首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
西秦岭礼县地区新生代钾霞橄黄长岩系的单斜辉石   总被引:5,自引:1,他引:5  
对西秦岭礼县地区钾霞橄橄黄长质火山岩系中单斜辉石进行了矿物化学研究,斑晶相单斜辉石类型复杂,成分变化范围大,具有多源属性,基质相单斜辉石可以分为高Ti铝透辉石和含Ti透辉石两种基本类型,它们是同源岩浆演化结晶的产物。结晶顺序前者晚于后者,岩系中透辉石Ca(Mg,Fe)Si2O6结晶过程中广泛存在于CaTiAl2O6分子替代,晚期熔体富Ti,Al贫Si,Mg,熔体有向富Ti,Al,Fe,Na贫Mg,Si演化的趋势,在透辉石成分上表现为CaTiAl2O6和NaFe^3 Si2O6端员分子对Ca(Mg,Fe)Si2O6的替代,本区基质相透辉石与世界上典型地区的钾霞橄黄长岩系的透辉石具有不同程度的可比性。  相似文献   

2.
The Serbian province of Tertiary ultrapotassic volcanism isrelated to a post-collisional tectonic regime that followedthe closure of the Tethyan Vardar Ocean by Late Cretaceous subductionbeneath the southern European continental margin. Rocks of thisprovince form two ultrapotassic groups; one with affinitiesto lamproites, which is concentrated mostly in the central partsof the Vardar ophiolitic suture zone, and the other with affinitiesto kamafugites, which crops out in volcanoes restricted to thewestern part of Serbia. The lamproitic group is characterizedby a wide range of 87Sr/86Sri (0·70735–0·71299)and 143Nd/144Ndi (0·51251–0·51216), whereasthe kamafugitic group is isotopically more homogeneous witha limited range of 87Sr/86Sri (0·70599–0·70674)and 143Nd/144Ndi (0·51263–0·51256). ThePb isotope compositions of both groups are very similar (206Pb/204Pb18·58–18·83, 207Pb/204Pb 15·62–15·70and 208Pb/204Pb 38·74–38·99), falling withinthe pelagic sediment field and resembling Mesozoic flysch sedimentsfrom the Vardar suture zone. The Sr and Nd isotopic signaturesof the primitive lamproitic rocks correlate with rare earthelement fractionation and enrichment of most high field strengthelements (HFSE), and can be explained by melting of a heterogeneousmantle source consisting of metasomatic veins with phlogopite,clinopyroxene and F-apatite that are out of isotopic equilibriumwith the peridotite wall-rock. Decompression melting, with varyingcontributions from depleted peridotite and ultramafic veinsto the final melt, accounts for consistent HFSE enrichment andisotopic variations in the lamproitic group. Conversely, themost primitive kamafugitic rocks show relatively uniform Srand Nd isotopic compositions and trace element patterns, andsmall but regular variations of HFSE, indicating variable degreesof partial melting of a relatively homogeneously metasomatizedmantle source. Geochemical modelling supports a role for phlogopite,apatite and Ti-oxide in the source of the kamafugitic rocks.The presence of two contrasting ultrapotassic suites in a restrictedgeographical area is attributable to the complex geodynamicsituation involving recent collision of a number of microcontinentswith contrasting histories and metasomatic imprints in theirmantle lithosphere. The geochemistry of the Serbian ultrapotassicrocks suggests that the enrichment events that modified thesource of both lamproitic and kamafugitic groups were relatedto Mesozoic subduction events. The postcollisional environmentof the northern Balkan region with many extensional episodesis consistent at regional and local levels with the occurrenceof ultrapotassic rocks, providing a straightforward relationshipbetween geodynamics and volcanism. KEY WORDS: kamafugite; lamproite; Mediterranean; Serbia; mantle metasomatism; veined mantle; petrogenesis  相似文献   

