首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

2.
The assessment of gas origin in mud volcanoes and related petroleum systems must consider post-genetic processes which may alter the original molecular and isotopic composition of reservoir gas. Beyond eventual molecular and isotopic fractionation due to gas migration and microbial oxidation, investigated in previous studies, we now demonstrate that mud volcanoes can show signals of anaerobic biodegradation of natural gas and oil in the subsurface. A large set of gas geochemical data from more than 150 terrestrial mud volcanoes worldwide has been examined. Due to the very low amount of C2+ in mud volcanoes, isotopic ratios of ethane, propane and butane (generally the best tracers of anaerobic biodegradation) are only available in a few cases. However, it is observed that 13C-enriched propane is always associated with positive δ13CCO2 values, which are known indicators of secondary methanogenesis following anaerobic biodegradation of petroleum. Data from carbon isotopic ratio of CO2 are available for 134 onshore mud volcanoes from 9 countries (Azerbaijan, Georgia, Ukraine, Russia, Turkmenistan, Trinidad, Italy, Japan and Taiwan). Exactly 50% of mud volcanoes, all releasing thermogenic or mixed methane, show at least one sample with δ13CCO2 > +5‰ (PDB). Thermogenic CH4 associated with positive carbon isotopic ratio of CO2 generally maintains its δ13C-enriched signature, which is therefore not perturbed by the lighter secondary microbial gas. There is, however, high variability in the δ13CCO2 values within the same mud volcanoes, so that positive δ13CCO2 values can be found in some vents and not in others, or not continuously in the same vent. This can be due to high sensitivity of δ13CCO2 to gas–water–rock interactions or to the presence of differently biodegraded seepage systems in the same mud volcano. However, finding a positive δ13CCO2 value should be considered highly indicative of anaerobic biodegradation and further analyses should be made, especially if mud volcanoes are to be used as pathfinders of the conditions indicative of subsurface hydrocarbon accumulations in unexplored areas.  相似文献   

3.
Authigenic carbonates are common at cold seep sites as a result of microbial oxidation of hydrocarbons. Seep carbonate samples were collected from the surface of the Bush Hill (Green Canyon Block 185, Gulf of Mexico), a mound containing gas hydrate. The carbonates consisted of oily, porous limestone slabs and blocks containing bioclasts and matrix. Analysis by X-ray diffraction shows that aragonite is the dominant mineral (89–99 wt% with an average of 94 wt%) in the matrix of seep carbonate. This cement occurs in microcrystalline, microspar, and sparite forms. The moderate 13C depletion of the seep carbonate (the most depleted one has δ13C value of −29.4‰, and 26 of 38 subsamples have δ13C values >−20.0‰) indicates that the non-methane hydrocarbons was incorporated during seep carbonate precipitation. Relative enrichment of 18O may be related to localized destabilization of gas hydrate or derived from 18O-enriched pore water originated from smectite–illite transition in the deep sediments. The total content of rare earth elements (REE) of the 5% HNO3-treated solution of the carbonates is from 0.40 ppm to 30.9 ppm. The shale-normalized REE patterns show varied Ce anomalies from significantly negative, slightly negative, and no to positive Ce anomalies. Variable content of trace elements, total REE, and Ce anomalies in different samples and even in the different carbonate mineral forms (microcrystalline, microspar and sparite) of the same sample suggest that the formation condition of the Bush Hill seep carbonate is variable and complex, which is possibly controlled by the rate of fluid flux.  相似文献   

