首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
《Marine Geology》2006,225(1-4):129-144
Four mud extrusions were investigated along the erosive subduction zone off Costa Rica. Active fluid seepage from these structures is indicated by chemosynthetic communities, authigenic carbonates and methane plumes in the water column. We estimate the methane output from the individual mud extrusions using two independent approaches. The first is based on the amount of CH4 that becomes anaerobically oxidized in the sediment beneath areas covered by chemosynthetic communities, which ranges from 104 to 105 mol yr 1. The remaining portion of CH4, which is released into the ocean, has been estimated to be 102–104 mol yr 1 per mud extrusion. The second approach estimates the amount of CH4 discharging into the water column based on measurements of the near-bottom methane distribution and current velocities. This approach yields estimates between 104–105 mol yr−1. The discrepancy of the amount of CH4 emitted into the bottom water derived from the two approaches hints to methane seepage that cannot be accounted for by faunal growth, e.g. focused fluid emission through channels in sediments and fractures in carbonates. Extrapolated over the 48 mud extrusions discovered off Costa Rica, we estimate a CH4 output of 20·106 mol yr 1 from mud extrusions along this 350 km long section of the continental margin. These estimates of methane emissions at an erosional continental margin are considerably lower than those reported from mud extrusion at accretionary and passive margins. Almost half of the continental margins are described as non-accretionary. Assuming that the moderate emission of methane at the mud extrusions off Costa Rica are typical for this kind of setting, then global estimates of methane emissions from submarine mud extrusions, which are based on data of mud extrusions located at accretionary and passive continental margins, appear to be significantly too high.  相似文献   

2.
Meteor cruise M52/1 documented the presence of gas hydrates in sediments from mud volcanoes in the Sorokin Trough of the Black Sea. In a mud flow on the Odessa mud volcano, a carbonate crust currently forms in association with anaerobic methane oxidation. Dvurechenskii mud volcano (DMV), a flat-topped mud pie-type structure, appeared to be very active. Pore water in sediments of DMV is enriched in several constituents, such as ammonium and chloride, which seem to originate at depth. High sediment temperatures of up to 16.5 °C in close contact to the ambient bottom water of 9 °C also suggest strong advective transport of material from greater depth. Steep temperature gradients indicate a high fluid and/or mud flux within DMV, which is confirmed by the shape of the pore water profiles. Active fluid expulsion sites are evidenced by direct seafloor observation, and a potential flux of methane from the sediment to the bottom water is indicated by water-column methane measurements.  相似文献   

3.
Methane fluxes in the southeastern Baltic Sea   总被引:2,自引:2,他引:0  
New data from surveys of gas-bearing mud areas in the Gdansk Deep (southeastern Baltic Sea) were collected during four research cruises in 2009–2011. These revealed the presence of seven large pockmarks apart from the three already known, and enabled significant improvement of the existing digital map of gassy mud distribution. Based on geochemical sediment analyses, calculated diffusive methane fluxes from the upper (0–5?cm) seabed layer into near-bottom waters were highest—3.3?mmol/(m2?day)—in pockmark mud, contrasting strongly with the minimum value of 0.004?mmol/(m2?day) observed in typical, background mud. However, fluxes of less than 0.1?mmol/(m2?day) were observed in all sediment types, including pockmarks. In a newer attempt to roughly estimate budgets at a more regional scale, diffusive methane venting amounts to 280?×?106?mmol/day for southeastern Baltic Sea muddy sediments. Elongated pockforms in the southern Gotland Deep, known since the end of the 1980s as pockmarks, had methane concentrations that were similar to those of gassy mud from the Gdansk Basin, and there was no geo-acoustic evidence of considerably increased gas levels.  相似文献   

