河、库西和白河综合水质较好.非汛期辛庄桥、石佛桥和大关桥综合水质较差,库东、套里和恒河综合水质较好.主要水质指标的年际变化规律不同,但最终都趋于平稳.与潮河、白河入库水质变化相比,库区水质变化趋势较小,上游入库水质和库区水质都整体趋好.除白河入库的总氮和总磷外,其他监测指标的变化趋势经流量调节前后基本一致,表明流量并不是引起水质趋势变化的主要因素,水质的变化主要是由于污染源变化而引起.  相似文献   

14.
The topography and geomorphology of the sand dunes and interdunal valleys in the Nebraska Sand Hills play important roles in regional water cycle by influencing groundwater recharge and evapotranspiration (ET). In this study, groundwater recharge, associated with precipitation and ET as well as soil hydraulics, and its spatial variations owing to the topography of dunes and valleys are examined. A method is developed to describe the recharge as a function of the storage capacity of dunes of various heights. After the method is tested using observations from a network of wells in the Sand Hills, it is used in the MODFLOW model to simulate and describe recharge effects on groundwater table depth at two different dune-valley sites. Analysis of modeled groundwater budget shows that the groundwater table depth in the interdunal valleys is critically influenced by vertical groundwater flows from surrounding dunes. At the site of higher dunes there are steadier and larger vertical groundwater flows in the dunes from their previous storage of precipitation. These vertical flows change to be horizontal converging groundwater flows and create upwelling in the interdunal valleys, where larger ET loss at the surface further enhances groundwater upwelling. Such interdunal valley is the major concentration area of the surface water and groundwater flow in the Sand Hills. At the site of shallow dunes and a broad interdunal valley the supply of groundwater from the dunes is trivial and inadequate to support upwelling of groundwater in the valley. The groundwater flows downward in the valley, and the valley surface is dry. Weak ET loss at the surface has a smaller effect on the groundwater storage than the precipitation recharge, making such area a source for groundwater.  相似文献   

15.
Bioretention cells, which are generally effective in controlling surface runoff and recharging groundwater, have been widely adopted as low impact development practices. However, shallow groundwater has limited their implementation in some locations due to the potential problems of a reduction in surface runoff control, groundwater pollution, and continuous groundwater drainage through the underdrain. Many guidelines have established minimum requirements for the groundwater depth below bioretention cells, but they may not be optimized for certain environmental conditions and bioretention cell designs. This study made use of a variably saturated flow model to examine the hydrologic performance of a single bioretention cell in shallow groundwater with event‐based simulations, considering a wide range of initial groundwater depths, media and in situ soil types, surface runoff loads, and underdrain sizes. Performance indicators (e.g., runoff reduction, time for infiltrated water to reach the bioretention cell bottom and the groundwater table, and height and dissipation time of groundwater mound) were evaluated to examine the processes of runoff generation, the formation and dissipation of groundwater mounds, and the bioretention cell's performance in a shallow groundwater environment. The most influential factors were the initial groundwater depth, the hydraulic conductivity of the media soil, and the rainfall runoff load. With a deeper initial groundwater table, infiltrated water took longer to reach the bioretention cell bottom and groundwater table. Groundwater mounds, however, took longer to dissipate even though they were smaller. The groundwater quality can be better protected if relatively less‐permeable soil types (e.g., sandy loam) are used as the media, although it may compromise the performance in runoff quantity control. However, only very high surface runoff loads would cause concerns regarding a reduction in runoff quantity control and possible groundwater contamination due to the shallow groundwater. A distance of 1.5–3 m between the bioretention cell bottom and the groundwater table is generally sufficient. The results of this study could help to guide the planning and design of bioretention cells in areas of shallow groundwater.  相似文献   