4.
Detailed multibeam, sedimentological, and geophysical surveys provide ample new data to confirm that the Anaximander Mountains (Eastern Mediterranean) are an important area for active mud volcanism and gas hydrate formation. More than 3000 km of multibeam track length was acquired during two recent missions and 80 gravity and box cores were recovered. Morphology and backscatter data of the study area have better resolution than previous surveys, and very detailed morphology maps have been made of the known targeted mud volcanoes (Amsterdam, Kazan and Kula), especially the Amsterdam “crater” and the related mud breccia flows. Gas hydrates collected repeatedly from a large area of Amsterdam mud volcano at a sub-bottom depth of around 0.3–1.5 m resemble compacted snow and have a rather flaky form. New gas hydrate sites were found at Amsterdam mud volcano, including the mud flow sloping off to the south. Gas hydrates sampled for the first time at Kazan mud volcano are dispersed throughout the core samples deeper than 0.3 m and display a ‘rice’-like appearance. Relative chronology and AMS dating of interbedded pelagic sediments (Late Holocene hemipelagic, sapropel layer S1 and ash layers) within the mud flows indicate that successive eruptions of Kula mud volcano have a periodicity of about 5–10 kyrs. New mud volcanoes identified on the basis of multibeam backscatter intensity were sampled, documented as active and named “Athina” and “Thessaloniki”. Gas hydrates were sampled also in Thessaloniki mud volcano, the shallowest (1264 m) among all the active Mediterranean sites, at the boundary of the gas hydrate stability zone. Biostratigraphical analyses of mud breccia clasts indicated that the source of the subsurface sedimentary sequences consists of Late Cretaceous limestones, Paleocene siliciclastic rocks, Eocene biogenic limestones and Miocene mudstones. Rough estimations of the total capacity of the Anaximander mud volcanoes in methane gas are 2.56–6.40 km3.  相似文献   

5.
Hydrocarbon gases were determined in sediments from three mud volcanoes in the Sorokin Trough. In comparison to a reference station outside the mud volcano area, the deposits are characterized by an enrichment of high-molecular hydrocarbons (C2–C4), an absence of unsaturated homologues, a predominance of iso-butane in comparison with n-butane, and the presence of gas hydrate. The molecular composition of the hydrocarbon gases suggests their deep sources and thermogenic origin. In the pelagic sediments at the reference station, the methane concentration is relatively low (up to 49 ml/l); maximum concentrations are reached in deposits of the Dvurechenskii mud volcano (up to 400 ml/l). It was the first time that gas hydrate was sampled at the Dvurechenskii mud volcano. The gas extracted by dissociation of hydrate samples was dominated by methane (99.5%) with low amounts of ethane and propane (less than 0.5%). The isotopic composition of the methane varies between –62 and –66 PDB in 13C, and between –185 and –209 SMOW in D, indicating a mainly biogenic origin with an admixture of thermogenic gas.  相似文献   

6.
We investigated the distribution of δ13C and δ15N of organic matter among benthic communities from the upper estuary of Yura River to offshore of Tango Sea, Japan, to determine spatial variation in utilization of organic matter by benthic communities. The δ13C values of benthic animals ranged from −27 to −15‰ in the upper estuary, −21 to −15‰ in the lower estuary, −20 to −16‰ in the shallow coast (5–10 m depths), −18 to −16‰ in the deep coast (30–60 m depths) and −19 to −15‰ in offshore (100–150 m depths) stations. Adapting the dual isotope values to mixing models, we estimated the relative contributions of potential food sources to the benthos diet. Phytoplankton and macroalgae that intruded the estuary in summer were utilized as alternative food aside from the terrestrial-origin organic matter assimilated by the estuarine benthic consumers. Resuspended benthic microalgae were important source of energy in the shallow coastal stations, while abundant supply of phytodetritus fueled the deep coastal and offshore benthic food webs. Spatial difference in the diet of benthic communities depends largely on the shifts in the primary carbon source. Thus, benthic communities are important link of autochthonous/allochthonous production and secondary production in the continuous river–estuary–marine system.  相似文献   

7.
A global database of gas composition and methane stable isotopes of 143 terrestrial mud volcanoes from 12 countries and 60 seeps independent from mud volcanism from eight countries, was compiled and examined in order to provide the first worldwide statistics on the origin of methane seeping at the earth's surface. Sixteen seep data were coupled with their associated subsurface reservoirs.  相似文献   

