首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While the Advanced Earth Observing Satellite (ADEOS) was operating, the Kuroshio and the Kuroshio Extension, or the Kuroshio Current System, exhibited unusual behavior from the winter of 1996 to the summer of 1997. This behavior of the Kuroshio Current System has been closely studied using a time series of satellite observation images of SST and ocean color obtained by ADEOS-OCTS, reinforced by SST images obtained by NOAA-AVHRR. Our findings include (i) a long lasting, very southerly path of the Kuroshio Extension; (ii) a Kuroshio path very distant from Japan with the following alternating-jet-like north-south flow pattern of the Kuroshio Extension, which occurred twice, once in February and once in April 1997, as independent events and which was observed to be affected by the bottom topography of the Izu-Ogasawara Ridge and Trench, and of the Japan Trench; (iii) cutting off of a cold water mass after the February event; and (iv) the formation of a vortex pair after the April event. A new mechanism is suggested for the formation of the alternating-jet flow pattern: a topographically forced alternating-jet instability (AJI). An SST-Chlorophyll Diagram (T-Chl Diagram) generated using simultaneous data from a single satellite is useful for analyzing the water mass structure of this region, including biological processes.  相似文献   

2.
Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region   总被引:4,自引:1,他引:4  
Trajectories of mesoscale eddies in the Kuroshio recirculation region were investigated by using sea surface height (SSH) anomaly observed by the TOPEX/POSEIDON and ERS altimeters. Cyclonic and anticyclonic eddies have been traced on maps of the filtered SSH anomaly fields composed from the altimeter observations every ten days. Both the cyclonic and anticyclonic eddies propagate westward in the Kuroshio recirculation region from a region south of the Kuroshio Extension. The propagation speed of these eddies has been estimated as about 7 cm s−1, which is much faster than the phase speed theoretically estimated for the baroclinic first-mode Rossby wave in the study area. It was also found that in the Izu-Ogasawara Ridge region, most of eddies pass through the gap between the Hachijojima Island and Ogasawara (Bonin) Islands, and some of the eddies decay around the Izu-Ogasawara Ridge. It seems that the trajectory of the eddies is crucially affected by the bottom topography. In the region south of Shikoku and east of Kyushu, some of the eddies coalesce with the Kuroshio. It is also suggested that this coalescence may trigger the path variation of the Kuroshio in the sea south of Japan. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
日本南部黑潮存在多种路径模态:近岸非大弯曲路径、离岸非大弯曲路径和大弯曲路径。黑潮延伸体的路径存在两种典型模态:收缩态和伸展态。从地理位置看, 日本南部黑潮和黑潮延伸体是相邻的, 但它们的路径状态是否存在关联一直存在争议。本文基于卫星观测的海表高度资料和长期的海洋高分辨率再分析资料, 对日本南部黑潮和黑潮延伸体路径状态之间的关联性进行定量分析, 结果表明:日本南部黑潮和黑潮延伸体的路径状态存在一定的关联。当日本南部黑潮处于近岸非大弯曲和大弯曲路径时, 黑潮延伸体主要处于伸展态; 当日本南部黑潮处于离岸非大弯曲时, 黑潮延伸体处于伸展态和收缩态的比例相当。进一步分析表明, 黑潮流轴处于伊豆海脊的位置部分决定了上述关系, 可能存在其他因素调制了两者的关联性。  相似文献   

4.
In order to understand the actual formation process of the North Pacific Intermediate Water (NPIW), structure of subsurface intrusions of the Oyashio water and the mixing of the Oyashio and the Kuroshio waters in and around the Kuroshio Extension (KE) were examined on the basis of a synoptic CTD observation carried out in May-June 1992. The fresh Oyashio water in the south of Hokkaido was transported into KE region through the Mixed Water Region (MWR) in the form of subsurface intrusions along two main paths. The one was along the east coast of northern Japan through the First Branch of the Oyashio (FBO) and the other along the eastern face of a warm streamer which connected KE with a warm core ring through the Second Branch of the Oyashio (SBO). The fresh Oyashio water extended southward through FBO strongly mixed with the saline NPIW transported by the Kuroshio in the south of Japan (old NPIW) in and around the warm streamer. On the other hand, the one through SBO well preserved its original properties and extended eastward beyond 150°E along KE with a form of rather narrow band. The intrusion ejected Oyashio water lens with a diameter of 50–60 km southward across KE axis and split northward into the MWR involved in the interaction of KE and a warm core ring, which were supposed to be primary processes of new NPIW formation.  相似文献   

