首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A new control algorithm is developed for reducing the response of smart base isolated buildings with variable friction semiactive control systems in near‐fault earthquakes. The central idea of the control algorithm is to design a H controller for the structural system and use this controller to determine the optimum control force in the semiactive device. The H controller is designed using appropriate input and output weighting filters that have been developed for optimal performance in reducing near‐fault earthquake responses. A novel semiactive variable friction device is also developed and with the H controller shown to be effective in achieving response reductions in smart base isolated buildings in near‐fault earthquakes. The new variable friction device developed consists of four friction elements and four restoring spring elements arranged in a rhombus configuration with each arm consisting of a friction–stiffness pair. The level of friction force can be adjusted by varying the angle of the arms of the device leading to smooth variation of friction force in the device. Experimental results are presented to verify the proposed analytical model of the device. The H algorithm is implemented analytically on a five storey smart base isolated building with linear elastomeric isolation bearings and variable friction system located at the isolation level. The H controller along with the weighting filters leads to the smooth variation of friction force, thus eliminating the disadvantages associated with rapid switching. Several recent near‐fault earthquakes are considered in this study. The robustness of the H controller is shown by considering a stiffness uncertainty of ±10%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
An Active Mass Driver (AMD) system is proposed to suppress actively the response of a building to irregular external excitations such as earthquakes and typhoons. This system has been introduced to an actual ten-storey office building for the first time in the world. The system controls the motions of a structure by means of an external energy supply. It consists of an auxiliary mass installed in a building and an actuator that operates the mass and produces a control force which counters disturbances to the building. The design method of the AMD system, including the location of the installation and the capacity and stability of the system, is proposed. Simplification of the control algorithm is also described.  相似文献   

3.
The Active Variable Stiffness (AVS) system is proposed as a seismic response control system. It actively controls structural characteristics, such as stiffness of a building, to establish a non-resonant state against earthquake excitations, thus suppressing the building's response. It consumes a relatively small amount of energy and maintains the safety of the building in moderate to severe earthquakes. In order to accumulate practical data and investigate them, a building has been constructed as a trial. This paper describes the applied system, the control algorithm, verification of stiffness selection, results of tests for verifying system characteristics, some observed earthquake records and simulation analyses. Responses in controlled and uncontrolled states have been compared to show the effectiveness of the proposed system.  相似文献   

4.
A semi‐active hydraulic damper (SHD) for a semi‐active damper system, which is useful for practical structural control especially for large earthquakes, has been developed. Its maximum damping force is set to 1 or 2 MN, and it is controlled by only 70 W of electric power. An SHD with a maximum damping force of 1 MN was applied to an actual building in 1998. This paper first presents the results of a dynamic loading test to confirm the control performance of the SHD. Next, an analytical model of SHDs (SHD model) is constructed with the same concept for two kinds of SHDs based on the test results. Through simulation analyses of the test results using the proposed SHD model, the dynamic characteristics of the SHD can be well represented within practical conditions. Simulation analyses are also carried out using a simple structure model with the SHD model. It is shown that this SHD model can be used to precisely evaluate the control effect of the semi‐active damper system and is useful in practical SHD design under the applied conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This paper analyzes the soil–structure interaction (SSI) effect on vibration control effectiveness of active tendon systems for an irregular building, modeled as a torsionally coupled (TC) structure, subjected to base excitations such as those induced by earthquakes. An H direct output feedback control algorithm through minimizing the entropy, a performance index measuring the trade-off between H optimality and H2 optimality, is implemented to reduce the seismic responses of TC structures. The control forces are calculated directly from the multiplication of the output measurements by a pre-calculated frequency-independent and time-invariant feedback gain matrix, which is obtained based on a fixed-base model. Numerical simulation results show that the required numbers of sensors, controllers and their installation locations depend highly on the degree of floor eccentricity. For a large two-way eccentric building, a one-way active tendon system placed in one of two frames farthest away from the center of resistance (C.R.) can reduce both translational and torsional responses. The SSI effect is governed by the slenderness ratio of superstructure and by the stiffness ratio of soil to superstructure. When the SSI effect is significant, the proposed control system can still reduce the structural responses, however, with less effectiveness than that of the assumed fixed-base model. Therefore, the TC and SSI effects should be considered in the design of active control devices, especially for high-rise buildings located on soft site.  相似文献   