4.
Four mud volcanoes of several kilometres diameter named Amon, Osiris, Isis, and North Alex and located above gas chimneys on the Central Nile Deep Sea Fan, were investigated for the first time with the submersible Nautile. One of the objectives was to characterize the seafloor morphology and the seepage activity across the mud volcanoes. The seepage activity was dominated by emissions of methane and heavier hydrocarbons associated with a major thermal contribution. The most active parts of the mud volcanoes were highly gas-saturated (methane concentrations in the water and in the sediments, respectively, of several hundreds of nmol/L and several mmol/L of wet sediment) and associated with significantly high thermal gradients (at 10 m below the seafloor, the recorded temperatures reached more than 40 °C). Patches of highly reduced blackish sediments, mats of sulphide-oxidizing bacteria, and precipitates of authigenic carbonate were detected, indicative of anaerobic methane consumption. The chemosynthetic fauna was, however, not very abundant, inhibited most likely by the high and vigorous fluxes, and was associated mainly with carbonate-crust-covered seafloor encountered on the southwestern flank of Amon. Mud expulsions are not very common at present and were found limited to the most active emission centres of two mud volcanoes, where slow extrusion of mud occurs. Each of the mud volcanoes is fed principally by a main narrow channel located below the most elevated areas, most commonly in the centres of the structures. The distribution, shape, and seafloor morphology of the mud volcanoes and associated seeps over the Central Nile Deep Sea Fan are clearly tectonically controlled.  相似文献   

5.
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI® shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.  相似文献   

6.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

7.
The Gulf of Cádiz area has been extensively surveyed in recent years and several gas-related fluid escape seafloor structures have been identified. In this study, gravity cores, collected during the ANASTASYA/00 and ANASTASYA/01 cruises, on mud volcanoes, hemipelagic sediments and dredged material from diapiric structures, have been studied. A comparative mineralogical analysis by XRD and SEM of samples from different areas has been performed in order to determine whether there is a characteristic mineralogy related to these fluid escape structures, and also to determine the origin of the mud matrix and constrain the depth of the parent units. The mineralogical analysis reflects the different origins of the different units described in the cores: hemipelagic material of the slope, clays that underlie the mud volcanoes and are discharged at the sea bottom surface, and authigenic and diagenetic minerals possibly involved in the anaerobic oxidation of methane in the mud volcano sediments.  相似文献   

8.
Mud volcanoes and gas vents in the Okhotsk Sea area   总被引:5,自引:0,他引:5  
Gas emissions from mud volcanoes on Sakhalin Island and water-column gas flares arising from cold seeps in the Okhotsk Sea appear to be related. They are likely activated by tectonic movements along the transform plate boundary separating the Okhotsk Sea Plate from the Eurasian and Amur plates. Gas vents (flares) and methane anomalies occur in the waters offshore Sakhalin Island, along with NE-SW-trending mounds and fluid escape structures on the seafloor. The intersection of the NE-striking transverse faults on land with the Central Sakhalin and Hokkaido-Sakhalin shear zones apparently determines the sites of mud volcanoes, a pattern that continues offshore where the intersection with the East Sakhalin and West Derugin shear zones determines the sites of the submarine gas vents.  相似文献   

9.
During the Antarctic summer of 2003–2004, new geophysical data were acquired from aboard the R/V OGS Explora in the BSR-rich area discovered in 1996–1997 along the South Shetland continental margin off the Antarctic Peninsula. The objective of the research program, supported by the Italian National Antarctic Program (PNRA), was to verify the existence of a potential gas hydrate reservoir and to reconstruct the tectonic setting of the margin, which probably controls the extent and character of the diffused and discontinuous bottom simulating reflections. The new dataset, i.e. multibeam bathymetry, seismic profiles (airgun and chirp), and two gravity cores analysed by computer-aided tomography as well as for gas composition and content, clearly shows active mud volcanism sustained by hydrocarbon venting in the region: several vents, located mainly close to mud volcanoes, were imaged during the cruise and their occurrence identified in the sediment samples. Mud volcanoes, vents and recent slides border the gas hydrate reservoir discovered in 1996–1997. The cores are composed of stiff silty mud. In core GC01, collected in the proximity of a mud volcano ridge, the following gases were identified (maximum contents in brackets): methane (46 μg/kg), pentane (45), ethane (35), propane (34), hexane (29) and butane (28). In core GC02, collected on the flank of the Vualt mud volcano, the corresponding data are methane (0 μg/kg), pentane (45), ethane (22), propane (0), hexane (27) and butane (25).  相似文献   