5.
A relationship between paths of the Kuroshio and Kuroshio Extension (KE) is investigated, using the satellite-derived altimetry dataset of 1993–2008. When the Kuroshio takes the nearshore nonlarge meander path or typical large meander path and resultantly goes through the deeper channel (about 2500 m) of the Izu-Ogasawara Ridge, the KE path adopts a relatively stable state with the two quasi-stationary meanders. On the other hand, when the Kuroshio takes the offshore nonlarge meander path and then passes over the shallower part of the Ridge (about 1000 m), the KE path tends to be convoluted, i.e., an unstable state.  相似文献   

6.
The seasonal variation of the Kuroshio transport south of Japan has been investigated using the results of an assimilation model. Annual and semiannual variations of the transport and dynamic depth anomaly are reconstructed by CEOF (complex orthogonal empirical function) analysis. In the basin west of the Izu-Ogasawara Ridge, the annual component of the variation propagates westward with the phase speed of the long Rossby wave associated with the first baroclinic mode. The variation also shows a similar tendency to that reproduced in a wind-driven, two-layer model with a ridge. This suggests that the annual variation revealed in the assimilation model is associated with the baroclinic first mode of motion excited above the Izu-Ogasawara Ridge. Furthermore, it is found that both the semiannual component and the annual component are important members determining the seasonal variation of the Kuroshio transport south of Japan. The semiannual component is revealed as a double gyre pattern in the basin west of the Izu-Ogasawara Ridge. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A spread of warm water from the first crest of the Kuroshio Extension is periodically enhanced by northward warm water intrusions from the main current. The water type in the spread area was previously found to be the same as that in the Kuroshio front at depth. In looking for the possible mechanism responsible for the northward warm water intrusions, a dynamic analysis in the Kuroshio front was carried out by using CTD, ADCP, AVHRR and ARGOS buoy data, obtained in 1996 by the R.V. Hakuho Maru. Downstream, cross-stream and vertical velocities in the Kuroshio Extension were found by using a "stream coordinate system". The velocity field in the Kuroshio front at the first crest showed a double structure with two surface velocity maxima. In the inner part of the front, relatively high cross-stream (northward) and vertical (upward) velocities were found. Thus, this study suggests that while water particles flow downstream along the first stationary meander of the Kuroshio Extension, they also experience lateral and vertical movements which allow the deeper water from an upstream location to rise to the surface layer, and in certain locations to deflect northward. By assuming isopycnal movement and conservation of potential vorticity, it was found that in those locations where anticyclonic curvature of the meander increases, warm water is more likely to deflect northward. High ageostrophic components observed in the first 300 m of the water column are probably related to the relatively high cross-stream and vertical velocities in the inner part of the front.  相似文献   

8.

Since September 2017, the Kuroshio has taken a large-meander (LM) path in the region south of Japan. We examined characteristics of the 2017–present LM path in comparison with previous LM paths, using tide gauge, altimetric sea surface height, and bottom pressure data. The 2017–present LM path was formed from a path passing through a channel south of Hachijo-jima Island, while a typical LM path originated from a path through a channel north of Miyake-jima Island. The meander trough of this atypical path was found to be shifted far to the east and to vary on a timescale of months. These characteristics are different from those of a typical LM path but they are similar to those of the 1981–1984 LM path. Therefore, we identified two types of LM path; a stable and unstable LM paths. The 2017–present unstable type large meander has a zonal scale greater than that of the 2004–2005 stable type large meander and protrudes from the eastern boundary of the Shikoku Basin, i.e., Izu-Ogasawara Ridge. No significant bottom pressure depression was observed, associated with the formation of the 2017–present LM path, indicating that baroclinic instability was not important in the formation of this LM path. Due to no significant bottom steering, even during the 2017–present LM period, a mesoscale current path disturbance occurred southeast of Kyushu, propagated eastward, and amplified the offshore displacement of the Kuroshio.