6.
In this paper, the performance of active interaction control (AIC) algorithms is assessed within the context of two realistic building models. The AIC control approach is proposed as a semi‐active means of mitigating the structural response during large earthquakes. To implement the AIC control algorithms into MDOF systems, the modal control (MC) approach that directs the control effort to certain dominant response modes is formulated and utilized herein. Two structures, a 3‐storey building and a 9‐storey steel‐framed benchmark building controlled by the AIC algorithms are analysed for two historical earthquake records. The results of numerical simulation verify the efficacy of the AIC control algorithms in controlling vibration of building structures during large earthquakes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Experimental and analytical studies of base isolation by free rolling rods under basement are described in this paper. The tests of the system, a one-storey, 326-kg structure mounted on a set of free rolling rods, is carried out on a 3m × 3m shaking-table. The dynamic behaviour of the isolated structure is studied and used to verify the analytical results. In the isolation system, the coefficient of kinetic rolling friction, measured at different angular velocities, ranges from 0·0007 to 0·0016. The coefficients are reduced by decreasing the angular velocities. Two earthquakes, a short-period and a long-period motion in Taiwan, are utilized as the input signals. The accelerations experienced by the superstructure are decreased by factors of 56 and 60 in comparison with the fixed-base condition for the two input earthquakes. Also, for each test, the peak relative-to-ground displacement of the basement is nearly equal to the peak ground displacement, and the permanent displacement of the basement is present after the end of the earthquake. Finally, tests of the system with a recentring-force device is undertaken, where a soft spring added to the basement reduces efficiently the permanent displacement. Comparisons show a good agreement between experimental and theoretical results.  相似文献   

8.
Even though a number of parameters have been proposed in the literature for measuring the capacity of earthquake ground motions to damage structures, most of them are not consistent with building damage observed during earthquakes. In this study, a parameter for measuring seismic damage capacity is proposed. It uses the energy dissipated by a structure in inelastic deformations and a structural overall drift, and it is evaluated for three typical ground motions recorded in severe earthquakes. By using this parameter, consistent results with building damage observed in these earthquakes are obtained, which indicate the importance of displacement control for minimizing seismic damage.  相似文献   

9.
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions.Various control strategies,including passive,active and semi-active control systems,have been investigated to overcome this problem.This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels.The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm.The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure.The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records.Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.  相似文献   

10.
舒蓉 《震灾防御技术》2022,17(1):154-163
本文以某公共建筑改造工程为背景,针对改造过程中存在的大量梁、柱承载力不足,且主控参数超限等问题,提出了在框架结构中适当位置增设黏滞阻尼器的加固方案,使改造后的结构形成消能减震体系,减小地震作用。采用有限元软件分析了加固方案下结构在多遇和罕遇地震作用下的时程反应,研究了消能减震效果。结果表明,经加固改造后,各主控参数均可满足现行规范要求,大幅度提高了罕遇地震作用下结构抗震性能;通过合理设置黏滞阻尼器,减小了地震作用,大幅度缩小了梁、柱加固范围。  相似文献   