10.
Mud volcanoes—a significant source of atmospheric methane   总被引:3,自引:0,他引:3  
Mud volcanoes are recognized as a significant geological source of atmospheric carbon, particularly as methane gas. This paper considers the total number of mud volcanoes, types and frequency of their activity, quantities of emissions during quiescence and eruption, and composition of venting gases. Mud volcanoes approximate 1,950 prominent individuals worldwide and about 60 to 65 erupt every year. They sporadically or continuously emit to the atmosphere considerable volumes of gas, mainly methane, in average volumes of 3.3 to 3.6×106 m3 per year during quiescent periods, and about 12×106 m3 to more than 350×106 m3 per single eruption. The total annual amount of methane emitted to the atmosphere through mud volcanoes is estimated to be about 5 Tg, containing almost equal quantities of fossil and modern carbon.  相似文献   

11.
The assessment of gas origin in mud volcanoes and related petroleum systems must consider post-genetic processes which may alter the original molecular and isotopic composition of reservoir gas. Beyond eventual molecular and isotopic fractionation due to gas migration and microbial oxidation, investigated in previous studies, we now demonstrate that mud volcanoes can show signals of anaerobic biodegradation of natural gas and oil in the subsurface. A large set of gas geochemical data from more than 150 terrestrial mud volcanoes worldwide has been examined. Due to the very low amount of C2+ in mud volcanoes, isotopic ratios of ethane, propane and butane (generally the best tracers of anaerobic biodegradation) are only available in a few cases. However, it is observed that 13C-enriched propane is always associated with positive δ13CCO2 values, which are known indicators of secondary methanogenesis following anaerobic biodegradation of petroleum. Data from carbon isotopic ratio of CO2 are available for 134 onshore mud volcanoes from 9 countries (Azerbaijan, Georgia, Ukraine, Russia, Turkmenistan, Trinidad, Italy, Japan and Taiwan). Exactly 50% of mud volcanoes, all releasing thermogenic or mixed methane, show at least one sample with δ13CCO2 > +5‰ (PDB). Thermogenic CH4 associated with positive carbon isotopic ratio of CO2 generally maintains its δ13C-enriched signature, which is therefore not perturbed by the lighter secondary microbial gas. There is, however, high variability in the δ13CCO2 values within the same mud volcanoes, so that positive δ13CCO2 values can be found in some vents and not in others, or not continuously in the same vent. This can be due to high sensitivity of δ13CCO2 to gas–water–rock interactions or to the presence of differently biodegraded seepage systems in the same mud volcano. However, finding a positive δ13CCO2 value should be considered highly indicative of anaerobic biodegradation and further analyses should be made, especially if mud volcanoes are to be used as pathfinders of the conditions indicative of subsurface hydrocarbon accumulations in unexplored areas.  相似文献   

12.
The Dongsha Basin, circling Dongsha Island that is amid the northern margin of the South China Sea, is characterized by thin (∼0.5 km) Cenozoic sediments veneering on thick (up to 5 km) Mesozoic strata. Recently, several geophysical and geological surveys, including multiple channel reflection seismic, sub-bottom profiling and benthic dredging, have been conducted on the slope southwest to the Dongsha Island, where the water depth varies from 400 m to 2000 m. A novel discovery is numerous submarine mud volcanoes of various sizes over there, typically 50–200 m high and 0.5–5 km wide. Geophysical profiles document their unusual features, e.g., roughly undulating seafloor, high-amplitude seabed reflectivity, foggy hyperbolic diffractions up to 50 m in water column above seabed, and internal reflection chaos and wipe-out down to 2–3 km level or deeper below the seabed. Benthic dredging from the mud volcanoes gives abundant faunas of high diversity, e.g., scleractinian (stony coral), gorgonian, black coral, thiophil tubeworm, glass sponge, bryozoan etc., indicating booming chemosynthetic community, among which the Lophelia pertusa-like coral and the Euretidae-like glass sponges are the first reports in the South China Sea. Concomitantly with them, there are also abundant authigenic carbonate nodules and slabs, raw, brecciated and breccias with bio-clasts congregation. Besides, there coexist massive mudflows and allogenic coarse-grained quartz, feldspar and tourmaline most likely brought out by mud volcanism. Geochemical analysis of the bottom water samples give dissolved methane concentration up to 4 times higher than the background average. These results lend comprehensive evidences for the ongoing and historical mud volcanism. The escaping methane gas is inferred to source mainly from the Mesozoic strata. Occupying a large province of the deep water slope, ca. 1000 km2 or more, the mud volcanoes is prospective for gas hydrate and natural gas for the Dongsha Basin.  相似文献   

