首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of pile foundation performance during previous earthquakes have shown that pile failure has been caused by lateral ground movements resulting from soil liquefaction. The recognition that lateral ground movements may play a critical role in pile performance during an earthquake has important implications for design and risk assessment, and requires that analytical models be devised to evaluate these potential problems.In this paper, parametric studies were conducted to estimate the maximum bending moments induced in piles subjected to lateral ground displacement. The results are summarized in charts using dimensionless parameters.The analyses reveal that the existence of a nonliquefiable layer at the ground surface can affect significantly the maximum bending moment of the pile. When a relatively thick nonliquefiable layer exists above a liquefiable layer, neither the material nonlinearity of the soil nor loss of soil stiffness within the liquefiable layer significantly affect the maximum bending moment. When the thickness of the liquefiable soils is greater than about three times that of an overlying intact layer, soil stiffness in the liquefiable layer must be chosen carefully when evaluating the maximum bending moment.  相似文献   

2.
根据已经完成的液化侧向扩展场地-群桩基础-上部结构体系大型振动台试验,在有限元软件OpenSees中建立了可液化倾斜场地振动台试验的有限元模型。通过与试验结果对比,验证了数值模型的可靠性。基于此,建立了典型水平和倾斜液化场地-桩基-桥梁结构体系的数值模型,讨论了双向地震作用下水平和倾斜场地体系地震响应的差异,结果表明:相比水平场地,倾斜场地超孔隙水压力在峰值阶段波动幅度更大,土体的侧向位移增加明显,尤其是在饱和砂土中部位置;倾斜场地中桩基础的破坏程度更大,可液化层中部桩基曲率最大可增大约13倍,桩身水平位移显著增加;而水平场地桥墩曲率比倾斜场地桥墩曲率大,建议在液化场地桩基设计中应考虑场地倾斜带来的影响。   相似文献   

3.
Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with uP formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class ‘B’ analysis of a centrifuge experiment is performed to simulate the dynamic response of level ground sites. The results of the numerical analyses demonstrate the capability of the critical sate two-surface plasticity model in producing pore pressures that are consistent with observations of the behavior of liquefiable sand in the centrifuge test.  相似文献   

4.
可液化倾斜场地中桩基动力响应振动台试验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究倾斜场地中桩基的动力响应,以2011年新西兰地震中受损的Dallington桥为原型,设计并完成可液化倾斜场地桥梁桩-土相互作用的振动台模型试验。试验再现了喷砂、冒水、地裂缝、场地流滑等宏观现象。试验结果表明,土层足够的液化势及惯性是造成倾斜场地侧向流滑的必要条件;浅层土相比深层土更易液化,液化层中的加速度由下至上呈现逐渐衰减的趋势,而未液化砂土层却表现为逐渐增大的特征;深部测点的桩侧土压力明显大于浅部测点,且土体的液化会弱化土对结构的压力;结构应变最大值位于上部桥台,而结构弯矩在桩身中部及土层分界面附近出现两个较大值,桩端嵌固及倾斜场地流滑是造成出现两个弯矩较大值的主要原因。  相似文献   

5.
利用基于Biot的饱和多孔介质理论和砂土多重机构模型的动力分析有限元程序FLIP,对遭受M6.7地震的国外某深厚砂质覆盖层土坝进行有效应力动力分析,研究坝体和地基的动力反应特性及其超静孔隙水压力的分布规律。通过对坝体加速度和永久变形的计算结果与现场实测数据的比较分析,证明两者之间存在一定差异,但计算结果基本上反映坝体加速度与永久变形的实际分布特征,从而说明采用的数值计算方法和本构模型具有一定精度。根据计算结果可以得出:坝体无液化发生;坝底上游浅层地基可能会发生局部液化,但范围较小,可以不进行加固处理;坝趾附近浅层地基可能会发生较大范围的液化,因此须采取相应的抗液化加固措施。  相似文献   

6.
The model presented in the companion paper is validated in both the linear and nonlinear cases under steady-state single frequency harmonic and transient ground motions. The crest acceleration responses of the Santa Felicia earth dam subjected to the 1971 San Fernando earthquake and of the Long Valley earth dam subjected to the strongest of the 1980 Mammoth Lake earthquakes are computed and compared with the motions recorded at the site. Acceleration time histories for the solid and fluid phases in both horizontal and vertical directions, as well as stress-strain and pore water pressure-strain time histories for points along the height of the dam are presented. The ability of the model to simulate the occurrence of liquefaction in a dam is also demonstrated.  相似文献   