11.
A new semiactive independently variable damper, SAIVD, is developed and shown to be effective in achieving response reductions in smart base isolated buildings in near fault earthquakes. The semiactive device consists of four linear visco‐elastic elements, commonly known as Kelvin–Voigt elements, arranged in a rhombus configuration. The magnitude of force in the semiactive device can be adjusted smoothly in real‐time by varying the angle of the visco‐elastic elements of the device or the aspect ratio of the rhombus configuration. Such a device is essentially linear, simple to construct, and does not present the difficulties commonly associated with modelling and analysing nonlinear devices (e.g. friction devices). The smooth semiactive force variation eliminates the disadvantages associated with rapid switching devices. Experimental results are presented to verify the proposed analytical model of the device. A H control algorithm is implemented in order to reduce the response of base isolated buildings with variable damping semiactive control systems in near fault earthquakes. The central idea of the control algorithm is to design a H controller for the structural system that serves as an aid in the determination of the optimum control force in the semiactive device. The relative performance of the SAIVD device is compared to a variable friction device, recently developed by the authors in a separate study, and several key aspects of performance are discussed regarding the use of the two devices for reducing the responses of smart base isolated buildings in near fault earthquakes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Seismic response of a building structure is influenced greatly by soil-structure interaction. This fact has been demonstrated in the past earthquakes. It is shown that tuning of the natural period of a building structure with that of a surface ground causes remarkable response amplification of the building structure. Introduction of an overall system as a building-pile-soil system is inevitable to investigate such a tuning effect. It is demonstrated to be essential to define a design earthquake at a bedrock level in order to guarantee the structural safety of building structures under seismic disturbances. Comparison of the response due to input of double the upward-propagating wave (an outcropping motion) into the bedrock without any viscous boundary with that due to input of an within motion into the bedrock without any viscous boundary is also shown in order to investigate the effect of input motions on the response of the superstructure.  相似文献   

13.
Several parameters have been proposed in the literature for the evaluation of seismic damage. However, in most cases the correlation between results obtained using these parameters and observed damage in structures has not been satisfactory. A parameter for measuring seismic damage previously proposed by the first author is used in this study to analyse a set of 15 accelerograms recorded in 11 earthquakes experienced in different countries. Results using this parameter are compared to global building damage observed during these earthquakes. The use of the parameter proposed here yields results which are consistent with building damage observed in the earthquakes studied. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
Generally, the active structural control system belongs to the discrete‐time control system, and the sampling period is one of the most important factors that would directly affect the performance of the control system. In this paper, active control approaches by using the discrete‐time variable structure control theory are studied for reducing the dynamic responses of seismically excited building structures. Based on the discrete reaching law method, a feedback controller which includes the sampling period is presented. The controller is extended by introducing the saturated control method to avoid the adverse effect when the actuators are saturated due to unexpected extreme earthquakes. The simulation results are obtained for a single‐degree‐of‐freedom (SDOF) system and a MDOF shear building equipped with active brace system (ABS) under seismic excitations. It is found that the discrete variable structure control approach and its saturated control method presented in this paper are quite effective. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This study improves a NEURO‐FBG active control system to mature the concept of a smart structure. Originally, a system similar to the human brain is created from FBG sensors and neural networks. The system comprises three parts, namely, a structural condition surveillance system, a NEURO‐FBG converter, and a NEURO‐FBG controller. To solve the inherent time‐consuming and reliability problem of the NEURO‐FBG converter, a new technology is first proposed, and the relationship between inter‐story drift and strain data is established. Global indices such as displacement and velocity of the structure are then reconstructed for searching the optimal control force of the actuator. Meanwhile, the soundness of a building with hydraulic actuators is also an important issue to be solved. To make the building sound, the characteristics of earthquakes are considered for enhancing the performance of the NEURO‐FBG controller. Theoretical analysis shows satisfactory improvement to the control efficiency of both displacement and acceleration. To verify the enhanced system, a series of shaking table tests was conducted. Experimental results demonstrated that the new NEURO‐FBG system can effectively manage the structure; and the controller, taking into consideration the ground acceleration effect, is more reliable and robust for practical application than a conventional controller. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The fuzzy clustering and zoning method (FCAZm) of systems analysis is suggested for recognizing the areas of the probable generation of the epicenters of significant, strong, and the strongest earthquakes. FCAZm is a modified version of the previous FCAZ algorithmic system, which is advanced by the creation of the blocks of artificial intelligence that develop the system-forming algorithms. FCAZm has been applied for recognizing areas where the epicenters of the strongest (M ≥ 73/4) earthquakes within the Andes mountain belt in the South America and significant earthquakes (M ≥ 5) in the Caucasus can emerge. The reliability of the obtained results was assessed by the seismic-history type control experiments. The recognized highly seismic zones were compared with the ones previously recognized by the EPA method and by the initial version of the FCAZ system. The modified FCAZm system enabled us to pass from simple pattern recognition in the problem of recognizing the locations of the probable emergence of strong earthquakes to systems analysis. In particular, using FCAZm we managed to uniquely recognize a subsystem of highly seismically active zones from the nonempty complement using the exact boundary.  相似文献   

