首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface waves are the roughness element of the ocean surface, the air-sea interaction processes are influenced by the wave conditions. The dynamic influence of surface waves decays exponentially with distance from the air-water interface. The relevant length scale characterizing the decay rate is the wavelength. The parameterization of drag coefficient and surface roughness can be significantly improved by using wavelength as the reference length scale of atmospheric measurements. The wavelength scaling of drag coefficient and dynamic roughness also receives support from theoretical studies of wind and wave coupling.  相似文献   

2.
Estimation of the leeway drift of small craft   总被引:1,自引:0,他引:1  
Small craft (<6·4 m) leeway is determined as a function of the wind speed in the range of 5–20 knots (3·6–10·3 m/sec). Leeway is calculated relative to the surface current by measurement of the separation distance of the small craft from a dyed patch of surface water at sea, using time-sequenced aerial photography. Leeway increases linearly with wind speed for small craft equipped with or without a sea anchor in the wind range studied. Leeway for small craft without sea anchor can be calculated from the equation UL = 0.07 UW + 0.04 where UW is the wind speed at 2 m elevation. Leeway for small craft drifted off the be calculated from the equation ULD = 0·05 UW − 0·12. The small craft drifted off the downwind direction in about 80% of the experiments. The drift angle is variable and difficult to predict.  相似文献   

3.
海气动量通量研究综述   总被引:1,自引:0,他引:1  
冯兴如  李水清  尹宝树 《海洋科学》2018,42(10):103-109
海气界面动量通量也称为风应力,是海流和表面海浪的主要驱动力,是海洋从大气获得动量的重要途径。因此,合理可靠的海洋表面风应力的参数化对于海洋、大气和波浪以及气候模式的准确预报都具有非常重要的科学意义和实用价值。对风应力拖曳系数的参数化是风应力参数化的主要内容。近来的观测发现,风应力拖曳系数随着风速的增加出现了先增后减的趋势,同时还与海面的波浪状态以及海流有关。基于观测或理论分析,目前已经得到了一系列的风应力拖曳系数计算方法或公式,有的考虑了海浪的作用,有的没有,但这些方案大都是适合中低风速,在高风速下的适用性还有待检验。本文回顾了目前在海气动量通量观测和参数化方面的研究进展,并建议应增加高风速下风速、海流以及海浪等的同步观测,以进一步完善风应力参数化方案。  相似文献   

4.
Wind and wind-generated waves were measured in a wind-wave tank. A clear transition was found in the relation between the wind speed U 10 and the wind friction velocity u * near u * = 0.2 m/s, where U 10 is the wind speed at 10 m height extrapolated from the measured wind profile in a logarithmic layer, and u * = 0.2 m/s corresponds roughly to U 10 = 8 m/s in the present measurement. Quite a similar transition was found in the relation between the spectral density of high frequency wind waves and u *. These results suggest the existence of the critical wind speed for air–sea boundary processes, which was proposed by Munk (J Marine Res 6:203–218, 1947) more than half a century ago. His original idea of the critical wind speed was based on the discontinuities in such phenomena as white caps, wind stress, and evaporation, which commonly appear at a wind speed near 7 m/s. On the basis of the results of our present study and those of earlier studies, we discuss the phenomena which are relevant to the critical wind speed for the air–sea boundary processes. The conclusion is that the critical wind speed exists and it is attributed to the start of wave breaking rather than the Kelvin–Helmholtz instability, but the air–sea boundary processes are not discontinuous at a particular wind speed; because of the stochastic nature of breaking waves, the changes occur over a range of wind speeds. Detailed discussions are presented on the dynamical processes associated with the critical wind speed such as wind-induced change of sea surface roughness and high frequency wave spectrum. Future studies are required, however, to clarify the dynamical processes quantitatively. In particular, there is a need to further examine the gradual change of breaking patterns of wind waves with the increase of wind speed, and the associated change of the structure of the wind over wind waves, such as separation of the airflow at the crest of wind waves, the turbulent stress, and wave-induced stress. Studies on the dynamical structure of the high frequency wave spectrum are also needed.  相似文献   

