首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

2.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

3.
Satellite-derived ocean color data of Coastal Zone Color Scanner (CZCS) on board the Nimbus-7 and Ocean Color and Temperature Scanner (OCTS) on board the Advanced Earth Observing Satellite (ADEOS) are jointly used with historical in situ data to examine seasonal and spatial distributions of chlorophyll a (Chl-a) and suspended particulate matter (SPM) concentrations in the East China Sea. Ocean color imagery showed that Chl-a concentrations on the continental shelf were higher than those of the Kuroshio area throughout the year. Satellite-derived Chl-a concentrations are generally in good accordance with historical in situ values during spring through autumn (although no shipboard in situ measurement was conducted at nearshore areas). In contrast, ocean color imagery in winter indicated high Chl-a concentrations (4–10 mg m–3) on the continental shelf where bottom depth was less than 50 m when surface water was turbid (2–72 g m–3 of SPM at surface), while historical in situ values were usually less than 1 mg m–3. This suggests that resuspended bottom sediment due to wind-driven mixing and winter cooling is responsible for the noticeable overestimation of satellite-derived Chl-a concentrations. The algorithm for ocean color needs to be improved urgently for turbid water.  相似文献   

4.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

5.
Some behavior ofSergestes lucens by day was observed by underwater camera with an electronic flash. A number of species was snapped at about 2–60 m above the steep continental slope where the bottom ranged between 341 and 437 m depths. They were often abundant from 3–4 to 10 m above the bottom. It suggests that the shrimps scatter widely along the continental slope by day. The maximum concentration of the shrimp was 1.2 individuals/m3. None of the shrimps was found on the bottom, and the majority were swimming in horizontal position.  相似文献   

6.
Unusually dense assemblages of benthic infaunal invertebrates have been discovered in continental slope sediments off Cape Hatteras, North Carolina. Densities were highest on the upper slope, ranging from 24,055 to 61,244 (X¯=46,255) individuals m−2 in nine samples taken at a 600-m site in 1984 and 1985, and from 15,522 to 89,566 (X¯=37,282) individuals m−2 in single samples at 15 stations over a wider depth range of 530 to 1535 m in 1992. A lower slope station at 2000 m sampled six times in 1984–1985 and again in 1992, had densities consistently higher than 8500 individuals m−2. Species richness and diversity are consistently lower on the Cape Hatteras slope than at other locations off North Carolina and elsewhere in the western North Atlantic. The 1992 studies indicated that the upper slope infaunal assemblages (600m) were dominated by oligochaetes, while the middle slope assemblages (800–1400 m) were dominated by the polychaeteScalibregma inflatum. This latter depth range could be defined into two assemblages based upon suites of less abundant species. At depths of 1500–2000 m, a lower slope assemblage dominated by various deposit feeding polychaetes and oligochaetes was found. Results from the 1984–1985 studies suggest seasonal or year-to-year patterns in the dominance ofS. inflatum andCossura longocirrata. Unusually high sedimentation rates and organic carbon flux have been recorded from the slope off Cape Hatteras and may account for the high infaunal productivity in the area. Most of the dominant infaunal organisms are species more typical of shallow, coastal habitats rather than deep-sea species that dominate other areas of the U.S. Atlantic continental slope. Parallel investigations regarding the nature of organic matter in the Cape Hatteras sediments have revealed a mixture of both marine and terrestrially derived carbon, only a small percentage of which is composed of the smaller molecular weight polyunsaturated fatty acids more typical of continental slope sediments. It is likely that the high percentage of refractory organic matter would favor the survival of preadapted shelf species over those from adjacent slope environments.  相似文献   

7.
In the late 1950s, Soviet researchers collected benthic infaunal samples from the southeastern Bering Sea shelf. Approximately 17 years later, researchers at University of Alaska Fairbanks also sampled the region to assess infaunal biomass and abundance. Here, the two data sets were examined to document patterns and reveal any consistent differences in infaunal biomass among major feeding groups between the two time periods. No significant differences in the geometric mean biomass of all taxa pooled were indicated between the two study periods (1958–1959=49.1 g m−2; 1975–1976=60.8 g m−2; P=0.14); however, significant differences were observed for specific functional groups, namely carnivores, omnivores and surface detritivores. Of the 64 families identified from both data sets from all functional groups, 21 showed statistically significant (P0.05) differences in mean biomass. Of the 21 families showing significant differences, 19 (91%) of the families had higher mean biomass in the 1975–1976 data set. The above differences suggest a trend toward higher overall infaunal biomass for specific functional groups during mid 1970s compared with the late 1950s. Temperature measurements and literature data indicate that the mid-1970s was an unusually cold period relative to the period before and after, suggesting a mechanistic link between temperature changes and infaunal biomass. Food-web relationships and ecosystem dynamics in the southeastern Bering Sea indicate that during cold periods, infaunal biomass will be elevated relative to warm periods due to elevated carbon flux to the benthos and exclusion of benthic predators on infaunal invertebrates by the cold bottom water on the shelf. As long-term observations of temperature and sea-ice cover indicate a secular warming trend on the Bering Sea shelf, the potential changes in food-web relationships could markedly alter trophic structure and energy flow to apex consumers, potentially impacting the commercial, tourist and subsistence economies.  相似文献   