  相似文献   

9.
The Kii Bifurcation Current is often found along the southwest coast of the Kii Peninsula, and its frequency of occurrence reaches about 70% in the period from 1988 to 1996 (Takeuchi et al., 1998a). In order to clarify the structure and short-period variability of the Kii Bifurcation Current, detailed observations were made four times on board the R/V Seisui-maru of Mie University on October 29–31, 1996, on June 24–26, 1997, October 14–16, 1997, and December 3–4, 1997. The measured horizontal structure of the Kii Bifurcation Current indicates that the eastern portion of the Current (eastward flow near Cape Shionomisaki) consists of a part of the current zone of the Kuroshio. It is shown that the current structure, including the Kii Bifurcation Current in the vicinity of Cape Shionomisaki, is stable when the Kuroshio is flowing in a stationary straight path, but that the current structure is considerably changed when small-scale eddies pass by the cape. Such short-period variation can be monitored by using the daily variation of the sea level difference between Kushimoto and Uragami. In particular, in the case of October 29–31, 1996, when an eminent small-scale eddy passed by Cape Shionomisaki, and when the Kuroshio axis tentatively moved southwards about 50 km apart from the coast, the Kii Bifurcation Current seems to have disappeared.  相似文献   

10.
Interannual variations of sea level at the Nansei Islands and volume transport of the Kuroshio during 1967–95 are calculated by integrating variations carried by windforced Rossby waves. Effects of eddy dissipation and ocean ridges are considered. Ridge effect is inferred by comparing between the calculated and observed sea levels. The calculation is satisfactory to sea levels and Kuroshio transport for the whole period. They are mostly caused by Rossby waves forced by wind and modified by the ridges, and are due to barotropic wave primarily and the first baroclinic wave secondly. The calculated Kuroshio transport well represents variations of several-year scales with maximums in respective duration of the large meander (LM) of the Kuroshio, as well as bi-decadal variation that transport was small during the non-LM period of 1967–75 and large during the LM-dominant period of 1975–91. Mean volume transport of the subtropical gyre is estimated at 57 Sv (1 Sv = 106 m3s–1) and divided by the Nansei Shoto Ridge into those of the Kuroshio in the East China Sea (25.5 Sv) and a subsurface current east of this ridge (31.5 Sv). The Subtropical Countercurrent and a southward deep current east of the Izu-Ogasawara Ridge are estimated at 16 Sv and 7 Sv, respectively. The calculated transports of the Kuroshio and other subtropical currents reach maximums at every El Niño event due to strong excitement of upwelling barotropic Rossby wave.  相似文献   

11.
The topographic effect of the Izu Ridge on the horizontal distribution of the North Pacific Intermediate Water (NPIW) south of Japan has been studied using observational data obtained by the Seisui-Maru of Mie University (Mie Univ. data) and those compiled by Japan Oceanographic Data Center (JODC data). Both data sets show that water of salinity less than 34.1 psu on potential density () surface of 26.8 is confined to the eastern side of the Izu Ridge, while water of salinity less than 34.2 psu is confined to the southern area over the Izu Ridge at a depth greater than 2000 m and to the southeastern area in the Shikoku Basin. It is also shown by T-S analysis of Mie Univ. data over the Izu Ridge that water of salinity less than 34.2 psu dominates south of 30°N, where the depth of the Izu Ridge is deeper than 2000 m and NPIW can intrude westward over the Izu Ridge. JODC data reveal that relatively large standard deviations of the salinity on surface of 26.7, 26.8 and 26.9 are detected along the mean current path of the Kuroshio and the Kuroshio Extension. Almost all of the standard deviations are less than 0.05 psu in other area with the NPIW, which shows that the time variation in the salinity can be neglected. This observational evidence shows that the topographic effect of the Izu Ridge on the horizontal distribution of the NPIW, which is formed east of 145°E by the mixing of the Kuroshio water and the Oyashio water, is prominent north of 30°N with a depth shallower than 2000 m.  相似文献   