7.
Damage of embankments during earthquakes is widely attributed to the liquefaction of foundation soil. Previous studies have investigated the dynamic response of embankments by mainly considering uniform sand foundation and a single earthquake event. However, the foundation of an embankment consists of many sublayers of soil from liquefiable sand to relatively impermeable layer, and during earthquakes a mainshock may trigger numerous aftershocks within a short time which may have the potential to cause additional damage to soil structures. Accordingly, the investigation of liquefaction-induced deformation of earthen embankments on various liquefiable foundation conditions under mainshock–aftershock sequential ground motions is carried out by a series of dynamic centrifuge tests in this study. The liquefiable foundation includes uniform sand profile, continuous layered soil profile, and non-homogeneous soil profiles. Effects of various foundation conditions on embankment deformations are compared and analyzed. From the test results, it is found that the embankment resting on non-homogeneous soil deposits suffer more damage compared to the uniform sand foundation of same relative density. The test results also suggest that the sequential ground motions have a significant effect on the accumulated deformation of embankment.  相似文献   

8.

The seismic behaviour of a building on a liquefiable deposit is a complex interaction which involves quantifying both shaking induced damage and permanent ground deformation-related damage. In this paper the key parameters that influence both surface shaking and foundation settlements have been identified as the depth, thickness and liquefaction resistance of an equivalent liquefiable layer. These parameters can be used to develop an ‘equivalent soil profile’ that is analogous to the equivalent single degree-of-freedom that reduces the complexity of the dynamic response of a building into comparable and easily understood quantities. The equivalent soil profile is quantified independent of the seismic hazard, making it compatible with performance based design and assessment frameworks such that the building and soil profile can be directly assessed at different levels of seismic hazard. Several numerical studies are presented that demonstrate the influence of these key parameters on the ground surface shaking and foundation settlement. A set of criteria are proposed for classifying soil profiles into 22 different soil classes for regional loss assessment. An algorithm was developed for automatically fitting the equivalent soil profile to a cone penetration test trace and issues with the fitting are discussed. Field reconnaissance was undertaken to collect additional data to support existing datasets on the performance of buildings in Adapazari, during the 1999 Kocaeli, Turkey, earthquake (Mw = 7.4). The field case history data was used to investigate the correlation between the depth, thickness and liquefaction resistance of an equivalent liquefiable layer, on the extent of foundation permanent deformation. The case history data showed that in general a shallow, thick and weak liquefiable layer near the surface results in significant settlement but a lack of data for buildings on non-liquefiable deposits and the additional complexities involved with real buildings and soil deposits, meant that the trends observed in the idealised numerical models could not identified in the field case history data set.

  相似文献   

9.
Large earthquake-induced displacements of a bridge abutment can occur, when the bridge is built on a floodplain or reclaimed area, i.e., liquefiable ground, and crosses a water channel. Seismic responses of a bridge abutment on liquefiable ground are the consequence of complex interactions between the abutment and surrounding soils. Therefore identification of the factors dominating the abutment response is important for the development of simplified seismic design methods. This paper presents the results of dynamic three-dimensional finite element analyses of bridge abutments adjacent to a river dike, including the effect of liquefaction of the underlying ground using earthquake motions widely used in Japan. The analysis shows that conventional design methods may underestimate the permanent abutment displacements unless the following two items are considered: (1) softening of the soil beneath the liquefiable layer, due to cyclic shearing of the soil surrounding the piles, and (2) the forces acting on the side faces of the abutment.  相似文献   

10.
Vertical drains have been used as remediation against earthquake-induced soil liquefaction for many years. These are seen to begin fluid dissipation from deeper deposits first. Drains are not necessarily installed to the full depth of the liquefiable layer. To determine the effect of this on the efficiency of drain systems, centrifuge test results are presented. It is seen that not installing all drains through the full liquefiable depth significantly retards their performance, due to the dominance of vertical dissipation. It will be shown that a standard design chart may over-predict an improvement in drain performance.  相似文献   