13.
Hydrocarbon gases were determined in sediments from three mud volcanoes in the Sorokin Trough. In comparison to a reference station outside the mud volcano area, the deposits are characterized by an enrichment of high-molecular hydrocarbons (C2–C4), an absence of unsaturated homologues, a predominance of iso-butane in comparison with n-butane, and the presence of gas hydrate. The molecular composition of the hydrocarbon gases suggests their deep sources and thermogenic origin. In the pelagic sediments at the reference station, the methane concentration is relatively low (up to 49 ml/l); maximum concentrations are reached in deposits of the Dvurechenskii mud volcano (up to 400 ml/l). It was the first time that gas hydrate was sampled at the Dvurechenskii mud volcano. The gas extracted by dissociation of hydrate samples was dominated by methane (99.5%) with low amounts of ethane and propane (less than 0.5%). The isotopic composition of the methane varies between –62 and –66 PDB in 13C, and between –185 and –209 SMOW in D, indicating a mainly biogenic origin with an admixture of thermogenic gas.  相似文献   

14.
Two mud volcano fields were explored during the French–Dutch MEDINAUT cruise (1998) with the submersible NAUTILE, one south of Crete along the Mediteranean Ridge at about 2000 m depth (Olimpi mud field) and the other south of Turkey between 1700 and 2000 m depth (Anaximander mud field) where high methane concentrations were measured. Chemosynthetic communities were observed and sampled on six mud volcanoes and along a fault scarp. The communities were dominated by bivalves of particularly small size, belonging to families commonly found at seeps (Mytilidae, Vesicomyidae, Thyasiridae) and to Lucinidae mostly encountered in littoral sulfide-rich sediments and at the shallowest seeps. Siboglinid polychaetes including a large vestimentiferan Lamellibrachia sp. were also associated. At least four bivalve species and one siboglinid are associated with symbiotic chemoautotrophic bacteria, as evidenced by Transmission Electronic Microscopy and isotopic ratio measurements. Among the bivalves, a mytilid harbors both methanotrophic and sulfide-oxidizing bacteria. Video spatial analysis of the community distribution on three volcanoes shows that dense bivalve shell accumulations (mainly lucinids) spread over large areas, from 10% to 38% of the explored areas (2500–15000 m2) on the different volcanoes. Lamellibrachia sp. had different spatial distribution and variable density in the two mud volcano fields, apparently related with higher methane fluxes in the Anaximander volcanoes and maybe with the instability due to brines in the Olimpi area. The abundance and richness of the observed chemosynthetic fauna and the size of some of the species contrast with the poverty of the deep eastern Mediterranean. The presence of a specialized fauna, with some mollusk genera and species shared with other reduced environments of the Mediterranean, but not dominated by the large bivalves usually found at seeps, is discussed.  相似文献   

15.
A survey of the submarine Håkon Mosby mud volcano (HMMV) area by photo and video cameras permits the classification and mapping of sea-floor terrains. Approximate concentric zoning is seen in the distribution of the terrains, which correlates well with morphostructural elements of the mud volcano. A relatively limited biological community, dominated by tubeworms (Pogonophora and Polychaeta) and demersal fish, exists on the HMMV. Photo and video images show no evidence for gas bubbles in the water column, although methane is present in the mud volcano sediments. White patches, which comprise over 75% of the sea floor in some areas, are interpreted to be bacterial mats and/or gas hydrates.  相似文献   

16.
The West Alboran Basin was previously classified as a mud volcanic province consisting of two mud volcano (MV) fields that are inactive at the present day: the Northern (Spanish) and the Southern (Moroccan) fields. The discovery of the first active mud volcano (Carmen; cruise TTR-17) in 2008, along with several pockmarks at the central part of the basin, motivates more careful geological and geochemical analysis of previous data and comparison to new observations.Gas bubbling from the crater of Carmen MV was observed and recorded using an underwater TV-system and a large TV-grab sample. The gas mainly consisted of methane with less than 1% wetness. However, all sets of homologues up to pentane were detected in the mud breccia of Carmen MV. Both molecular and stable carbon isotopic compositions, and their distribution along the core length, suggest a deep thermogenic source of hydrocarbons (HCs). Composition of the pore water from Carmen MV also points to a deep source of mud volcanic water. The isotopic results indicate that the source of mud volcanic water is the dehydration of clay minerals in the thermal zone of the smectite-to-illite transformation. Our observations allow us to infer the presence of structure II gas hydrates in mud breccia on the top of Carmen MV.High HC gas saturation in sediments in some pockmarks accompanied with live chemosynthetic fauna directly indicates the strong seepage activity of these structures. For the first time, authigenic carbonate crusts and chimneys with associated living chemosynthetic bivalves and tubeworms were sampled from a seep site in the West Alboran Sea. Authigenic carbonates consist of aragonite and calcite, and are characterized by a light carbon isotopic signature, up to −37.2‰ PDB, which points to their methane-derived origin.  相似文献   