12.
Current Nature of the Kuroshio in the Vicinity of the Kii Peninsula   总被引:1,自引:0,他引:1  
The Kuroshio flows very close to Cape Shionomisaki when it takes a straight path. The detailed observations of the Kuroshio were made both on board the R/V Seisui-maru of Mie University and on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station on June 11–14, 1996. It was confirmed that the current zone of the Kuroshio touches the coast and bottom slope just off Cape Shionomiaki, and that the coastal water to the east of the cape was completely separated from that to the west. The relatively high sea level difference between Kushimoto and Uragami could be caused by this separation of the coastal waters when the Kuroshio takes a straight path. This flow is rather curious, as the geostrophic flow, which has a barotropic nature and touches the bottom, would be constrained to follow bottom contours due to the vorticity conservation law. The reason why the Kuroshio leaves the bottom slope to the east of Cape Shionomisaki is attributed to the high curvature of the bottom contours there: if the current were to follow the contours, the centrifugal term in the equation of motion would become large and comparablee to the Coriolis (or pressure gradient) term, and the geostrophic balance would be destroyed. This creates a current-shadow zone just to the east of the cape. As the reason why the current zone of the Kuroshio intrudes into the coastal region to the west of the cape, it is suggested that the Kii Bifurcation Current off the southwest coast of the Kii Peninsula, which is usually found when the Kuroshio takes the straight path, has the effect of drawing the Kuroshio water into the coastal region. The sea level difference between Kushimoto and Uragami is often used to monitor the flow pattern of the Kuroshio near the Kii Peninsula. It should be noted that Uragami is located in the current shadow zone, while Kushimoto lies in the region where the offshore Kuroshio water intrudes into the coastal region. The resulting large sea level difference indicates that the Kuroshio is flowing along the straight path.  相似文献   

13.
Spreading of warm water from the Kuroshio Extension into the Perturbed Area   总被引:1,自引:0,他引:1  
The path of the Kuroshio Extension describes two stationary meanders with crests at approximately 144°E and 150°E. The short-term meridional fluctuations of the warm water spreading northward from the first crest at the surface and its vertical structure were analyzed by using 5-day-mean surface temperature maps published by JAFIC, montly 100-m-depth temperature maps edited by the JMA, and CTD data obtained by the R.Vs.Kofu-Maru, Hakuho-Maru andTansei-Maru cruises from 1990 to 1994. A Northern Boundary of the Spreak Kuroshio Water (NBSKW) and a Southern Boundary of the Spread Kuroshio Water (SBSKW) at the surface were defined as the northern and southern boundary of the pronounced meriodional temperature gradients, respectively. The vertical structure of the Spread Kuroshio Water was analyzed in terms of its T-S properties. The location of the NBSKW at the surface corresponds well with the northern boundary of the subsurface high salinity water that represents the Spread Kuroshio Water. The short-term meridional fluctuations of the northern and southern boundary of the Spread Kuroshio Water at the surface were studied through the spectral analysis of the maximum latitude of the two lines defined. We obtained the following results: (1) the meridional fluctuations of the NBSKW and SBSKW at the first creast have major periods between 16 and 38 days; (2) the 50 day running mean of the SBSKW at the first crest, for the purpòse of this study, can be generally used as indicative of the location of the Kuroshio axis; and (3) the northward extent of the Spread Kuroshio Water and the velocity of the meridional shift suggest seasonal variability that could be related with their vertical structure.  相似文献   