16.
In the late 1980s, dramatic increases in water use caused over‐exploitation of groundwater resources and deterioration of water quality in Seoul metropolitan city. To monitor changes in quantity of groundwater resources and their quality, the metropolitan government established a local groundwater monitoring network in 1997 consisting of 119 monitoring wells. Groundwater resources in the urban area were affected by various human activities, including underground construction such as subways, pumping for public or private water use, leaky sewer systems and pavements. The variation patterns of the groundwater levels were mainly classified into four types, reflecting natural recharge due to rainfall events during the wet season, artificial recharge from leaky sewer or water supply systems, and heavy groundwater pumping for drainage or flood control purposes at underground construction sites. Significantly decreasing trends of groundwater levels in the suburbs of Seoul indicate groundwater use for various agricultural activities. Subway construction lowered the water level by an average of 25 m. Electrical conductivity values showed a wide range, from 100 to 1800 µS/cm (mean 470 µS/cm). Groundwater temperature generally showed a stable pattern, except for some sensitive increases at relatively shallow monitoring wells. Detailed analysis of the monitored groundwater data would provide some helpful implications for optimal and efficient management of groundwater resources in this metropolitan city. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Groundwater supplies a significant proportion of water use in the United States and is critical to the maintenance of healthy ecosystems and environmental processes, thus characterizing aquifer hydrology is important to managing and preserving these resources. While groundwater isotopes provide insight into hydrologic and ecologic processes, their application is limited to where measurements exist. To help overcome this limitation, we used the random forest algorithm to develop a predictive model for shallow groundwater isotopes in the conterminous United States. Our model uses environmental variables (e.g. temperature, elevation, precipitation isotopes) as predictors. We used our model to develop the first shallow groundwater isoscape of δ2H and δ18O for the conterminous United States. We describe the patterns in groundwater isotopes using both observations and our modelled isoscape. We find that throughout much of the Eastern United States, groundwater isotopes are close to annual amount weighted precipitation, while groundwater isotopes are significantly depleted relative precipitation across much of the High Plains and Western United States. Furthermore, we compare the observations compiled for this study to isotopes of precipitation, which allows us to determine the relative recharge efficiency (i.e. ratio of groundwater recharge to precipitation) between seasons and the proportion of annual recharge that occurs in a given season. Our findings suggest that winter recharge is generally more efficient than summer recharge; however, the dominant recharge season is more varied as it is the product of both seasonal recharge efficiency and the seasonal timing of precipitation. Parts of the central United States have summer dominant recharge, which is likely the result of heavy summer precipitation/nocturnal summer precipitation. Interestingly, parts of coastal California appear to have summer dominant recharge, which we suggest could be due to recharge from fog-drip. Our results summarize spatial patterns in groundwater isotopes across the conterminous United States, provide insight into the hydrologic processes affecting shallow groundwater, and are valuable information for future ecologic and hydrologic studies.  相似文献   

18.
枯落物分解过程是湿地生态系统生源要素生物地球化学循环的关键环节.研究湿地枯落物分解过程是揭示湿地生态功能机理的关键.洪泛平原湿地枯水期的地下水位及丰水期的洪水淹没深度和持续时间都是湿地枯落物分解过程的重要调控因素.本研究采用分解袋法和原位观测模拟试验研究了鄱阳湖优势湿地植物薹草枯落物分解及碳、氮、磷释放对枯水期转化到丰水期的响应.利用鄱阳湖湿地洲滩的高程差选取4个水位梯度,在枯水期4个梯度分别是G-H(高地下水位带)、G-MH(中高地下水位带)、G-ML(中低地下水位带)和G-L(低地下水位带),而在丰水期这4个梯度又转变为G-H(深淹水带)、G-MH(中度深淹水带)、G-ML(中度浅淹水带)和G-L(浅淹水带).研究结果表明:无论在枯水期内还是在丰水期内,4个梯度带之间薹草枯落物干物质残留率及分解速率都具有极显著的差异性.在枯水期内,4个梯度分解速率的大小关系为:G-HG-MHG-MLG-L,在丰水期内,分解速率大小关系发生了反转,即为:G-LG-MLG-MHG-H.薹草枯落物碳、氮、磷相对归还指数表现出与干物质相似的差异性.本研究可为湿地生态系统生物地球化学循环过程对水文节律的响应研究提供数据和理论支撑,也为鄱阳湖基于水位调控下的生态系统管理提供新的认识和决策依据.  相似文献   

19.
Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age‐dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ13C value (?17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ18O and δD values (?4.0 ± 0.1‰ VSMOW, n = 27; δD: ?19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.  相似文献   

20.
Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has been influenced by magmatic and volcanic activity in the San Juan Mountains-San Juan volcanic field located to the north of the Basin. Time-dependent isothermal step models indicate that the observed heat flow may be modelled by a (near) steadystate isothermal step extending from 30–98 km depth whose edge underlies the northern San Juan Basin. The observed maturation levels of the Fruitland formation coals in the northern and central Basin, however, require more heat than can be associated with conduction from a deep thermal source (steady-state step) and from the shallow crustal batholith which underlies the San Juan volcanic field. Magmatic activity within the Basin does not appear to be a reasonable source of additional heat. Increased burial depths of the coals may explain some of the elevated maturation levels observed in the central and northern Basin, but it seems likely that an additional source of heat is still required. Heat advection by groundwater movement may have influenced the coal maturation levels in the Basin as well. Both magmatic activity associated with the emplacement of the San Juan batholith and elevated geothermal gradients associated with the steady-state thermal source at depth may have contributed to heating of the groundwater. An appreciation of heat advection by groundwater flow may therefore be most important to understanding regional patterns of heat flow and hydrocarbon maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号