3.
青藏高原分布有羌塘—囊谦—滇西和冈底斯两条新生代钾质-超钾质火山岩带。羌塘—囊谦—滇西超钾质岩浆活动的峰值时间为40~30Ma,主体岩石具有Ⅰ型超钾质岩的高MgO和低CaO、Al2O3含量特征;30~24Ma期间羌塘中、西部出现Ⅲ型钾质-超钾质岩浆活动,主体岩石以贫SiO2、高CaO、Al2O3和低MgO/CaO为特征。冈底斯新生代超钾质火山岩也显示I型超钾质岩的高MgO和低CaO、Al2O3含量特征,其形成时间为25~12Ma。综合超钾质岩石的实验资料,可知区内I型超钾质岩的源区以富硅、富钾流(熔)体交代形成的金云母方辉橄榄岩为主;Ⅲ型钾质-超钾质岩浆源区则以斜辉橄榄岩地幔为主。囊谦—滇西Ⅰ型超钾质岩带空间上严格受红河走滑构造带所控制,40~28Ma出现I型超钾质岩浆活动,16Ma转变为OIB型钾质火山岩。岩浆源区从岩石圈地幔向软流圈演变,暗示大型走滑断裂引起的岩石圈地幔减薄和软流圈上涌是导致交代岩石圈地幔金云母分解熔融产生区内I型超钾质岩浆的主控因素。羌塘中部35~34Ma有软流圈来源为主的钠质碱性玄武岩岩浆的喷发,30~24Ma转变为以岩石圈地幔为主要来源的Ⅲ型钾质-超钾质岩浆活动,岩浆源区从软流圈向岩石圈迁移,指示软流圈上涌伴随的富CO2流(熔)体活动是导致古交代岩石圈地幔升温熔融产生Ⅲ型钾质-超钾质岩浆的主控因素,软流圈上涌可能是俯冲板片断离或岩石圈地幔拆沉作用的结果。  相似文献   

4.
Granular xenoliths (ejecta) from pyroclastic deposits emplaced during the latest stages of activity of the Alban Hills volcano range from ultramafic to salic. Ultramafic types consist of various proportions of olivine, spinel, clinopyroxene and phlogopite. They show low SiO2, alkalies and incompatible element abundances and very high MgO. However, Cr, Co and Sc are anomalously low, at a few ppm level. Olivine is highly magnesian (up to Fo%=96) and has rather high CaO (1% Ca) and very low Ni (around a few tens ppm) contents. These characteristics indicate a genesis of ultramafic ejecta by thermal metamorphism of a siliceous dolomitic limestone, probably with input of chemical components from potassic magma. The other xenoliths have textures and compositional characteristics which indicate that they represent either intrusive equivalents of lavas or cumulates crystallized from variably evolved ultrapotassic magmas. One sample of the former group has major element composition resembling ultrapotassic rocks with kamafugitic affinity. Some cumulitic rocks have exceedingly high abundances of Th (81–84 ppm) and light rare-earth elements (LREE) (La+Ce=421–498 ppm) and extreme REE fractionation (La/Yb=288–1393), not justified by their modal mineralogy which is dominated by sanidine, leucite and nepheline. Finegrained phases are dispersed through the fractures and within the interstices of the main minerals. Semiquantitative EDS analyses show that Th and LREE occur at concentration levels of several tens of percent in these phases, indicating that their presence is responsible for the high concentration of incompatible trace elements in the whole rocks. The interstitial position of these phases and their association with fluorite support a secondary origin by deposition from fluorine-rich fluids separated from a highly evolved potassic liquid. The Nd isotopic ratios of the cjecta range from 0.51182 to 0.51217. 87Sr/86Sr ratios range from 0.70900 to 0.71036. With the exception of one sample, these values are lower than those of the outcropping lavas, which cluster around 0.7105±3. This indicates either the occurrence of several isotopically distinct potassic magmas or a variable interaction between magmas and wall rocks. However, this latter hypothesis requires selective assimilation of host rocks in order to explain isotopic and geochemical characteristics of lavas and xenoliths. The new data indicate that the evolutionary processes in the potassic magmas of the Alban Hills were much more complex than envisaged by previous studies. Interaction of magmas with wall rocks may be an important process during magmatic evolution. Element migration by gaseous transfer, often invoked but rarely constrained by sound data, is shown to have occurred during the latest stages of magmatic evolution. Such a process was able to produce selective enrichment of Th, U, LREE and, to a minor degree, Ta and Hf in the wall rocks of potassic magma chamber. Finally, the occurrence of xenoliths with kamafugitic composition points to the existence of this type of ultrapotassic magma at the Alban Hills.  相似文献   

5.
Major, trace element, Sr isotopic and mineral chemical data are reported for mafic volcanic rocks (Mg-value 65) from the northern-central sector of the potassic volcanic belt of Central Italy. The rocks investigated range from potassic series (KS) and high-K series (HKS) to lamproitic (LMP) and kamafugitic (KAM) through a transitional series (TRANS), thus covering the entire compositional spectrum of potassic and ultrapotassic magmas. KAM rocks are strongly silica undersaturated and, compared with the other rock series, have low SiO2, Al2O3, Na2O, Sc and V and high CaO, K/Na, (Na + K)/Al. KS and HKS have high Al2O3, CaO and variable enrichment in K2O and incompatible elements. LMP rocks are saturated in silica and have high SiO2, K2O, K2O/Na2, MgO, Ni and Cr and low Al2O3, CaO, Na2O, Sc and V. TRANS rocks display intermediate compositional characteristics between LMP and KS.