8.
Active mud volcanism is a global phenomenon that represents a natural hazard by self-igniting eruptions and the continuous emission of methane gas in both marine and continental settings. Mud domes are often found in compressional tectonic settings such as the Caucasus orogenic wedge. Dashgil mud volcano, the most prominent of >200 features in Azerbaijan, has erupted vigorously in historic times. For several years, we have observed variations in the activity of Dashgil dome, including transients in methane flux, build-up of extrusive mud cones on the main feature, and flexural polygonal cracks adjacent to the main crater lake and new mud cones. In spring 2007, we carried out in situ CPTU (Cone Penetration Testing with Pore Pressure measurement) experiments in the crestal area of Dashgil. Our data suggest that the central portion of the crater lake, which hosts the conduit for gas (and possible mud) ascent, shows both low sediment shear strength (<5–20 kPa) and excess pore fluid pressures between 15 and 30 kPa supra-hydrostatic at 1 m sub-bottom depth. In situ cone resistance as a measure for undrained shear strength is as low as 150 kPa in the conduit, whereas the mud is found rather stiff in all other testing locations (300–700 kPa, probably a result of deeply buried shales of the Maikop formation parts of which now liquefy and ascend). Pore pressure is low in the centre of the conduit, probably because of rapidly migrating gas. It increases to 30 kPa at the lake bottom and deep flank, then decreases upslope on the lake flank, and reaches hydrostatic values at the crater rim. From the overpressured region beneath the fluid-filled crest of Dashgil dome, combined with the other observations, we suspect to currently witness an ongoing period of updoming. The presence of sintered mudstones from explosive eruptions in 1908 and 1928 (and most likely before) suggests that a similar violent activity may occur in the near future.  相似文献   

9.
Laser line scan imaging and chirp sub-bottom profiling were used to detail the morphology of a submarine mud volcano and brine-filled crater at 652 m water depth in the northern Gulf of Mexico. The mud volcano has a relief of 6 m and a basal diameter of about 80 m. The feature comprises a central, brine-filled crater (253 m2) surrounded by a continuous bed of methanotrophic mussels (Bathymodiolus childressi) covering 434 m2 and a patchy bed covering an additional 214 m2 of the periphery. The brine pool was mostly <2 m deep, but there were two holes of >28 m and 12 m deep, respectively at the northern end of the pool which emitted continual streams of small clear bubbles. Sub-bottom profiles indicated three distinct strata beneath the present surface of the mud volcano. Integration of 17 profiles shows that the mud volcano has been built in at least three successive stages: the lowest stage deposited 35,400 m3, while the middle and upper stages deposited 7700 and 20,400 m3, respectively. Piston cores were taken at the northern edge of the mussel bed and a site ∼100 m southwest of the pool. Mussel and lucinid shells were recovered from the closer core, lucinid shells from the distant core. A mussel shell from 3.4 m sub-bottom had a Δ14C age of 16.2 ka. Mixture of modern carbon with “carbon dead” reservoir material would produce actual ages ∼2 ka less than the radiocarbon ages.  相似文献   

10.
Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ13C signatures between fish (−16.1 ± 2.1‰), seagrasses (−15.1 ± 3.0‰), seagrass epiphytes (−13.6 ± 3.3‰), and macroalgae (−20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ13C signatures (−16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (−14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.  相似文献   

11.
To assess the potential of stable isotope ratios as an indicator of fish migration within estuaries, stable isotope ratios in important zooplankton species were analyzed in relation to estuarine salinity gradients. Gut contents from migratory juveniles of the euryhaline marine fish Lateolabrax japonicus were examined along the Chikugo River estuary of the Ariake Sea, which has the most developed estuarine turbidity maximum (ETM) in Japan. Early juveniles in March and April preyed primarily on two copepod species; Sinocalanus sinensis at lower salinities and Acartia omorii at higher salinities. Late juveniles (standard length > 40 mm) at lower salinities preyed exclusively on the mysid Acanthomysis longirostris until July and complementarily on the decapod Acetes japonicus in August. These prey species were collected along the estuary during the spring–summer seasons of 2003 and 2004, and their carbon and nitrogen stable isotope ratios (δ13C and δ15N) were evaluated. The δ13C values of prey species were distinct from each other and were primarily depleted within and in close proximity to the ETM (salinity < 10); S. sinensis (−26.6‰) < Acanthomysis longirostris (−23.3‰) < Acartia omorii (−21.1‰) < Acetes japonicus (−18.5‰). The overall gradient of δ13C with salinity occurred for all prey species and showed minor temporal fluctuations, while it was not directly influenced by the δ13C values in particulate organic matter along the estuary. In contrast to δ13C, the δ15N values of prey species did not exhibit any clear relationship with salinity. The present study demonstrated that δ13C has the potential for application as a tracer of fish migration into lower salinity areas including the ETM.  相似文献   

