首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 μm (2343.3 cm−1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule’s nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ∼4.255 μm (∼2350.2 cm−1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe’s CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior.The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 μm, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 μm centered on 4.28 μm. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.  相似文献   

2.
Jeremy Bailey  Linda Ahlsved 《Icarus》2011,213(1):218-232
We have obtained spatially resolved spectra of Titan in the near-infrared J, H and K bands at a resolving power of ∼5000 using the near-infrared integral field spectrometer (NIFS) on the Gemini North 8 m telescope. Using recent data from the Cassini/Huygens mission on the atmospheric composition and surface and aerosol properties, we develop a multiple-scattering radiative transfer model for the Titan atmosphere. The Titan spectrum at these wavelengths is dominated by absorption due to methane with a series of strong absorption band systems separated by window regions where the surface of Titan can be seen. We use a line-by-line approach to derive the methane absorption coefficients. The methane spectrum is only accurately represented in standard line lists down to ∼2.1 μm. However, by making use of recent laboratory data and modeling of the methane spectrum we are able to construct a new line list that can be used down to 1.3 μm. The new line list allows us to generate spectra that are a good match to the observations at all wavelengths longer than 1.3 μm and allow us to model regions, such as the 1.55 μm window that could not be studied usefully with previous line lists such as HITRAN 2008. We point out the importance of the far-wing line shape of strong methane lines in determining the shape of the methane windows. Line shapes with Lorentzian, and sub-Lorentzian regions are needed to match the shape of the windows, but different shape parameters are needed for the 1.55 μm and 2 μm windows. After the methane lines are modeled our observations are sensitive to additional absorptions, and we use the data in the 1.55 μm region to determine a D/H ratio of 1.77 ± 0.20 × 10−4, and a CO mixing ratio of 50 ± 11 ppmv. In the 2 μm window we detect absorption features that can be identified with the ν5 + 3ν6 and 2ν3 + 2ν6 bands of CH3D.  相似文献   

3.
A study of the CO2 atmospheric emissions at 10-μm in the upper atmospheres of Mars and Venus is performed in order to explain a number of ground-based measurements of these emissions recently taken at very high spectral resolution in both planets. The measurements are normally used to derive atmospheric temperatures and winds, but uncertainties on the actual emission layers were so far a serious drawback for their correct interpretation. The non-LTE models used for Mars and Venus in the present analysis are entirely similar in order to perform consistent comparisons between the two planets. In particular, the same scheme of CO2 states and ro-vibrational bands are used, with similar assumptions on collisional routes and rate coef?cients, and also the same radiative transfer approximations. The emissions at 10-μm are produced in both atmospheres by the same excitation mechanism: radiative pumping of the CO2(0001) vibrational state by direct solar absorption(at 4.3 μm) and indirect absorption (at 2.7 μm, followed by collisional quenching). The computed radiances are specially strong in the upper mesosphere and lower thermosphere of the two planets during maximum solar illumination, producing a population inversion in such conditions with the lower states of the bands, the CO2 (1000) and CO2(0200). We obtained that other population inversions are also possible, involving higher energy CO2 states. The larger solar ?ux available on Venus is found to produce larger vibrational populations and stronger emissions than equivalent atmospheric layers on Mars, in agreement with the observations. A number of perturbation studies were used to determine the exact emission altitudes, or weighting function peaks, for usual nadir sounding. The sensitivity of the emission to non-LTE model uncertainties and to atmospheric variations in temperature and CO2 density is also presented. The dependence with the solar zenith angle and with the emission angle, as obtained with this model, could also be useful for guiding future observations.  相似文献   

4.
The lunar photometric function, which describes the dependency of the observed radiance on the observation geometry, is used for photometric correction of lunar visible/near-infrared data. A precise photometric correction parameter set is crucial for many applications including mineral identification and reflectance map mosaics. We present, for the first time, spectrally continuous photometric correction parameters for both sides of the Moon for wavelengths in the range 0.5-1.6 μm and solar phase angles between 5° and 85°, derived from Kaguya (SELENE) Spectral Profiler (SP) data. Since the measured radiance also depends on the surface albedo, we developed a statistical method for selecting areas with relatively uniform albedos from a nearly 7000-orbit SP data set. Using the selected data set, we obtained empirical photometric correction parameter sets for three albedo groups (high, medium, and low). We did this because the photometric function depends on the albedo, especially at phase angles below about 20° for which the shadow hiding opposition effect is appreciable. We determined the parameters in 160 bands and discovered a small variation in the opposition effect due to the albedo variation of mafic mineral absorption. The consistency of the photometric correction was checked by comparing observations made at different times of the same area on the lunar surface. Variations in the spectra obtained were lower than 2%, except for the large phase angle data in mare. Lastly, we developed a correction method for low solar elevation data, which is required for high latitude regions. By investigating low solar elevation data, we introduced an additional correction method. We used the new photometric correction to generate a 1° mesh global lunar reflectance map cube in a wavelength range of 0.5-1.6 μm. Surprisingly, these maps reveal that high latitude (?75°) regions in both the north and south have much lower spectral continuum slopes (color ratio r1547.7nm/r752.8nm ? 1.8) than the low and medium latitude regions, which implies lower degrees of space weathering.  相似文献   