All the rocks under study have fractionated hygromagmaphile element patterns with high LIL/HFS element values and negative anomalies of Ti, Ta, Nb and Ba. Negative Sr anomalies are observed in the LMP and TRANS rocks. LIL elements show overall positive correlations with K2O, whereas different trends of Sr and HFSE vs. K2O are defined by LMP-TRANS and KS-HKS-KAM. 87Sr/86Sr range from about 0.710 to 0.716. KS, HKS and KAM rocks have similar 87Sr/86Sr values clustering around 0.710. LMP and TRANS rocks have the highest 87Sr/86Sr values.

Geochemical and isotopic data reported for the most primitive Italian potassic and ultrapotassic rocks support the hypothesis that the interaction between crustal and mantle reservoirs was a main process in the genesis of Italian potassic magmatism. Simple mass balance calculations exclude, however, an important role of crustal assimilation during ascent of subcrustal magmas to the surface and indicate that the sources of Central Italy volcanics underwent contamination with fluids and/or melts released by upper crustal material previously brought into the mantle by subduction processes.

Different trends of incompatible elements vs. K2O observed in the studied rocks suggest distinct metasomatic processes for the sources of the investigated magmas. Liquids derived by bulk melting of pelitic sediments are believed to be the most likely contaminants of the source of LMP rocks. Fluids or melts rich in Ca, Sr and with high LILE/HFSE value and Sr isotopic composition around 0.710 are the most likely contaminant of the source region of KS, HKS and KAM volcanics. Variations in CaO, Na2O and ferromagnesian element abundances and ratios suggest that, in some zones, the mantle source of potassic magmas experienced partial melting with extraction of basaltic liquids prior to metasomatism.  相似文献   


6.
A. D. Edgar  D. Vukadinovic 《Lithos》1992,28(3-6):205-220
The contributions of experimental studies pertinent to ultrapotassic rocks of Groups I (lamproites) and II (kamafugites and related rocks) are discussed in terms of synthetic systems, ultrapotassic rock compositions, experiments on characteristic minerals in these rocks and experiments designed to model mantle metasomatism. These studies indicate that the majority of ultrapotassic magmas are derived by partial melting of a metasomatically enriched mantle source at depths of 100 km or greater, and under fluid conditions represented by the C---O---H system with fluorine that may be reduced or oxidized relative to other compositions. Many lamproitic magmas may be derived from a phlogopite-harzburgite with volatiles that are predominantly H2O and F1 whereas kamafugitic type ultrapotassic magmas may be products of partial melts of a more wehrlitic mantle source in which the main volatiles are H2O, CO2 and possibly F. Experimental and theoretical considerations of mantle metasomatism suggest that it occurs at of fO2 in the range of the FMQ buffer. Metasomatism involves low density mantle fluids (melts?) in which H2O and CO2 are the important volatiles, buffered by amphibole, phlogopite and carbonates. Results of recent experiments suggest that the reactions causing metasomatism may be decoupled and cyclic and occur at different depths.  相似文献   

7.
Summary The Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times. Although calc-alkaline, potassic and ultrapotassic volcanism overlaps in space and time, a decrease of alkaline character in time and space (southward) is observed. Alkaline ultrapotassic and potassic volcanic rocks are characterised by variable enrichment in K and incompatible elements, coupled with consistently high LILE/HFSE values, similar to those of calc-alkaline volcanic rocks from the nearby Aeolian arc. On the basis of mineralogy and major and trace element chemistry two different arrays can be recognised among primitive rocks; a silica saturated trend, which resulted in formation of leucite-free mafic rocks, and a silica undersaturated trend, charactrerised by leucite-bearing rocks. Initial 87Sr/86Sr and 143Nd/144Nd values of Italian ultrapotassic and potassic mafic rocks range from 0.70506 to 0.71672 and from 0.51173 to 0.51273, respectively. 206Pb/204Pb values range between 18.50 and 19.15, 207Pb/204Pb values range between 15.63 and 15.70, and 208Pb/204Pb values range between 38.35 and 39.20. The general εSr vs. εNd array, along with crustal lead isotopic values, clearly indicates that a continental crustal component has played an important role in the genesis of these magmas. The main question is where this continental crustal component has been acquired by the magmas. Volcanological and petrologic data indicate continental crustal contamination to be a leading process along with fractional crystallisation and magma mixing. Considering, however, only the samples thought to represent primary magmas, which have been in equilibrium with their mantle source, a clearer picture emerges. A large variation of εSr vs. εNd is still observed, with εSr from −2 to +180 and εNd from + 2 to −12. A bifurcation of this array is observed in the samples that plot in the lower right quadrant, with mafic leucite-bearing Roman Province rocks buffered at εSr = + 100 whereas the mafic leucite-free potassic and ultrapotassic rocks point to strongly radiogenic Sr compositions. We may argue that mafic leucite-bearing Roman Province rocks point to εSr and εNd values similar to those of Miocene carbonate sediments whereas mafic leucite-free potassic and ultrapotassic rocks point to a silicate upper crust end-member. Lead isotopes plot well inside the field of island arcs, overlapping the values of pelagic sediments as well, but bifurcation between the samples north and south of Rome is observed. The main characteristic for the mantle source of Italian potassic and ultrapotassic magmas is the clear upper crustal signature acquired prior to partial melting through metasomatic agents released by the subducted slab. In addition, one lithospheric mantle source in the north and an asthenospheric mantle source, pointing to an HIMU reservoir, in the south were recognised. The chemical and isotopic differences observed between the northern and southern sectors of the magmatic region were possibly due to the presence of a carbonate-rich component in the crustal enriching agent in the south. One crustal component might have been generated by melting of silicate metasedimentary rocks or sediments from an ancient subducted slab. The second one might reflect the activity of mostly CO2-rich fluid released more recently by the incipient subduction of carbonate sedimentary rocks. Received February 16, 2000; revised version accepted September 6, 2001  相似文献   