12.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   

13.
A mud volcano LUSI initiated its eruption on 29 May 2006, adjacent to a hydrocarbon exploration well in East Java. Ground subsidence in the vicinity of the LUSI eruptive vent was well recorded by a Synthetic Aperture Radar (SAR) PALSAR onboard the Japanese ALOS satellite. We apply an Interferometric SAR (InSAR) technique on ten PALSAR data scenes, acquired between 19 May 2006 and 21 May 2007, in order to obtain continuous maps of ground displacements around LUSI. Although the displacements in the area closest to the eruptive vent (spatial extension of about 1.5 km) are not detectable because of the erupted mud, all the processed interferograms indicate subsidence in an ellipsoidal area of approximately 4 km (north–south) × 3 km (east–west), centered at the main eruptive vent. In particular, interferograms spanning the first four months until 4 Oct. 2006 and the subsequent 46 days between 4 Oct. 2006 and 19 Nov. 2006 show at least about 70 cm and 80 cm of displacements away from the satellite, respectively. Possible causes of the subsidence, i.e., 1) loading effect of the erupted mud, 2) creation of a cylindrical mud conduit, and 3) pressure decrease and depletion of materials at depth, are investigated. The effects of the first two causes are found to be insufficient to explain the total amount of subsidence observed in the first six months. The third possibility is quantitatively examined using a boundary element approach by modeling the source of deformation as a deflating oblate spheroid. The spheroid is estimated to lie at depths of a few hundred to a thousand meters. The estimated depths are significantly shallower than determined from analyses of erupted mud samples; the difference is explained by presence of significant amount of inelastic deformation including compaction and downward transfer of material.  相似文献   

14.
About 120 gas seepage vents were documented along the west and southwest coast of the Hainan Island, South China Sea, in water depths usually less than 50 m. The principal seepage areas include the Lingtou Promontory, the Yinggehai Rivulet Mouth, Yazhou Bay, the Nanshan Promontory and the Tianya Promontory. They occur along three major zones, reflecting the control by faults and lateral conduits within the basement. It is estimated that the total gas emission from these seepage vents is 294–956 m3/year. The seepage gases are characterized by a high CH4 content (76%), heavy δ13C1 values (−38 to −33‰) and high C1/C1–5 ratios (0.95–1.0), resembling the thermogenic gases from the diapiric gas fields of the Yinggehai Basin. Hydrocarbon–source correlation shows that the hydrocarbons in the sediments from seepage areas can be correlated with the deeply buried Miocene source rocks and sandstone reservoirs in the central depression. The 2D basin modeling results based on a section from the source rock center to the gas seepage sites indicate that the gas-bearing fluids migrated from the source rocks upward through faults or weak zones encompassed by shale diapirism or in up-dip direction along the sandstone-rich strata of Huangliu Formation to arrive to seabed and form the nearshore gas seepages. It is suggested that the seepage gases are sourced from the Miocene source rocks in the central depression of the Yinggehai Basin. This migration model implies that the eastern slope zone between the gas source area of the central depression and the seepage zone is also favorable place for gas accumulation.  相似文献   