17.
Gas hydrate accumulation at the Håkon Mosby Mud Volcano   总被引:1,自引:1,他引:0  
Gas hydrate (GH) accumulation is characterized and modeled for the Håkon Mosby mud volcano, ca. 1.5?km across, located on the Norway–Barents–Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108?m3 STP, which could account for about 1–10% of the gas that has escaped from the volcano since its origin.  相似文献   

18.
Active mud volcanism is a global phenomenon that represents a natural hazard by self-igniting eruptions and the continuous emission of methane gas in both marine and continental settings. Mud domes are often found in compressional tectonic settings such as the Caucasus orogenic wedge. Dashgil mud volcano, the most prominent of >200 features in Azerbaijan, has erupted vigorously in historic times. For several years, we have observed variations in the activity of Dashgil dome, including transients in methane flux, build-up of extrusive mud cones on the main feature, and flexural polygonal cracks adjacent to the main crater lake and new mud cones. In spring 2007, we carried out in situ CPTU (Cone Penetration Testing with Pore Pressure measurement) experiments in the crestal area of Dashgil. Our data suggest that the central portion of the crater lake, which hosts the conduit for gas (and possible mud) ascent, shows both low sediment shear strength (<5–20 kPa) and excess pore fluid pressures between 15 and 30 kPa supra-hydrostatic at 1 m sub-bottom depth. In situ cone resistance as a measure for undrained shear strength is as low as 150 kPa in the conduit, whereas the mud is found rather stiff in all other testing locations (300–700 kPa, probably a result of deeply buried shales of the Maikop formation parts of which now liquefy and ascend). Pore pressure is low in the centre of the conduit, probably because of rapidly migrating gas. It increases to 30 kPa at the lake bottom and deep flank, then decreases upslope on the lake flank, and reaches hydrostatic values at the crater rim. From the overpressured region beneath the fluid-filled crest of Dashgil dome, combined with the other observations, we suspect to currently witness an ongoing period of updoming. The presence of sintered mudstones from explosive eruptions in 1908 and 1928 (and most likely before) suggests that a similar violent activity may occur in the near future.  相似文献   

19.
Egorov  A. V.  Ivanov  M. K. 《Geo-Marine Letters》1998,18(2):127-138
 Microbiologically produced hydrocarbon gases (HCGs) in normal pelagic sediments have lithologically controlled distribution – their content increases sharply in organic-rich sapropels. Generally, the HCG content is low (<10000 nl/l), The amount of heavy HCGs is high (up to 60%, unsaturated HCGs dominate the saturated ones, and ethylene is prevalent. The same features were found in sediment and mud breccia from inactive mud volcanoes. Thermogenic HCG was determined in active mud volcanoes and in a high salinity fluid vent. They are characterized by: high methane concentration, δ13C(CH4) =−37.1 to −57.8%, essential ethane contents (2–7%), absence of unsaturated HCG, and the prevalence of iso-over n-butane.  相似文献   

20.
Natural oil and gas seeps on the Black Sea floor   总被引:3,自引:0,他引:3  
Migration of hydrocarbons to the seafloor in the Black Sea occurs via direct seepages, mud volcanoes, and development of fluidized sediment flows (e.g., diapers). Gas migration occurs on the shelf, continental slope, and abyssal plain. Gas hydrates are spatially related to gas accumulations and are present in shallow subsurface sediment layers. Their distribution is controlled by the activity of mud volcanoes. In regions of methane seepages, specific biogeochemical processes related to the activity of methane-oxidizing bacteria are evident. This activity results in the formation of diagenetic minerals (carbonates, sulfides, sulfates, phosphates and other minerals).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号