8.
一般认为青藏高原拉萨地块后碰撞钾质-超钾质岩浆活动由西向东逐渐喷发,然而本文在拉萨地块中部麻江地区识别出一套钾质火山岩,利用单矿物金云母的40Ar-39Ar方法确定其形成于21.3Ma.这套火山岩具有高镁(>3%)和高钾( K2O/Na2O >2)等的超钾质火山岩成分特征,但其高的MgO含量是因岩石中含有后期蚀变矿物白...  相似文献   

9.
河北矾山杂岩体中单斜辉石的研究   总被引:3,自引:1,他引:2  
牛晓露  陈斌  马旭 《岩石学报》2009,25(2):359-373
河北矾山杂岩体属于二氧化硅不饱和的超钾质碱性-过碱性岩浆系列,由单斜辉石岩、辉石正长岩和碱长正长岩等不同类型岩石组成。各类型岩石主要组成矿物为单斜辉石、黑云母、石榴石和正长石。本文利用电子探针对单斜辉石进行了详细研究,发现所有单斜辉石属于高钙透辉石,随着岩浆的演化,主要表现为Fe2+对Mg2+的替代关系,结晶趋势为透辉石→钙铁辉石,这揭示矾山杂岩体岩浆体系的特点是高温、中等大小的氧逸度、贫硅、富碱(尤其是钾)。辉石中的AlIV含量取决于岩浆的硅饱和度,硅越不饱和,AlIV含量越高;AlVI含量则与体系中的Al含量呈正相关关系。由Al对Si的替代引起的电荷不平衡主要由八面体位置的Fe3+来补偿,其次为少量的Ti4+和更少量的Al3+。体系中的Ti含量与体系的温度呈正相关关系,而Na含量则与辉石中的Ti和Fe3+含量成正相关关系。不同类型岩石中单斜辉石从核部到边部随着Mg#的降低,Al、Ti含量呈现不同的演化趋势,这是因为它们于岩浆演化的不同阶段开始结晶,经历了不同的岩浆演化史。碱性岩中高钙辉石的出现和成分环带的普遍发育是由岩浆的贫硅富钾特征决定的。单斜辉石的成分不仅受控于结晶时的温度、压力条件,也受控于岩浆的总成分及其变异。  相似文献   

10.
The crystallochemical variations of clinopyroxene in response to changes in fO 2 and melt composition have been determined for a basalt-pantellerite suite (Boseti Complex, Main Ethiopian Rift) by crystal structure refinement and microprobe analysis. The pyroxene evolutionary trend has both a “Ca-minimum” and late iron enrichment. During crystallization from basalts to trachytes, clinopyroxene geometry depends mainly on the relationships between T and M2 sites; for example, high SiO2 activity in the magma causes high Si occupancy in T site, which in turn requires low Ca occupancy in M2 site in order to fulfill the local charge balance requirements. In contrast, clinopyroxene crystallized from acid melts is characterized by high Fe2+ (M1) content and therefore by a very large M1 site. Longer 〈M1-O1〉 and M1-O2 bond lengths require shorter T-O1 and T-O2 bond lengths and high Si occupancy in T site. It is concluded that the “Ca-minimum” in the clinopyroxene structure is regarded as the lowest value at which the charge balance requirements are satisfied in a C2/c clinopyroxene structure.  相似文献   