8.
Horizontal and vertical distributions of mercury were determined in seawater in Minamata Bay and Yatsushiro Sea. The concentrations of total and particulate mercury respectively ranged from 56–285 ng l–1 and 2.1–506 ng l–1. They were both highest in the inner most part of Minamata Bay where the sediment was most heavily polluted, and decreased with increasing distance from there. Vertically, an evident increase in concentration was observed near the bottom. A good agreement was found between the mercury content in suspended matter and that in fine sediment particles.These facts show that the particulate mercury is supplied mostly from the bottom sediment, and that it is spreading offshore with dispersing in seawater. This process would eventually result in the pollution of sediment in Yatsushiro Sea.  相似文献   

9.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   

10.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   

11.
Sediment trap arrays were deployed at two deep ocean stations, one in the Bering Sea and the other in the Gulf of Alaska, in the summer of 1975. The sediment trap was constructed of a pair of polyethylene cylinders (0.185 m2 opening) with funnel-shaped bases. The trap is equipped with a lid which is closed before recovery by a tripping messenger system triggered by an electric time release. 37–68% of the total organic carbon fluxes (37–38% in the Bering Sea; 48–68% in the Gulf of Alaska) were represented by large particles (67µm<) such as fecal matter and fecal pellets which contributed minor fractions to the total particulate organic matter concentration in sea water. The total fluxes were 11.1 and 14.2 mg C m–2d–1 at 1,510 and 2,610 m respectively at the station (3,800 m) in the Bering Sea, and were 7.60, 4.66 and 3.27 mg C m–2d–1 at 900, 1,500 and 1,875 m respectively at the station (4,150 m) in the Gulf of Alaska. The former values are several times greater than the latter, suggesting that there is a regional variation in the vertical carbon flux in deep layers. The fluxes were approximately equivalent to 1 to 3% of primary productivity in the overlying surface layers. These observations suggest that deep-water ecosystems may be influenced by relatively rapid sinking of large particles such as fecal matter and fecal pellets from near surface production.  相似文献   

12.
We report a ten-year study of the abundance and activity of megabenthos on the Porcupine Abyssal Plain, northeast Atlantic, together with observations on the occurrence of phytodetritus at the deep-sea floor (4850 m). Using the Southampton Oceanography Centre time-lapse camera system, ‘Bathysnap’, we have recorded a radical change in the abundance and activity of megabenthos between the two periods of study (1991–1994 and 1997–2000). In 1991–1994, the larger megabenthos occurred at an abundance of c. 71.6/ha and were dominated by large holothurians. In addition, there were very substantial populations of smaller megabenthic ophiuroids (c. 4979/ha). Together, the total megabenthos are estimated to track over some 17 cm2/m2/d (exploiting 100% of the surface of the seabed in c. 2.5 years). In 1997–2000, the larger megabenthos increased to an abundance of c. 204/ha and were joined by exceptional numbers of a small holothurian species (Amperima rosea, 6457/ha) and ophiuroids (principally Ophiocten hastatum, 53,539/ha). The total megabenthos population was tracking at an estimnated rate of c. 247 cm2/m2/d (exploiting 100% of seabed in just 6 weeks). Coincident with these increases in the abundance and activity of the megabenthos, there were apparently no mass depositions of aggregated phytodetritus to the seabed in the summers of 1997–1999. Mass occurrences of phytodetritus had been noted during the summer months of the three years previously studied (1991, 1993 and 1994), with covering between 50 and 96% of the sediment surface. There is a statistically significant (p<0.02) negative correlation between maximum extent of this seabed cover of phytodetritus and seabed tracking by megabenthos. Additional studies [Lampitt et al., Progr. Ocean. 50 (2001)], indicate that there were no substantial changes in surface ocean primary productivity, in export flux, or in the composition of the flux that might otherwise account for the apparent absence of observable concentrations of phytodetritus during the summers of 1997–1999. We postulate that the marked increase in megabenthic tracking activity resulted in the removal (via consumption, disaggregation, burial etc.) of the bulk of the incoming phytodetrital flux during these years. A simple conceptual model, based on the apparent phytodetrital fluxes observed in 1991 and 1993, suggests that the megabenthos tracking rates estimated for 1997–1999 are sufficient to account for near-total removal of this flux. However, we are not able to estimate other processes removing phytodetritus (i.e. other elements of the benthos) that may also have increased between 1991–1994 and 1997–1999. Other independent studies [e.g. Ginger et al., Progr. Ocean. 50 (2001)] of flux constituents support the possibility that just a few species of megabenthos (e.g. A. rosea, and O. hastatum) could well have consumed a major proportion of the incoming flux and so substantially modified the composition of the organic matter available to other components of the benthos.  相似文献   