5.
海-气界面动量通量的估计方法分析与应用   总被引:3,自引:1,他引:2  
首次将经验模态分解方法引入湍流稳定性分析,与传统的线性和滑动平均去势方法进行了比较,发现经验模态分解方法的去势效果最好。基于"南海平台通量观测计划"(FOPSCS)近两年的连续通量观测数据,得到了22 476个摩擦速度的估算值,结果表明,当风速小于5m/s时,拖曳系数随风速增大而减小,而风速大于5m/s时,拖曳系数随风速增大而增大,两种情形分别反映了黏性表皮摩擦和波浪引起的形状阻力对海面风应力的贡献。同时发现短风区情形的拖曳系数大于长风区情形,说明波浪成长状态会对海-气界面动量交换产生影响。  相似文献   

6.
Surface waves are the roughness element of the ocean surface. The parameterization of the drag coefficient of the ocean surface is simplified by referencing to wind speed at an elevation proportional to the characteristic wavelength. The dynamic roughness is analytically related to the drag coefficient. Under the assumption of fetch limited wave growth condition, various empirical functions of the dynamic roughness can be converted to equivalent expressions for comparison. For datasets covering a wide range of the dimensionless frequency (inverse wave age), it is important to account for the variable rate of wave development at different wave ages. As a result, the dependence of the Charnock parameter on wave age is nonmonotonic. Finally, the analysis presented here suggests that the significant wave steepness is a sensitive property of the ocean surface and a single variable normalization of the dynamic roughness using a wavelength or wave height parameter actually produces more robust functions than bi-variable normalizations using wave height and wave slope.  相似文献   

7.
The minimum value of wind stress under which the flow velocity in short wind waves exceeds the phase speed is estimated by calculating the laminar boundary layer flow induced by the surface tangential stress with a dominant peak at the wave crest as observed in previous experiments. The minimum value of the wind stress is found to depend strongly on, the ratio of the flow velocity just below the boundary layer and the phase speed, but weakly onL, the wavelength. For wind waves previously studied (=0.5,L=10 cm), the excess flow appears when the air friction velocityu * is larger than about 30 cm sec–1. The present results confirm that the excess flow found in my previous experiments is associated with the local growth of a laminar boundary layer flow near the wave crest.  相似文献   

8.
The parameter that describes the kinetics of the air-sea exchange of a poorly soluble gas is the gas transfer velocity which is often parameterized as a function of wind speed. Both theoretical and experimental studies suggest that wind waves and their breaking can significantly enhance the gas exchange at the air-sea interface. A relationship between gas transfer velocity and a turbulent Reynolds number related to wind waves and their breaking is proposed based on field observations and drag coefficient formulation. The proposed relationship can be further simplified as a function of the product of wind speed and significant wave height. It is shown that this bi-parameter formula agrees quantitatively with the wind speed based parameterizations under certain wave age conditions. The new gas transfer velocity attains its maximum under fully developed wave fields, in which it is roughly dependent on the square of wind speed. This study provides a practical approach to quantitatively determine the effect of waves on the estimation of air-sea gas fluxes with routine observational data.  相似文献   

9.
Ocean surface mixing and drift are influenced by the mixed layer depth, buoyancy fluxes and currents below the mixed layer. Drift and mixing are also functions of the surface Stokes drift Uss, volume Stokes transport TS, a wave breaking height scale Hswg, and the flux of energy from waves to ocean turbulence Φoc. Here we describe a global database of these parameters, estimated from a well-validated numerical wave model, that uses traditional forms of the wave generation and dissipation parameterizations, and covers the years 2003–2007. Compared to previous studies, the present work has the advantage of being consistent with the known physical processes that regulate the wave field and the air–sea fluxes, and also consistent with a very large number of in situ and satellite observations of wave parameters. Consequently, some of our estimates differ significantly from previous estimates. In particular, we find that the mean global integral of Φoc is 68 TW, and the yearly mean value of TS is typically 10–30% of the Ekman transport, except in well-defined regions where it can reach 60%. We also have refined our previous estimates of Uss by using a better treatment of the high frequency part of the wave spectrum. In the open ocean, Uss  0.013U10, where U10 is the wind speed at 10 m height.  相似文献   