11.
The late- to post-collisional stage in orogenic systems is characterized by the coeval existence of bimodal potassic to ultrapotassic magmatic activity related to partial melting of an enriched lithospheric mantle together with crustal derived melts. In this paper, we present new whole rock geochemical analyses combined with zircon and titanite U–Pb and zircon Hf isotopic data from potassic to ultrapotassic rocks from six plutons that occur within the Archean Itacambira-Monte Azul block (BIMA), to discuss their petrogenesis and the tectonic implications for the São Francisco paleocontinent. The new U–Pb ages range from ca. 2.06 Ga to 1.98 Ga and reveal long-lasting potassic magmatism within the BIMA, which is within the late- to- post-collisional stage of the São Francisco paleocontinent evolution. The ultrapotassic rocks are compatible with a fluid-related metasomatized mantle source enriched by previous subduction events, whereas the potassic rocks are bimodal and have a transitional shoshonitic to A-type affinity. These rocks have a hybrid nature, possible related to the mixing between the mafic potassic/ultrapotassic rocks and high temperature crustal melts of the Archean continental crust. Our results also show an increase of within-plate signature towards the younger potassic magmas. The participation of an important Archean crustal component in the genesis of these rocks is highlighted by the common and occasionally abundant occurrence of Archean inherited zircons. The Hf isotopic record shows that most of the zircon inheritance has dominantly subchondritic εHf(t) values, which fits a crustal reworking derivation from a similar Eo- to Paleoarchean precursor crust. However, the presence of juvenile 2.36 Ga zircon inheritance in an ultrapotassic sample reveal the existence of a hidden reservoir that is somewhat similar to the described for the Mineiro Belt in southern São Francisco paleocontinent.  相似文献   

12.
王建  李建平 《矿物学报》2003,23(2):115-123
对西秦岭礼县新生代钾霞橄黄长岩系中的基质相含钛透辉石进行了矿物化学研究,根据透辉石中Ti和Al的含量划分出低Ti—透辉石和高Ti—铝透辉石两种基本类型,它们作为同源岩浆演化结晶的产物,结晶顺序前者先于后者。火山岩系的透辉石[Ca(Mg,Fe)Si2O6]结晶过程中广泛存在着CaTiAl2O6(钛辉石)分子替代,晚期熔体富Ti、Al贫Si、Mg。百草山岩筒是演化岩浆结晶的产物,熔体向富Ti、Al、Fe^3 、Na,贫Mg、Si趋势演化;在透辉石成分上表现为CaTiAl2O6和NaFe^3 Si2O6(锥辉石)端元分子对Ca(Mg,Fe)Si2O6的替代。本地区基质相透辉石与世界上典型地区的钾霞橄黄长岩系的透辉石具有不同程度的可比性,反映了这种特殊的岩浆熔体成分在一定程度上控制着透辉石的结晶过程和阳离子在矿物晶格中的占位。  相似文献   

13.
《Gondwana Research》2000,3(1):55-63
Ultrapotassic rock is reported for the first time from the polycyclic Eastern Ghats belt, India, near Borra, Visakhapatnam district, Andhra Pradesh. The rock, consisting of leucite, kalsilite, Khyphen;feldspar, graphite, apatite together with diopside, meionite and phlogopite, occurs as thin vein and veinlets in diopsidite, in close spatial association with a granulite facies carbonate ensemble of massive dolomitic carbonate rock and calc silicate granulite. It was emplaced in the midhyphen;crust along late ductile shear zones. Subsequent to its emplacement, the ultrapotassic melt with liquidus leucite interacted with the granulite wall rock, incorporating at least 40% of the crustal components mainly as Si, Al, Mg and Ca. After necessary correction of the crustal contaminant, the recalculated K2O/Na2O ratio of ∼12 (molar) and K2O/Al2O3 ratio of ∼1 (molar) in the bulk rock composition indicates that the Borra ultrapotassic melt has a lamproitic affinity. However, it is significantly modified as well, particularly being impoverished in mafic liquidus phases and depleted in incompatible (excepting Rb, Th and U) and compatible trace elements, compared to an average lamproite. Leucite later underwent subsolidus decomposition to Khyphen;feldspar + kalsilite intergrowths. The emplacement of the ultrapotassic melt posthyphen;dates an early ultra high temperature metamorphism and also the 1000 Ma Grenvillian metamorphism in the Eastern Ghats Belt and is possibly of Panhyphen;African age. The extensive Khyphen;feldspathisation in the Eastern Ghats belt could also be linked with this ultrapotassic melt.  相似文献   