14.
南海的季节环流─TOPEX/POSEIDON卫星测高应用研究   总被引:57,自引:8,他引:49  
应用1992~1996年的TOPEX/POSEIDON卫星高度计遥感资料,研究了冬、夏季风强盛期多年平均的南海上层环流结构。研究结果表明,南海上层流结构呈明显的季节变化,在很大程度上受该海区冬、夏交替的季风支配。冬季总环流呈气旋型,并发育有两个次海盆尺度气旋型环流;夏季总环流大致呈反气旋型、但在南海东部18°N以南海域未见明显流系发育。研究还表明,南海环流的西向强化趋势明显,无论冬、夏在中南半岛沿岸和巽他陆架外缘均存在急流,其流向冬、夏相反,是南海上层环流中最强劲的一支。鉴于该海流的动力特征与海洋动力学中定义的漂流不同,有相当大的地转成分,建议称为“南海季风急流(South China Sea MonsoonJet)”.冬季南下的季风急流在南海南部受巽他陆架阻挡折向东北,沿加里曼丹岛和巴拉望岛外海有较强东北向流发育。夏季北上的季风急流在海南岛东南分为两支:北支沿陆架北上,似为传统意义上的南海暖流;南支沿18°N向东横穿南海后折向东北;二者之间(陆架坡折附近)为弱流区。两分支在汕头外海汇合后,南海暖流流速增强。就多年平均而言,黑潮只在冬季侵入南海东北部,并在南海北部诱生一个次海盆尺度的气旋型环流,这时南海暖流只出现在汕头以东海域.夏季南海北部完全受东北向流控制,未见黑潮入侵迹象.用卫星跟踪海面漂流浮标观测进行的对比验证表明,以上遥感分析结果与海上观测一致。  相似文献   

15.
The position and strength of the surface Kuroshio Extension Front (KEF), defined as the sea surface temperature (SST) gradient maximum adjacent to the Kuroshio Extension (KE) axis (approximated by a specific SSH contour consistently located at, or near, the maximum of the SSH gradient magnitude), have been studied using weekly, microwave SST measurements from the later 1997 to early 2008. The mean KEF meanders twice around ∼36°N between the east coast of Japan and 153°E. It then migrates southeast to ∼34°N, just before reaching the Shatsky Rise (∼158°E), then progresses mostly eastward. Spatially, the KEF is strongest near the Japan coast, while it is seasonally strongest in winter and weakest in summer. Low-frequency variations of its strength, most notably in its upstream region, can be related to the known bimodal states of the KE. During 2003–2005, when the KE was in its stable state, the winter KEF SST gradient exceeded 10°C/100 km.  相似文献   

16.
利用1987年以来WOCE项目及我国自行投放或进入黑潮及其邻近海域(15°~36°N,114°~135°E)的共计323个卫星跟踪海表面漂流浮标资料,得到全年平均及季节平均的浮标轨迹及(1/4)°×(1/4)°格点平均的表层流矢量结果。分析认为:对于全年平均的表层流场,黑潮表层流路主要表现了对大洋西边界地形的适应,并呈现出6个较大的弯曲,其中在反气旋型弯曲处都发生分支或入侵现象、气旋型弯曲处这种现象却不明显。对于季节平均的表层流场,黑潮表层不同流段分别表现出各自显著的季节差异:吕宋海峡附近海域,表层水向南海的入侵只发生在秋、冬两季,而春、夏两季却不发生;在台湾以东海域,黑潮表层流路与黑潮右侧反气旋涡的存在与否密切相关,春季没有涡旋存在时,黑潮表层流路常出现气旋式大弯曲,其他三个季节反气旋涡存在时,黑潮表层流路相对平直;在台湾东北海域,黑潮表层水向东海南部陆架区的入侵以秋、冬季最强,春季次之,而夏季几乎不发生;在赤尾屿以北的东海黑潮中段,黑潮流动比较稳定,其表层平均流径走向由偏北到偏东依次约为冬(北偏东30°)、春(北偏东33°)、秋(北偏东38°)、夏(北偏东45°);流路宽度由宽至窄依次约为秋(90 km)、春(80 km)、冬(70 km)、夏(60 km),而流速由大至小依次为夏、春、秋、冬,且各季节都表现出北段流速大于南段的现象;在九州西南海域,春、秋两季黑潮表层水发生明显的向北入侵,入侵的黑潮水与东海外陆架水共同成为对马暖流的一部分来源,而夏季这种现象不明显,九州西南海域黑潮表层流路北界的位置以秋季最为偏北(但最北不超过31°N)、流路也最宽;在琉球群岛外缘海域,南半部基本没有北上的表层流存在,只有在冲绳群岛-奄美群岛以东海区,秋、夏、春三季表层反气旋涡旋都比较活跃,在涡旋的西侧有顺着冲绳群岛-奄美群岛的东北向流,其中秋季最为明显。这些结果可以为黑潮及其邻近海域的深入研究提供较为客观、直接的参考。  相似文献   