10.
叶灿  成泽毅  高宇  宋金宝  李爽 《海洋与湖沼》2023,54(6):1537-1550
当水流经过海洋地形时,水流的不稳定性会引起垂向混合并伴随大量湍流过程。针对传统海气耦合模式缺少在湍流尺度上讨论海洋地形与风速对海气相互作用影响的问题,使用并行大涡模拟海气耦合模式(the parallelized large eddy simulation model, PALM)在5 m/s的背景风场下,引入理想立方体地形,对比有无地形的影响;设置地形边长为L,高为3L (其中大气部分高L), L与水深H之比为L/H=1/2;然后保持地形条件不变。设置5、10和15 m/s三种风速,讨论风速对小尺度海气相互作用的影响。研究表明:地形在大气部分减弱顺风向速度,增强侧风向速度,影响0~5L的高度区域,而对垂向作用较小;无地形条件下湍流垂向涡黏系数Km在-0.3L时,水深达到最大值0.024 m2/s,有地形条件下Km在-0.8L时,达到最大值为0.16 m2/s,地形的存在使得上层海洋混合加强, Km最大值增加1个数量级。随风速增大海洋和大气中的净热通量、淡水通量和浮力通量都相应...  相似文献   

11.
Three velocity components of subsurface flow, observed in a rectangular tank under the action of a constant wind speed, are measured systematically at mesh points distributed uniformly over a vertical cross-section of the tank. Measurements are carried out for two cases: 1) reference wind speedU r =7.5 m/s and fetchF=10 m; and 2)U r =10 m/s andF=25 m. A pair of Langmuir cells is observed for both cases; downwelling zones are found along both of the sidewalls and an upwelling zone in the centre of the tank. Near the water surface, the vertical momentum flux is dominated by the Reynolds stress resulting from small-scale turbulence, while over the entire cross-section except near the surface, the Reynolds stress due to the Langmuir cells dominates the vertical momentum flux. As the result of the occurrence of this Langmuir cells, the vertical momentum flux, which consists of both mean advection and small-scale turbulence, is markedly inhomogeneous in the spanwise direction; for example, the largest vertical flux of the order of the wind stress is observed in the downwelling zone near one sidewall, while at the centre of the tank, the vertical momentum flux occupies only 30% of the wind stress. This indicates that a pair of Langmuir cells plays more important role than small-scale turbulence in the mixing process in a greater part of the wind-wave tank.Address after April 1, 1992: Department of Civil Engineering, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima 731-51, Japan.  相似文献   

12.
Various wind velocitiesu *,U /2,U andU 10 are correlated to the measured growth rate of water waves , whereu * is the friction velocity of the wind, andU /2,U andU 10 are the wind speeds respectively at the heights /2, and 10m above sea surface (: wave length). It is shown that within a range of the dimensionless wind speed, 0.1<u * /C<0.6, there are no appreciable differences in the correlations, whereC is the phase velocity of water waves. The present relation between andU shows qualitatively similar properties as the one obtained by Al'Zanaidi and Hui (1984); the growth rate for waves with rough surface is larger than that with smooth surface. However, our present relations give, for the both waves with different surface roughness, larger values by factors 1.71.8 than those given by Al'Zanaidi and Hui's relation.  相似文献   

13.
海洋白浪寿命的定义及测量结果   总被引:3,自引:0,他引:3  
通过对国内外白浪研究和应用的分析,首次提出了有效白浪寿命的定义,给出了计算白浪寿命的公式及测量方法和结果,并报告了以此方法在渤海实测的结果,得到了白浪寿命TL与海面风速U10的关系为TL=0.26U10以及白浪寿命概率分布近于瑞利分布等。  相似文献   