17.
The development and the applications of an active controlled viscous damping device with amplifying braces are described. The system of the dampers, defined as active viscous damping system (AVDS), connected to an amplifying brace (AB) is presented herein. Instantaneous control theory with velocity and acceleration feedback is used to obtain the control forces at each time step during an excitation. Control of the damping forces is possible due to the mechanical structure of the proposed AVDS, and the connection to the AB. The proposed system can be efficiently used to enhance the damping of a structure without modifying its stiffness. The added damping forces can be adjusted in a wide range. The efficiency of the presented system is demonstrated by a numerical simulation of a seven‐storey building subjected to earthquakes. The simulation shows a considerable reduction of control forces required for control to the AVDS with AB, compared to the same system without AB. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
中强地震下建筑结构动力弹塑性损伤模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
抗震性能是建筑设计中的一项重要指标,需要对地震作用下的建筑结构动力弹塑性损伤情况进行分析。提出一种中强地震下建筑结构动力弹塑性损伤模型研究方法。从有效应力与Cauchy应力张量\,建筑材料损伤演化方程等方面对弹塑性损伤模型基本原理进行分析,以此为理论基础,分析建筑材料应变率与建筑结构损伤能释放率的相关关系,通过Bonora损伤模型获取失效建筑材料损伤指数,并计算整体建筑结构构件损伤指数,以建筑材料损伤指数和建筑结构构件损伤指数为依据,完成中强地震下的建筑结构动力弹塑性损伤模型构建。利用实例进行分析,地震加速度值为0.3g的情况下,该模型的建筑结构相对位移时程曲线与实际位移曲线拟合度较高,且具有较好的建筑结构动力弹塑性损伤模拟精度,表明该模型具有一定的可行性。  相似文献   

19.
Experimental Investigations on Laminated Rubber Bearings   总被引:1,自引:0,他引:1  
Increasing application of base isolation as a seismic protection method has subsequently increased its analytical and experimental studies. Being the most critical part of the base isolated buildings, accurate evaluation of structural properties and precise modeling of isolation devices is of utmost importance in predicting the response of the buildings during the earthquakes. This technical note is concerned with experimental study on laminated rubber bearings. Free vibration and harmonic base excitation tests are performed on a three-storey building model to evaluate the properties of the structure, efficiency of the system, and effect of base excitations. It is found that these experimental methods can effectively be used for this purpose.  相似文献   

20.
<正>This paper focuses on the investigation of a hybrid seismic isolation system with passive variable friction dampers for protection of structures against near fault earthquakes.The seismic isolation can be implemented by replacing the conventional columns fixed to the foundations by seismic isolating ones.These columns allow horizontal displacement between the superstructure and the foundations and decouple the building from the damaging earthquake motion.As a result, the forces in the structural elements decrease and damage that may be caused to the building by the earthquake significantly decreases.However,this positive effect is achieved on account of displacements occurring in the isolating columns.These displacements become very large when the structure is subjected to a strong earthquake.In this case,impact may occur between the parts of the isolating column yielding their damage or collapse.In order to limit the displacements in the isolating columns,it is proposed to add variable friction dampers.A method for selecting the dampers' properties is proposed.It is carried out using an artificial ground motion record and optimal active control algorithm.Numerical simulation of a seven-story structure shows that the proposed method allows efficient reduction in structural response and limits the displacements at the seismic isolating columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号