17.
The path of the Kuroshio in Sagami Bay was surveyed through drifter tracking from Oshima-West Channel to Oshima-East Channel. A subsurface drifter with a drogue at 300 m depth flowed around Oshima from Oshima-West Channel to Oshima-East Channel. A difference in flow directions between the upper and lower layers was apparent in the northwest of Oshima. Flow directions there were shown to change from north in the surface layer to east in the bottom layer, and this was confirmed with moored currentmeters.A profile of northward current velocity was estimated from measurements in six layers with currentmeters deployed in the Oshima-West Channel. The profile shows a core of northward flow along the eastern bottom slope and a weak southward flow along the western bottom slope. Volume transport of the Kuroshio into Sagami Bay was estimated to be 1.8×106m3sec–1 from the profile.Long-term current measurement showed that southward flows were observed in Oshima-West Channel in July 1977, May 1978 and April 1979. Cold or warm water masses appearing south of the Izu Peninsula are suggested to have caused the changes.Displacement of the cold water mass in July 1977 is discussed on the basis of current measurements and offshore oceanographic conditions.  相似文献   

18.
The volume transport of the Kuroshio, the western boundary current of the North Pacific subtropical gyre, varies vigorously due to merging of disturbances propagating from the entire North Pacific. Taking into account the recirculation in the Shikoku Basin by the zonal observation line at 30°N to the west of the Izu–Ogasawara Ridge, we estimated the volume transport in the top 1,000 m layer toward the Kuroshio Extension region. The volume transport of the local recirculation gyre in the Shikoku Basin increases associated with the westward extension of the gyre, particularly in the period of the large meandering path of the Kuroshio south of Japan. Meanwhile, most of the transport variations toward the Kuroshio Extension region correspond to those of the Kuroshio transport on the continental slope south of Japan, which vary independently of those of the recirculation gyre.  相似文献   

19.
Chaotic Advection of the Shallow Kuroshio Coastal Waters   总被引:1,自引:0,他引:1  
The shallow coastal water of the Enshu-Nada Sea (ENSW) recirculates regardless of whether the Kuroshio path is straight or has meanders. The recirculation is formed as a result of flow separation at the sharp coastline. The outputs of a recent numerical simulation of the Kuroshio current, including case of a short-term meander caused by an anticyclonic eddy, were analysed to track the motion of the ENSW. In contrast to the steady-flow cases, the unsteady cases showed that the ENSW discharges into the Kuroshio Extension region and intrudes further north into the Kuroshio-Oyashio confluence region due to chaotic advection. Two hyperbolic stagnation points of the velocity field characterise the transport paths; one south of the Izu peninsula and the other at the Kuroshio Extension. This mechanism exists even without the Ekman drift and may play an important role in the transportation of the fish eggs and larvae from the southern Japan spawning ground to the food abundant Kuroshio-Oyashio transition zone. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
本文基于改进的特征线方法,利用1992~2012年间的高度计绝对动力地形数据提取了整个黑潮流区逐月的黑潮主轴和边界位置,并对黑潮沿轴速度、主流宽度、表层水体输运以及路径标准差等黑潮特征量进行了分析研究。结果表明黑潮整体的沿轴速度在夏秋季较大,最大值可达0.95m/s,而在冬季的速度较小;黑潮主流宽度在10、11月份达到最大值;黑潮表层水体输运在夏季最大,春秋两季次之,冬季最小。沿黑潮流路分区域对黑潮特征进行分析,结果表明,越往黑潮下游,黑潮的沿轴速度、主流宽度和表层水体输运越大,同时沿轴速度和表层水体输运量最大值出现的时间也越晚,黑潮主轴位置相对于其多年平均的偏离程度越大,且随时间波动也越强烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号