14.
A salient feature of sea level records from the Adriatic Sea is the frequent occurrence of energetic seiches of period about 21 h. Once excited by a sudden wind event, such seiches often persist for days. They lose energy either to friction within the Adriatic, or by radiation through Otranto Strait into the Mediterranean.The free decay time of the dominant (lowest mode) seiche was determined from envelopes of handpassed sea level residuals from three locations (Bakar, Split and Dubrovnik) along the Croatian coast during twelve seiche episodes between 1963 and 1986 by taking into consideration only time intervals when the envelopes decreased exponentially in time, when the modelled effects of along-basin winds were smaller than the error of estimation of decay time from the envelopes and when across-basin winds were small. The free decay time thus obtained was 3.2±0.5 d. This value is consonant with the observed width of the spectral peak.The decay caused by both bottom friction and radiation was included in a one dimensional variable cross section shallow water model of the Adriatic. Bottom friction is parameterized by the coefficient k appearing in the linearized bottom stress term ρ0u (where u is the along-basin velocity and ρ0 the fluid density). The coefficient k is constrained by values obtained from linearization of the quadratic bottom stress law using estimates of near bottom currents associated with the seiche, with wind driven currents, with tides and with wind waves. Radiation is parameterized by the coefficient f appearing in the open strait boundary condition ζ =auh/c (where ζ is sea level, h is depth and c is phase speed). This parameterization of radiation provides results comparable to allowing the Adriatic to radiate into an unbounded half plane ocean. Repeated runs of the model delineate the dependence of model free seiche decay time on k and a, and these plus the estimates of k allow estimation of a.The principle conclusions of this work are as follows.
1. (1) Exponential decay of seiche amplitude with time does not necessarily guarantee that the observed decay is free of wind influence.
2. (2) Winds blowing across the Adriatic may be of comparable importance to winds blowing along the Adriatic in influencing apparent decay of seiches; across-basin winds are probably coupled to the longitudinal seiche on account of the strong along-basin variability of across-basin winds forced by Croatian coastal orography.
3. (3) The free decay time of the 21.2 h Adriatic seiche is 3.2±0.5 d.
4. (4) A one dimensional shallow water model of the seiche damped by bottom stress represented by Godin's (1988) approximation to the quadratic bottom friction law ρ0CDu|u| using the commonly accepted drag coefficient CD = 0.0015 and quantitative estimates of bottom currents associated with wind driven currents, tides and wind waves, as well as with the seiche itself with no radiation gives a damping time of 9.46 d; radiation sufficient to give the observed damping time must then account for 66% of the energy loss per period. But independent estimates of bottom friction for Adriatic wind driven currents and inertial oscillations, as well as comparisons between quadratic law bottom stress and directly measured bottom stress, all suggest that the quadratic law with CD=0.0015 substantially underestimates the bottom stress. Based on these studies, a more appropriate value of the drag coefficient is at least CD=0. In this case, bottom friction with no radiation leads to a damping time of 4.73 d, radiation sufficient to give the observed damping time then accounts for 32% of the energy loss per period.
  相似文献   

15.
In this study, a three-dimensional numerical model is used to study the wave interaction with a vertical rectangular pile. The model employs the large eddy simulation (LES) method to model the effect of small-scale turbulence. The velocity and vorticity fields around the pile are presented and discussed. The drag and inertial coefficients are calculated based on the numerical computation. The calculated coefficients are found to be in a reasonable range compared with the experimental data. Additional analyses are performed to assess the relative importance of drag and initial effects, which could be quantified by the force-related Keulegan and Carpenter (KC) number: KCf=UT/(4πL). Here U is the maximum fluid particle velocity, T the wave period and L the length of structure aligned with the wave propagation direction. For small KCf, the effective drag coefficient is proportional to 1/KCf, provided the wavelength is much longer than the structural length. When wavelength is comparable to the structure dimension, the effective drag coefficient would be reduced significantly due the cancellation of forces, which has been demonstrated by numerical results.  相似文献   

16.
The wind-stress field in the North Pacific Ocean during 1961–75 is computed from nearly five million ship reports. With a drag coefficient having a linear relation to wind speed, annual mean and monthly mean wind-stress fields are obtained, and their features are described.Compared with the stress fields obtained byHellerman (1967) andWyrtki andMeyers (1976), the eastward component of the stress in the present study is larger in magnitude and the northward one smaller in magnitude, especially in the trade wind region. Differences in the drag coefficient do not have a pronounced effect on the estimated stress field. Long-period inter-annual variations in the wind field are the most likely cause of the discrepancies between the present study and those of the above authors.The maximum of the wind-stress curl, estimated from the annual mean wind-stress fields, is as large as 1.0×10–8dyn cm–3 around 30°N, and is larger than that estimated byEvenson andVeronis (1975). The discrepancy is considered to be mainly due to differences in the computed stress field itself rather than due to differences in the grid size used in the stress computations.The Sverdrup transports integrated from the eastern boundary on the basis of the present stress field have a maximum greater than 40×10–12cm3 s–1 (Sv.) near the western boundary around 30°N. This value is closer to the observed transport of the Kuroshio than that based on Hellerman's stress field.  相似文献   