15.
Mud volcanoes, mud cones, and mud ridges have been identified on the inner portion of the crestal area, and possibly on the inner escarpment, of the Mediterranean Ridge accretionary complex. Four areas containing one or more mud diapirs have been investigated through bathymetric profiling, single channel seismic reflection profiling, heat flow measurements, and coring. A sequence of events is identified in the evolution of the mud diapirs: initially the expulsion on the seafloor of gasrich mud produces a seafloor depression outlined in the seismic record by downward dip of the host sediment reflectors towards the mud conduit; subsequent eruptions of fluid mud may create a flat topped mud volcano with step-like profile; finally, the intrusion of viscous mud produces a mud cone.The origin of the diapirs is deep within the Mediterranean Ridge. Although a minimum depth of about 400 m below the seafloor has been computed from the hydrostatic balance between the diapiric sediments and the host sediments, a maximum depth, suggested by geometric considerations, ranges between 5.3 and 7 km. The presence of thermogenic gas in the diapiric sediments suggests a better constrained origin depth of at least 2.2 km.The heat flow measured within the Olimpi mud diapir field and along a transect orthogonal to the diapiric field is low, ranging between 16 ± 5 and 41 ± 6 mW m–2. Due to the presence of gas, the thermal conductivity of the diapiric sediments is lower than that of the host hemipelagic oozes (0.6–0.9 and 1.0–1.15 W m–1 K–1 respectively).We consider the distribution of mud diapirs to be controlled by the presence of tectonic features such as reverse faults or thrusts (inner escarpment) that develop where the thickness of the Late Miocene evaporites appears to be minimum. An upward migration through time of the position of the décollement within the stratigraphic column from the Upper Oligocene (diapiric sediments) to the Upper Miocene (present position) is identified.  相似文献   

16.
Paola Ridge, along the NW Calabrian margin (southern Tyrrhenian Sea), is one of the few reported deep sea sites of precipitation of authigenic carbonates in the Tyrrhenian Sea. Here, the changing composition of the seeping fluids and the dynamic nature of the seepage induced the precipitation of pyrite, siderite and other carbonate phases. The occurrence of this array of authigenic precipitates is thought to be related to fluctuation of the sulfate-methane transition zone (SMTZ).Concretions of authigenic minerals formed in the near sub-bottom sediments of the Paola Ridge were investigated for their geochemical and isotopic composition. These concretions were collected in an area characterized by the presence of two alleged mud volcanoes and three mud diapirs. The mud diapirs are dotted by pockmarks and dissected by normal faults, and are known for having been a site of fluid seepage for at least the past 40 kyrs. Present-day venting activity occurs alongside the two alleged mud volcanoes and is dominated by CO2-rich discharging fluids. This discover led us to question the hypothesis of the mud volcanoes and investigate the origin of the fluids in each different domed structure of the study area.In this study, we used stable isotopes (carbon and oxygen) of carbonates coupled with rare earth element (REE) composition of different carbonate and non-carbonate phases for tracing fluid composition and early diagenesis of authigenic precipitates. The analyses on authigenic precipitates were coupled with chemical investigation of venting gas and sea-water.Authigenic calcite/aragonite concretions, from surficial sediments on diapiric structures, have depleted 13C isotopic composition and slightly positive δ18O values. By contrast, siderite concretions, generally found within the first 6 m of sediments on the alleged mud volcanoes, yielded positive δ13C and δ18O values. The siderite REE pattern shows consistent LREE (light REE) fractionation, MREE (medium REE) enrichment and positive Gd and La anomalies. As shown by the REE distribution, the 13C-depleted composition and their association with chemosymbiotic fauna, calcite/aragonite precipitated at time of moderate to high methane flux close to the seafloor, under the influence of bottom seawater. Authigenic siderite, on the other hand, formed in the subseafloor, during periods of lower gas discharges under prolonged anoxic conditions within sediments in equilibrium with 13C-rich dissolved inorganic carbon (DIC) and 18O-rich water, likely related to methanogenesis and intermittent venting of deep-sourced CO2.  相似文献   

17.
The aim of this study was to distinguish between sources of the complex variety of Marennes-Oléron Bay suspended particulate organic matter (SPOM) contributing to the tropho-dynamics of the Marennes-Oléron oyster farming bay. Basic biomarkers (Chl a, C/N and POC/Chl a ratios), carbon and nitrogen stable isotopes from SPOM were analyzed and the microalgae community was characterized. The sampling strategy was bimonthly from March 2002 to December 2003; samples were taken from an intertidal mudflat. Four main sources contributed to the SPOM pool: terrigenous input from rivers, neritic phytoplankton, resuspended microphytobenthos and periodic inputs from intertidal Zostera noltii meadows. Seasonal fluctuations were observed in both years of the study period: (1) SPOM collected in the spring of 2002 (δ13C = −25‰ to −23‰) was mainly composed of fresh estuarine inputs; (2) SPOM from the summer and fall of 2002 and 2003 was predominantly neritic phytoplankton (δ13C = − 22‰ to −19‰); (3) SPOM from the winter of 2002, spring of 2003 and winter of 2003 (δ13C = −21 to −23‰) was composed of a mixture of decayed terrigenous river inputs and pelagic phytoplankton, which was predominantly resuspended microphytobenthos. In the summer of 2003—the warmest summer on record in southern France and Europe—SPOM was particularly enriched for 13C, with δ13C values ranging from −14‰ to −12‰. Pulses in δ13C values, indicative of 13C-enriched decaying materials, extended into the fall. These were attributed to benthic intertidal inputs, including both resuspended microphytobenthos and Z. noltii detritus. Changes in SPOM sources in Marennes-Oléron Bay may lead to differences in the quality of the trophic environment available for reared oysters.  相似文献   