14.
Summary A suite of lithics (ejecta) collected from the latest erupted pyroclastic products of the Alban Hills volcano (Central Italy) has been studied to determine their mineralogical composition and to investigate their genesis. The ejecta commonly have granular texture and consist of coarse-grained crystals often associated with a fine- to medium-grained matrix. The mineralogical composition is variable and consists of both typical igneous minerals and contact metamorphic phases. Garnet, clinopyroxene K-feldspar are almost ubiquitous, whereas leucite, wollastonite, sodalite-group minerals, phlogopite, nepheline and phillipsite are present in most of the ejecta; minor and accessory phases include cuspidine, amphibole, pyrrhotite, magnetite, apatite, uranpyrochlore, sphene, kalsilite, and melilite; anorthite, zircon and fluorine-bearing Ca, Zr silicate phases, larnite, and baryte are found sporadically. Ca, REE, Th silicophosphates occur in many samples generally disseminated along interstices and fractures of main minerals. Calcite is present as discrete crystals sometimes enclosed in other minerals, as granules in the fine-grained matrix and as late microcrystalline veins. It shows high oxygen and low carbon isotope ratios with δ18O = + 17.96 to + 27.19, and δ13C = −4.74 to −19.57. Clinopyroxene ranges from diopside to compositions strongly enriched with both Ca-Tschermak’s and esseneite components. Feldspars are generally potassic even though Ba and Sr are found in significant concentrations in some samples. K-feldspars from wollastonite-bearing ejecta are often rimmed with elongated felty crystals identified by X-ray diffraction analysis as leucite. These feldspars show a depletion in Si, and enrichment in Al and K from core to rim. Significant compositional variations are also shown by various other phases such as nepheline, apatite, Ca, REE, Th silicophosphate. The occurrence of igneous and contact metamorphic minerals, as well as the chemical variations of clinopyroxenes and feldspars in the investigated ejecta reveal complex genetic processes related to the interaction between potassic magma and wall rocks. The Ca-rich composition of most phases points to a carbonate nature for the wall rocks. Textural evidence suggests that coarse-grained rocks formed at the margin of the magma chamber were invaded by a late, volatile rich potassic liquid which crystallized as a fine-grained matrix and produced disaggregation and reaction of early formed minerals. Fluid phases percolating through the rocks generated infiltration metasomatism and deposited some uncommon phases rich in Ca, REE, Th, U, which are found along cracks and at the margins of early crystallized minerals. Overall, the all spectrum of the minerals found in this study are also typical of carbonatitic rocks. Their presence in the Alban Hills ejecta demonstrates that their genesis can be related to interaction between ultrapotassic melts and carbonate wall rocks, in addition to precipitation from carbonatitic melts. Received February 20, 2001; revised version accepted September 23, 2001  相似文献   

15.
The Terra Nova ultrapotassic igneous rocks of northeastern Brazil consist of two dike swarms (alkali-feldspar syenites to quartz syenites and alkali-feldspar granites) and one elongated E-W syenitic body (the Serra do Livramento pluton), which intruded metasediments of the Cachoeirinha-Salgueiro fold belt from 580 to 514 Ma. Mafic ultrapotassic syenite enclaves are recorded in the Serra do Livramento and Terra Nova shoshonitic plutons, both of which are cut by the dike swarms.

Mineralogically, Terra Nova ultrapotassic hypabyssal rocks resemble shoshonitic lamprophyres. Pyroxene is present in all facies; the clinopyroxenes are zoned, SiO2 saturated, and Al2O3 poor (0.12 to 1.15%), and range from earlier diopside to late acmite. Amphiboles are characterized by high SiO2 and low Al2O3 (0.20 to 2.00%) and TiO2 (0.0 to 1.76%) contents; their compositions range from calcic to alkaline. The late amphiboles are riebeckite-arfvedsonites instead of K-richterites, as expected in ultrapotassic rocks, reflecting the early crystallization of K-feldspar.

The syenitic-facies rocks are mostly peralkaline, whereas the granites are metaluminous. The syenites have high concentrations of incompatible elements (Ba, Sr, and Rb) and light-rare-earth-element (LREE) concentrations lower than for typical ultrapotassic rocks, with chondrite-normalized Ce/Yb ratios of 10 to 20 and wide variation in the La/Ta ratios (40 to 250). The granites have lower incompatible-element contents and La/Ta ratios (20 to 60) than do the syenites.

Syenites from the dike swarm exhibit high initial 87Sr/86Sr ratios (0.7106), whereas εNd, values for the ultrapotassic mafic enclaves range from -1.1 to -3.7, suggesting that the enclaves and the syenites have different sources.