17.
Adjustment of Wind Waves to Sudden Changes of Wind Speed   总被引:1,自引:0,他引:1  
An experiment was conducted in a small wind-wave facility at the Ocean Engineering Laboratory, California, to address the following question: when the wind speed changes rapidly, how quickly and in what manner do the short wind waves respond? To answer this question we have produced a very rapid change in wind speed between U low (4.6 m s?1) and U high (7.1 m s?1). Water surface elevation and air turbulence were monitored up to a fetch of 5.5 m. The cycle of increasing and decreasing wind speed was repeated 20 times to assure statistical accuracy in the measurement by taking an ensemble mean. In this way, we were able to study in detail the processes by which the young laboratory wind waves adjust to wind speed perturbations. We found that the wind-wave response occurs over two time scales determined by local equilibrium adjustment and fetch adjustment, Δt 1/T = O(10) and Δt 2/T = O(100), respectively, in the current tank. The steady state is characterized by a constant non-dimensional wave height (H/gT 2 or equivalently, the wave steepness for linear gravity waves) depending on wind speed. This equilibrium state was found in our non-steady experiments to apply at all fetches, even during the long transition to steady state, but only after a short initial relaxation Δt 1/T of O(10) following a sudden change in wind speed. The complete transition to the new steady state takes much longer, Δt 2/T of O(100) at the largest fetch, during which time energy propagates over the entire fetch along the rays (dx/dt = c g) and grows under the influence of wind pumping. At the same time, frequency downshifts. Although the current study is limited in scale variations, we believe that the suggestion that the two adjustment time scales are related to local equilibrium adjustment and fetch adjustment is also applicable to the ocean.  相似文献   

18.
风浪和海洋飞沫对海表面拖曳系数和风廓线的影响   总被引:2,自引:1,他引:1  
基于埃克曼理论,本文将波致应力和飞沫应力引入到海-气边界层的界面应力中,来研究海表面风浪和海洋飞沫对海-气边界层动量交换的影响,并得到修改后的埃克曼模型的理论解。波致应力是由风浪谱和波增长函数估计,并得到在中低风速下,波致应力、飞沫应力与湍流应力相比,对海表面拖曳系数和风廓线的影响非常小。当风速高于25米/秒时,海洋飞沫通过飞沫应力对海-气界面应力的作用远高于波致应力,以至于波致应力可以忽略。海表面拖曳系数在高风速下,随着风速的增大而减小。通过采用风浪谱的不同波龄,得到海洋飞沫的产生会导致海-气边界层风速的增加。最后,理论解与现场的观察数据进行了对比。对比后的数据表明,在中高风速下,飞沫对海-气边界层的影响远大于表面风浪。  相似文献   

19.
影响海-气二氧化碳(CO2)交换速度的多种因子已经讨论了很多年,但对各种因子的贡献却很少进行定量估计。为了更好地了解海-气交换的机制,我们讨论了不同因子对海-气交换速度的影响,并对描述海-气交换现象的各种参数化模型进行了分类和比较。然后,基于GAS EX-98和ASGAMAGE数据,我们评估了风速模型,并使用分段平均法定量地讨论了一些因子的影响,包括泡沫,波浪,风等,并考虑了它们之间的相互作用。我们发现,海-气CO2交换速度不仅仅是风速的函数,也会受到泡沫,波浪参数和其他因素的影响。我们使用了逐步回归法和线性回归法。当考虑风速,泡沫媒介和显著波高时,均方根误差由34.53 cm·h-1减少到16.96 cm·h-1。定量地讨论各种因子,对于将来评估大空间尺度和长时间序列的海-气CO2通量和全球变化是有用的。  相似文献   

20.
Nonlinear properties of wind waves in a wind-wave tunnel are investigated by measuring the probability density distribution of surface elevation. The surface elevation distribution of raw records are found to have a positive skewness (K 3=0.21 to 0.43) and a negative kurtosis (K 4=–0.74 to –0.41) with magnitude depending of fetch and wind speed. The values of skewness are in qualitative agreement with a prediction of the weak interaction theory for a random wave field incorporating the effects of second harmonics (Tayfun, 1980), but the values of kurtosis are different in sign from the prediction.To examine the nonlinear properties of energy containing components, higher harmonic components are excluded from the wave records by using a kind of a band-pass filter. The surface elevation distributions of the filtered waves show a sharp decrease in skewness , but the distributions remain highly non-Gaussian with a large negative kurtosis almost independent of the fetch and wind speed . It is concluded that the negative kurtosis is due to the non-random character of the phase and amplitude among the energy containing components, and that nonlinear interactions occur amongst the energy containing frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号