11.
Earthquake-induced excess pore pressure build-up and the associated shear strength degradation of liquefiable soils may result in bearing capacity degradation and seismic settlement accumulation of shallow foundations, two detrimental effects which need to be taken into account in order to ensure a viable performance-based design. This paper focuses on the first effect, in the case of strip and rectangle footings, resting on a deep liquefiable soil layer overlaid by a thinner non-liquefiable clay crust. A simplified analytical methodology is presented, based on the Meyerhof and Hanna [14] composite failure mechanism and the use of a reduced friction angle for the liquefied sand. The methodology is verified and evaluated against parametric numerical analyses with the Finite Difference Method, applying an advanced bounding surface constitutive model to account for the liquefied sand response. In addition, the existence of a critical clay crust thickness is explored, beyond which subsoil liquefaction does not affect the bearing capacity of the foundation.  相似文献   

12.
To investigate the seismic liquefaction performance of earth dams under earthquake loading, we present a new methodology for evaluating the seismic response of earth dams based on a performance‐based approach and a stochastic vibration method. This study assesses an earthfill dam located in a high‐intensity seismic region of eastern China. The seismic design levels and corresponding performance indexes are selected according to performance‐based criteria and dam seismic codes. Then, nonlinear constitutive models are used to derive an array of deterministic seismic responses of the earth dam by dynamic time series analysis based on a finite element model. Based on these responses, the stochastic seismic responses and dynamic reliability of the earth dam are obtained using the probability density evolution method. Finally, the seismic performance of the earth dam is assessed by the performance‐based and reliability criteria. Our results demonstrate the accuracy of the seismic response analysis of earth dams using the random vibration method. This new method of dynamic performance analysis of earth dams demonstrates that performance‐based criteria and reliability evaluation can provide more objective indices for decision‐making rather than using deterministic seismic acceleration time series as is the current normal practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A series of effective stress analyses is carried out on the seismic performance of river dikes based on the case histories during the 1993 Hokkaido-Nansei-oki and 1995 Hyogoken-Nambu earthquakes in Japan. Seven case histories selected for the analyses involve a crest settlement ranging from none to 2.7 m in the dikes 3–6 m high with evidence of liquefaction at foundation soil. The effective stress model used is based on a multiple shear mechanism and was developed by one of the authors. The soil parameters are evaluated based on the site investigation and laboratory test results. The results of the analyses are basically consistent with the observed performance of the river dikes. In particular, the effective stress model shows a reasonable capability to reproduce the varying degree of settlements depending on the geotechnical conditions of foundation soils beneath the dikes. The analyses also indicate that the effect of a cohesive soil layer mixed with the liquefiable sand layers beneath the dikes can be a primary factor for reducing the liquefaction-induced deformation of dikes.  相似文献   

14.
武科  马明月  陈榕 《地震学刊》2011,(3):335-340
作为海洋平台的基础部分,桶形基础不仅承受海洋平台结构及自身重量等竖向荷载的长期作用,而且往往还遭受波浪等所产生的水平荷载及力矩等其它荷载分量的作用。因此,确定软基上桶形基础在竖向荷载(V)、水平荷载(H)和力矩(M)等共同作用下的承载特性,建立其在复合加载模式下的破坏包络面,并进而依此评价海洋平台基础及地基的稳定性,是桶形基础设计与施工中的关键问题。在大型通用有限元分析软件ABAQUS平台上,采用基于Mises屈服准则的完全弹塑性本构模型,对横观各向异性软基上桶形基础的承载性能进行了三维弹塑性数值分析,探讨了软黏土不排水抗剪强度的各向异性对单个荷载和复合加载作用下桶形基础承载性能的影响。  相似文献   