Field evidence, combined with geochemical data, shows that the granites and the syenites alternate in space and time, suggesting that syenites and granites cannot be associated by either fractional crystallization or partial melting of the same source. The syenites probably represent partial melting of a metasomatized lithospheric mantle, modified by subduction-zone fluids and crustal metasediments during the early stages of a Brasiliano (Pan-African) collisional event. Low-degree partial melting of a metasomatized lower crust appears to be the source of the granites.  相似文献   

16.
Clinopyroxenes from pyroxenite, ijolite and nepheline syenite from the main intrusion of the Alnö complex define two sub-parallel compositional trends with respect to Na, Ca and FeTOT plotted against alkali-pyroxene fractionation index (Na–Mg). Both trends define a smooth fractionation of increasing Na and FeTOT and decreasing Ca with increasing Na–Mg, but one set of samples contain clinopyroxenes that constantly plot at higher Na and lower FeTOT and Ca (at similar Na–Mg) than the rest of the samples. Clinopyroxenes with higher Ca and FeTOT and lower Na (trend 1) co-exist with substantial amounts of Ti-andradite (up to 70 vol.%), while the sample set defining the more Na-rich trend (trend 2) lack co-existing Ti-andradite. Clinopyroxenes from both trends show fractionated REE patterns with a distinct difference in HREE content, reflecting the content of co-existing Ti-andradite. The rocks of the first Ti-andradite-bearing trend crystallized slightly prior to the rocks of the second trend, probably from a primitive, Ca- and Ti-rich nephelinitic magma. Crystallisation of pyroxenite and melteigite occurred under low aSiO2 and high aCaO and aTiO2 as evidenced by the presence of perovskite and sometimes substantial amounts of magnetite. Subsequent increase in aSiO2 is evidenced in the overgrowth of perovskite by titanite, which in turn is overgrown by Ti-andradite. Nepheline syenitic residuals crystallized under higher aSiO2 and aNa2O and lower aCaO and aTiO2, which reduced Ti-andradite into an accessory phase and produced more Si- and Na-rich clinopyroxenes. Some of these residuals probably also mixed with new primitive magma producing a hybrid magma that crystallised the more Na-rich and Ca- and FeTOT-poor clinopyroxenes of trend 2. The complete lack of Ti-andradite in these rocks indicates different crystallisation conditions and also a different magma composition.  相似文献   

17.
The paper presents data on inclusions in minerals of the least modified potassic lamprophyres in a series of strongly carbonatized potassic alkaline ultramafic porphyritic rocks. The rocks consist of diopside, kaersutite, analcime, apatite, and rare phlogopite and titanite phenocrysts and a groundmass, which is made up, along with these minerals, of potassic feldspar and calcite. The diopside and kaersutite phenocrysts display unsystematic multiple zoning. Chemically and mineralogically, the rock is ultramafic foidite and most likely corresponds to monchiquite. Primary and secondary melt inclusions were found in diopside, kaersutite, apatite, and titanite phenocrysts and are classified into three types: sodic silicate inclusions with analcime, potassic silicate inclusions with potassic feldspar, and carbonate inclusions, which are dominated by calcite. Heating and homogenization of the inclusions show that the potassic lamprophyres crystallized from a heterogeneous magma, with consisted of mixing mafic sodic and potassic alkaline magmas enriched in a carbonatite component. The composition of the magmas was close to nepheline and leucite melanephelinite. The minerals crystallized at 1150–1090°C from the sodic melts and at 1200–1250°C from the potassic ones. The sodic mafic melts were richer in Fe than the potassic ones, were the richest in Al, Mn, SO3, Cl, and H2O and poorer in Ti and P. The potassic mafic melts were not lamproitic, as follows from the presence of albite in the crystallized primary potassic melt inclusions. The diopside, the first mineral to crystallize in the rock, started to crystallize in the magmatic chamber from sodic mafic melt and ended to crystallize from mixed sodic–potassic melts. The potassic mafic melts were multiply replenished in the chamber in relation to tectonic motions. The ascent of the melts to the surface and rapidly varying P–T parameters of the magma were favorable for multiple separations of carbonatite melts from the alkaline mafic ones and their mixing and mingling.  相似文献   