13.
Fine sediment dynamics were recorded in February 2007 in coastal waters of the Great Barrier Reef during a moderate flood of the Tully River. An estuarine circulation prevailed on the inner continental shelf with a surface seaward velocity peaking at 0.1 m s−1 and a near-bottom landward flow peaking at 0.05 m s−1. Much of the riverine mud originating from eroded soils was exported onto a 10 km wide coastal strip during the rising stage of the river flood in the first flush. In coastal waters, suspended sediment concentration peaked at 0.2 kg m−3 near the surface and 0.4 kg m−3 at 10 m depth during calm weather, and 0.5 kg m−3 near the surface and 2 kg m−3 at 10 m depth during strong winds when bottom sediment was resuspended. Diurnal irradiance at 4 m depth was almost zero for 10 days. The sedimentation rate averaged 254 (±33) g m−2 d−1 over the 28-day study period, and concentrations of dissolved and particulate nutrients originating from the river were high. The observed low irradiance would have prevented coral photosynthesis, while the sedimentation rate would have been lethal to some juvenile corals. The mud may ultimately be minnowed out over long periods, however, flushing of the mud occurs at time scales much longer than the flood event and the mud is likely to affect coral physiology for significant periods after the flood has subsided. The data show the need to better control erosion on farmed land for the conservation of coral reefs on the inner shelf of the Great Barrier Reef.  相似文献   

14.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

15.
Density, biomass and community structure of macrofauna were estimated together with several sediment characteristics at seven stations ranging from 208 m to 4460 m water depth along the OMEX transect in the Goban Spur area (NE Atlantic) during three seasons (October 1993, May 1994, and August 1995). Median grain size decreased with increasing water depth and showed no differences between the seasons. The percentages of organic carbon and total nitrogen were highest at mid-slope depths (1000 to 1500 m), and were significantly higher in August at the upper part of the slope to a depth of 1500 m. The C:N ratio in the surface layer amounted to 7 to 8 in May, 10 to 12 in August and 14 to 17 in October at all stations (except the deepest at 4460 m, where it was 11 in May and August), indicating arrival of fresh phytodetritus in May, and therefore seasonality in food input to the benthos. Densities of macrofauna decreased exponentially with increasing water depth. Significantly higher densities of macrofauna were found in May at the upper part of the slope to a depth of 1500 m. These differences were mainly due to high numbers of postlarvae of echinoids at the shallowest station and ophiuroids at the deeper stations. Biomass values also decreased with increasing water depth, but biomass was relatively high at the 1000 m station and low at 1500 m, due to relatively high and low mean weights of the individual macrofaunal specimens. No significant differences in biomass were found between the seasons. Respiration was high (15 to 20 mgC·m−2·d−1) in May at the upper part of the slope to a depth of 1000 m and low (1–3 mg C·m−2·d−1) at the deeper part. At the shallowest stations to a depth of 1000 m respiration was highest in May, at the mid-slope stations (1400–2200 m) it was highest in August, whereas the deepest stations (3600 to 4500 m) did not show any differences in respiration rates. In conclusion; seasonal variation in organic input is reflected in denstiy, community structure and activity of the macrofauna along the continental slope in the NE Atlantic.  相似文献   

16.
A brief review of the published evidence of current deposits around Italy is the occasion to test the robustness of matching bottom current velocity models and seafloor morphologies to identify contourite drifts not yet documented. We present the result of the regional hydrodynamic model MARS3D in the Northern Tyrrhenian and Ligurian Sea with horizontal resolution of 1.2 km and 60 levels with focus on bottom current: data are integrated over summer and winter 2013 as representative of low and high intensity current conditions.The Eastern Ligurian margin is impacted by the Levantine Intermediate Water (LIW) with modeled mean velocity of bottom current up to 20 cm s−1 in winter 2013 and calculated bottom shear stress exceeding 0.2 N m−2 in water depth of 400–800 m. By crossing this information with seafloor morphology and geometry of seismic reflections, we identify a sediment drift formerly overlooked at ca 1000 m water depth. The Portofino separated mounded drift has a maximum thickness of at least 150 m and occurs in an area of mean current velocity minimum. Independent evidence to support the interpretation include bottom current modelling, seafloor morphology, seismic reflection geometry and sediment core facies. The adjacent areas impacted by stronger bottom currents present features likely resulted from bottom current erosion such as a marine terrace and elongated pockmarks.Compared to former interpretation of seafloor morphology in the study area, our results have an impact on the assessment of marine geohazards: submarine landslides offshore Portofino are small in size and coexist with sediment erosion and preferential accumulation features (sediment drifts) originated by current-dominated sedimentary processes. Furthermore, our results propel a more general discussion about contourite identification in the Italian seas and possible implications.  相似文献   