15.
An analytical fragility analysis was conducted in order to characterize the seismic vulnerability of existing southern Illinois wall pier supported highway bridges to potential earthquakes. To perform this fragility analysis, a detailed inventory survey was first taken of the wall pier bridges identified in an earlier random sampling of southern Illinois priority emergency route bridges. From the survey three types of wall pier bridges were identified. Of those identified, hammerhead and regular wall pier supported bridges represented nearly 90% of the population. Incorporating structural variations determined from the random sample survey, nearly 100 three‐dimensional nonlinear finite element models were constructed. Each model was subjected to a randomly assigned synthetic earthquake representative of those that could potentially occur within the region. From these analyses, a series of wall pier supported bridge fragility curves were produced. In addition, a liquefaction fragility analysis was conducted in order to characterize the seismic vulnerability of southern Illinois wall pier supported highway bridge sites to liquefaction in potential earthquakes. To perform this second fragility analysis, wall pier bridges within the southern Illinois random sample that may be susceptible to liquefaction were identified. A soil profile from each of these susceptible bridge sites was then subjected to randomly assigned bedrock motions, and an Arias intensity liquefaction analysis was carried out. From these analyses, a fragility curve for the potentially liquefiable wall pier supported bridge sites was produced. Overall results of this study indicate that southern Illinois wall pier supported bridges are moderately vulnerable to structural damage in a 2% probability of exceedance in 50 year earthquake, and in some cases they could also be highly vulnerable to on‐site liquefaction events. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Under seismic loads the deformability of an earth dam may induce several effects, including ground-motion amplification and asynchronism between different points of the dam embankment. The paper analyses the asynchronous effects occurring in two existing earth dams, representing well-documented case histories: the El Infiernillo Dam (Mexico) and the Camastra Dam (Italy). Asynchronous effects are analysed by theoretical predictions of the dam seismic response by adopting an advanced dynamic approach, which takes into account the main features that dam soils exhibit under cyclic loading conditions. For different potentially unstable masses within the dam embankment, equivalent accelerations were computed as the ratio between the resultant of the inertial forces and the weight of the volume V associated to the unstable mass. With the exception of very cortical sliding surfaces – not significant for dam stability – in most of the analysed cases the equivalent seismic coefficients do not exceed the peak acceleration at the dam base.  相似文献   

17.
The present paper deals with the influence of soil non-linearity, introduced by soil liquefaction, on the soil-foundation–structure interaction phenomena. Numerical simulations are carried out so as to study an improvement method to reduce the liquefaction potential in a sandy soil profile subjected to a shaking. The efficiency of the preloading in both the mitigation of a liquefiable soil and the reduction of induced structure relative settlements is showed. However, the intervention at the foundation soil modifies the dynamic characteristics of soil–structure system and it seems to increase the induced seismic forces during earthquake. In addition, a numerical parametric analysis is performed so as to quantify the impact of the uncertainties associated with the input signal on both the ground motion and the apparition of liquefaction phenomena.  相似文献   

18.
The need for full‐scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam–reservoir–foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced‐vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one‐year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three‐dimensional finite element model for the dam–reservoir–foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
对于有缝重力坝的分析,基于连续介质力学的界面单元-有限元方法难于比较精确地模拟缝间的接触应力,从而无法合理地估算坝体应力与变形。作者对于多体系统和分区连续介质所发展的非连续变形计算力学模型能够根据接触界面的本构特性及其力学和运动学约束条件精确地再现受力过程中界面相互作用力的传递与非连续变形状态,本文将其应用于有缝重力坝的动力分析。实例数值分析表明该模型的计算结果从定性上讲是合理的,并且为判断坝体缝隙的工作状态与界面应力提供了有力的依据。  相似文献   

20.
Linear finite element analyses are commonly used to simulate the behaviour of gravity dam—foundation systems. However, the foundation is generally unable to develop any significant tensile stresses. Therefore any tension occurring in the vicinity of the dam—foundation interface is largely fictitious. Moreover, the traditional overturning and sliding stability criteria have little meaning in the context of the oscillatory response of dams during earthquakes. In this study, time domain analyses using non-linear contact elements located at the dam—foundation interface have been used to determine the dynamic sliding and uplifting response of gravity dam monoliths considering various elastic foundation properties. The magnitudes of the relative interface displacements, of the percentage of base not in contact (PBNC) and of the compressive stresses at the heel or toe of the dam have been used to monitor the seismic stability. The numerical results have shown that the non-linear behaviour of the dam—foundation interface reduces the seismic response of the system, indicating the possibility of more rational and economical designs. The PBNC was identified as the critical seismic stability response parameter for all analyses except for very flexible foundation conditions where the maximum values of relative interface displacements need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号