18.
In the Yangbajing area, southern Tibet, several monogenic volcanoes were conformably superimposed on the Linzizong calc-alkaline volcanic successions. According to their petrologic and geochemical characteristics, these monogenic volcanoes are composed of three rock varieties: tephritic phonolitic plugs and shoshonitic and trachytic lavas. Their geochemical systematics reveals that low-pressure evolutionary processes in the large voluminous Linzizong calc-alkaline magmas were not responsible for the generation of these potassic–ultrapotassic rocks, but the significant change in petrologic and geochemical characteristics from the Linzizong calc-alkaline to potassic–ultrapotassic magma is likely accounted for the change of metasomatic agents in the southern Tibetan lithospheric mantle source during the Paleocene to Eocene. The tephritic phonolites containing both leucite and plagioclase show primary ultrapotassic character similar to that of Mediterranean plagioleucititic magmas. Radiogenic Sr increases with SiO2 in the xenolith-bearing trachytes strongly suggesting significant crustal assimilation in the shoshonitic magmas. The Yangbajing ultrapotassic rocks have high K2O and Al2O3, and show depletion of high field strength elements (HFSEs) with respect to large ion lithophile elements. In primitive mantle-normalized element diagrams, all samples are characterized by positive spikes at Th (U) and Pb with negative anomalies at Ba, Nb–Ta and Ti, reflecting the orogenic nature of the ultrapotassic rocks. They are characterized by highly radiogenic 87Sr/86Sr(i) ratios (0.7061–0.7063) and unradiogenic 143Nd/144Nd(i) (0.5125), and Pb isotopic compositions (206Pb/204Pb = 18.688–18.733, 207Pb/204Pb = 15.613–15.637, and 208Pb/204Pb = 38.861–38.930) similar to the global subducting sediment. Strong enrichment of incompatible trace elements and high Th fractionation from the other HFSEs (such as Nb and U) clearly indicate that the Th-enriched sedimentary component in a network veined mantle source was mainly introduced by sediment-derived melts. In addition, the ultrapotassic rocks have significant Ce (Ce/Ce* = 0.77–0.84) and Eu (Eu/Eu* = 0.72–0.75) anomalies, suggesting a subduction sediment input into the southern Tibetan lithospheric mantle source. In contrast, high U/Th (> 0.20) and Ba/Th (> 32) and low Th/La (< 0.3) in the shoshonites indicate that the Eocene potassic magma originated from partial melting of the surrounding peridotite mantle pervasively affected by slab-related fluid addition from the dehydration of either the subducting oceanic crust or the sediment. Thus, at least two different subduction-related metasomatic agents re-fertilized the upper mantle. According to the radiometric ages and spatial distribution, the Gangdese magmatic association shows a temporal succession from the Linzizong calc-alkaline to ultrapotassic magmas. This indicates a late arrival of recycled sediments within the Tibetan lithospheric mantle wedge. The most diagnostic signatures for the involvement of continent-derived materials are the super-chondritic Zr/Hf (45.5–49.2) and elevated Hf/Sm values (0.81–0.91) in the ultrapotassic rocks. Therefore, the occurrence of orogenic magmatism in the Gangdese belt likely represents the volcanic expression of the onset of the India–Asia collision, preceding the 10 Ma Neo-Tethyan slab break-off process at 42–40 Ma. The absence of residual garnet in the mantle source for the ultrapotassic volcanism seems to imply that the southern Tibetan lithosphere was not been remarkably thickened until the Eocene (~ 50 Ma).  相似文献   

19.
The Planalto da Serra igneous rocks form plugs, necks and dykes of carbonate-rich ultramafic lamprophyres (aillikites and glimmerites with kamafugitic affinity) and carbonatites (alvikites and beforsites). Phlogopite and/or tetraphlogopite, diopside and melanitic garnet are restricted to aillikitic rock-types, whereas pyroclore occurs only in carbonatites. Aillikites and carbonatites are altered to hydrotermalites, having chlorite and serpentine as dominant minerals. Planalto da Serra igneous rock association has kamafugitic affinity (i.e. effusive, ultrapotassic. High LREE/HREE fractionation, incompatible elements data and Sr-Nd isotopes, suggest that the K-ultramafic alkaline and carbonatite rocks originated from a variably metasomatized mantle source enriched in radiogenic Sr. Crustal contamination is negligible or absent. Age values of 600 Ma rule out the geochronological relationship between the investigated intrusions and the Mesozoic alkaline bodies from the Azimuth 125° lineament. The TDM model ages allow to conclude that Planalto da Serra magma is derived from the partial melting of a mantle source metasomatised by K-rich carbonatated melt during the Early to Late Neoproterozoic. On the basis of alkaline magmatism repetitions at 600 Ma and 90–80 Ma we question the subsistence of a stationary mantle plume for so long time.  相似文献   

20.
The Mordor Complex in central Australia consists of a suite of highly fractionated potassic rocks. Syenite and monzonite are intruded by phlogopite shonkinite and melamonzonite, which are in turn intruded by numerous plug-like bodies of phlogopiterich periodotite and pyroxenite, and by pegmatite dykes, and carbonate-rich breccia.The consanguinity of the suite, cumulate texture of the ultramafic rocks, enrichment of the Complex in large-ion-lithophile (LIL) elements, mineral equilibrium data, and mineral and whole-rock Rb-Sr isochron data, indicate that the rocks were produced by fractional crystallization from an ultrapotassic mafic magma in an intermediate-level magma chamber. Magma genesis possibly involved modification during uprise of potassic partial melt derived from phlogopite-bearing atypical upper mantle source rock. Evidence for regional compositional heterogeneity in the upper mantle is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号