17.
A sulfur budget for the Black Sea anoxic zone   总被引:1,自引:0,他引:1  
A budget for the sulfur cycle in the Black Sea is proposed which incorporates specific biogeochemical process rates. The average sulfide production in the water column is estimated to be 30–50 Tg yr−1, occurring essentially in the layer between 500 and 2000 m. About 3.2–5.2 Tg sulfide yr−1 form during sulfate reduction in surface sediments of the anoxic zone. Total sulfur burial in anoxic sediments of 1 Tg yr−1 consists of 10–70% (ca. 40–50% is the average) water column formed (syngenetic) component, the rest being diagenetic pyrite. As a maximum, between 3 and 5 Tg yr−1 contribute sulfide to the bottom water or diffuse downward in the sediment. About 20–50 Tg yr−1 sulfide is oxidized mostly at the chemocline and about 10–20% of this amount (4.4–9.2 Tg yr−1) below the chemocline by the oxygen of the Lower Bosphorus Current. A model simulating the vertical distribution of sulfide in the Black Sea water column shows net consumption in the upper layers down to ca. 500 m, essentially due to oxidation at the chemocline, and net production down to the bottom. On the basis of the calculated budget anoxic conditions in the Black Sea are sustained by the balance between sulfide production in the anoxic water column and oxidation at the chemocline. On average the residence time of sulfide in the anoxic zone is about 90–150 yr, comparable to the water exchange time between oxic and anoxic zones. Hydrophysical control on the sulfur cycle appears to be the main factor regulating the extent of anoxic conditions in the Black Sea water column, rather than rates of biogeochemical processes.  相似文献   

18.
Suspended particulate matter (SPM) concentration and properties (particle size and settling velocity), water column and boundary layer dynamics were measured during a 60-d period at a site in 110 m water depth in the northern North Sea. The site was in stratified waters and measurements were made during September–November as the seasonal thermocline was progressively weakening. SPM concentration was low, c. 1 mg dm−3 in the surface mixed layer and maximum values of 2 mg dm−3 in the bottom mixed layer. The bottom layer was characterised by larger mean particle size. SPM signals in the two layers were decoupled at the start of the period, when the thermocline was strong, but were increasingly coupled as the thermocline progressively weakened. A spring-neap cycle of resuspension and deposition of SPM was observed in the bottom mixed layer. Bed shear stresses were too small to entrain the bottom sediment (a fine sand) but were competent to resuspend benthic fluff: threshold bed shear stress and threshold current velocity at 10 mab were 0.02–0.03 Pa. and 0.18 m s−1, respectively. Maximum SPM concentration in the bottom layer preceded peak spring tide currents by 3 d. Simulation of fluff resupension by the PROWQM model confirms that this was due to a finite supply of benthic fluff: the fluff layer was stripped from the seabed so that fluff supply was zero by the time of peak spring flow. SPM was redeposited over neap tides. Fluff resuspension must have been enhanced by intermittent inertial currents in the bottom layer but unequivocal evidence for this was not seen. There was some resuspension due to wave activity. Settling velocity spectra were unimodal or bimodal with modal values of 2×10−4–2×10−3 mm s−1 (long-term suspension component) and 0.2–5.7 mm s−1 (resuspension component). The slowest settling particles remained in suspension at peak spring tides after the fluff layer had been exhausted. There was evidence of particle disaggregation during springs and aggregation during neaps.  相似文献   

19.
Photographic observations of the brittle starOphiura sarsi were conducted at a depth of approximately 280 m in the Pacific Ocean off tsuchi, northeastern Japan. Bottom photographs showed that this ophiuroid occurred in high densities, uniformly covering the sea floor and that other megafauna was rare. The mean density and biomass of ophiuroids in the dense bed were estimated to be 373 m–2 and 124 g m–2, respectively. Ophiuroids comprised 99% of all megabenthic organisms in terms of number of individuals, and megafaunal assemblage of the dense bed showed very low species diversity.O. sarsi exhibited a regular spatial pattern avoiding contact with conspecific neighbors. This regular spatial pattern was disrupted by certain other organisms, around which halo-like, bare areas were observed. The size and shape of these halo-like areas varied and were apparently related to the body size and/or motility of the organisms. In the present observation areaO. sarsi covered 96% of the sea bottom, and the remaining 4% was occupied by other organisms and their halo-like bare areas.  相似文献   

20.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号