18.
Two mud volcano fields were explored during the French–Dutch MEDINAUT cruise (1998) with the submersible NAUTILE, one south of Crete along the Mediteranean Ridge at about 2000 m depth (Olimpi mud field) and the other south of Turkey between 1700 and 2000 m depth (Anaximander mud field) where high methane concentrations were measured. Chemosynthetic communities were observed and sampled on six mud volcanoes and along a fault scarp. The communities were dominated by bivalves of particularly small size, belonging to families commonly found at seeps (Mytilidae, Vesicomyidae, Thyasiridae) and to Lucinidae mostly encountered in littoral sulfide-rich sediments and at the shallowest seeps. Siboglinid polychaetes including a large vestimentiferan Lamellibrachia sp. were also associated. At least four bivalve species and one siboglinid are associated with symbiotic chemoautotrophic bacteria, as evidenced by Transmission Electronic Microscopy and isotopic ratio measurements. Among the bivalves, a mytilid harbors both methanotrophic and sulfide-oxidizing bacteria. Video spatial analysis of the community distribution on three volcanoes shows that dense bivalve shell accumulations (mainly lucinids) spread over large areas, from 10% to 38% of the explored areas (2500–15000 m2) on the different volcanoes. Lamellibrachia sp. had different spatial distribution and variable density in the two mud volcano fields, apparently related with higher methane fluxes in the Anaximander volcanoes and maybe with the instability due to brines in the Olimpi area. The abundance and richness of the observed chemosynthetic fauna and the size of some of the species contrast with the poverty of the deep eastern Mediterranean. The presence of a specialized fauna, with some mollusk genera and species shared with other reduced environments of the Mediterranean, but not dominated by the large bivalves usually found at seeps, is discussed.  相似文献   

19.
The West Alboran Basin was previously classified as a mud volcanic province consisting of two mud volcano (MV) fields that are inactive at the present day: the Northern (Spanish) and the Southern (Moroccan) fields. The discovery of the first active mud volcano (Carmen; cruise TTR-17) in 2008, along with several pockmarks at the central part of the basin, motivates more careful geological and geochemical analysis of previous data and comparison to new observations.Gas bubbling from the crater of Carmen MV was observed and recorded using an underwater TV-system and a large TV-grab sample. The gas mainly consisted of methane with less than 1% wetness. However, all sets of homologues up to pentane were detected in the mud breccia of Carmen MV. Both molecular and stable carbon isotopic compositions, and their distribution along the core length, suggest a deep thermogenic source of hydrocarbons (HCs). Composition of the pore water from Carmen MV also points to a deep source of mud volcanic water. The isotopic results indicate that the source of mud volcanic water is the dehydration of clay minerals in the thermal zone of the smectite-to-illite transformation. Our observations allow us to infer the presence of structure II gas hydrates in mud breccia on the top of Carmen MV.High HC gas saturation in sediments in some pockmarks accompanied with live chemosynthetic fauna directly indicates the strong seepage activity of these structures. For the first time, authigenic carbonate crusts and chimneys with associated living chemosynthetic bivalves and tubeworms were sampled from a seep site in the West Alboran Sea. Authigenic carbonates consist of aragonite and calcite, and are characterized by a light carbon isotopic signature, up to −37.2‰ PDB, which points to their methane-derived origin.  相似文献   

20.
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号