5.
At present, there are few laboratory spectra of analogs of astrophysical interest in the far-infrared range (FIR). Laboratory infrared (IR) spectra of simple ices and its mixtures obtained at low temperature and pressure are found mainly up to 25 μm, and few up to 200 μm. On the other hand, there are some spectra for carbonaceous material and silicates up to 2000 μm. Our laboratory is equipped with an IR spectrometer that integrates a Michelson interferometer with a resolution better than 0.25 cm−1 and that operates under vacuum conditions of 10−1 mbar. There is also a silicon bolometer, a very high-sensitivity detector in comparison with the standard deuterated triglycine sulfate (DTGS) detectors. The use of the bolometer and the possibility of working under vacuum conditions inside the optics and the sample compartment of the spectrometer allow obtaining high-sensitivity spectra free from H2O vapor and CO2 gas bands. Those conditions are necessary to obtain high-quality spectra in the FIR where absorption bands are much less intense than those in the mid-IR region. In our laboratory there is also a high-vacuum chamber that allows different studies on ices deposited onto a cold finger. We have already carried out experiments on the study of ice density as a function of temperature, UV irradiation of ices, temperature-programmed desorption (TPD) and UV-vis reflectance. In this work, we present the design of the experimental setup we are building to carry out different experiments simultaneously on the same ice sample, including spectra measurements in the mid-IR range (MIR) and the FIR. This design integrates jointly the IR spectrometer, the high-vacuum chamber and the silicon bolometer. Lastly, we show a spectrum we have obtained of a solid of astrophysical interest such as crystalline forsterite grains by using the polyethylene pellet technique.  相似文献   

6.
The existence of strong absorption bands of singly deuterated methane (CH3D) at wavelengths where normal methane (CH4) absorbs comparatively weakly could enable remote measurement of D/H ratios in methane ice on outer Solar System bodies. We performed laboratory transmission spectroscopy experiments, recording spectra at wavelengths from 1 to 6 μm to study CH3D bands at 2.47, 2.87, and 4.56 μm, wavelengths where ordinary methane absorption is weak. We report temperature-dependent absorption coefficients of these bands when the CH3D is diluted in CH4 ice and also when it is dissolved in N2 ice, and describe how these absorption coefficients can be combined with data from the literature to simulate arbitrary D/H ratio absorption coefficients for CH4 ice and for CH4 in N2 ice. We anticipate these results motivating new telescopic observations to measure D/H ratios in CH4 ice on Triton, Pluto, Eris, and Makemake.  相似文献   

7.
V-type asteroids in the inner Main Belt (a < 2.5 AU) and the HED meteorites are thought to be genetically related to one another as collisional fragments from the surface of the large basaltic Asteroid 4 Vesta. We investigate this relationship by comparing the near-infrared (0.7-2.5 μm) spectra of 39 V-type asteroids to laboratory spectra of HED meteorites. The central wavelengths and areas spanned by the 1 and 2 μm pyroxene-olivine absorption bands that are characteristic of planetary basalts are measured for both the asteroidal and meteoritic data. The band centers are shown to be well correlated, however the ratio of areas spanned by the 1 and 2 μm absorption bands are much larger for the asteroids than for the meteorites. We argue that this offset in band area ratio is consistent with our currently limited understanding of the effects of space weathering, however we cannot rule out the possibility that this offset is due to compositional differences. Several other possible causes of this offset are discussed.Amongst these inner Main Belt asteroids we do not find evidence for non-Vestoid mineralogies. Instead, these asteroids seem to represent a continuum of compositions, consistent with an origin from a single differentiated parent body. In addition, our analysis shows that V-type asteroids with low inclinations (i < 6°) tend to have band centers slightly shifted towards long wavelengths. This may imply that more than one collision on Vesta’s surface was responsible for producing the observed population of inner belt V-type asteroids. Finally, we offer several predictions that can be tested when the Dawn spacecraft enters into orbit around Vesta in the summer of 2011.  相似文献   

8.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   

9.
High-resolution (0.34 nm) reflectance spectra of a suite of terrestrial ortho- and clinopyroxenes were characterized in the 506-nm region. This region exhibits absorption bands attributed to spin-forbidden transitions in Fe2+ located in the M2, and possibly M1, crystallographic site(s). The most intense absorption bands (up to 3.8% deep in <45 μm fractions) are present in low Ca-content orthopyroxene spectra. This region exhibits two (spectral Group I) or more (spectral Group II) absorption bands in the 500-515 nm interval. Group I spectra are associated with the lowest Ca-content samples. For orthopyroxenes, the number of constituent absorption bands and band depths vary as a function of Ca content; increasing Ca content results the appearance of more than two absorption bands and a general reduction in band depths, offsetting an expected increase in band depth with increasing Fe2+ content; band depths may also be reduced due to the long wavelength wing of ultraviolet region Fe-O charge transfer absorptions. Band depths and shapes in this region are also a function of grain size, with the strongest bands appearing for larger grain sizes - in the 90-250 μm range. The number and position of constituent absorption bands can be used to constrain factors such as cooling rates, as expressed in the formation of Guinier-Preston zones versus coarser-grained augite exsolution lamellae. Band depths in the spectra of fine-grained (<45 μm) clinopyroxenes do not exceed 1% and are generally lowest for spectral type A clinopyroxenes, where most of the Fe2+ is present in the M1 crystallographic site. The appearance of the 506 nm band in the spectra of pyroxene-bearing asteroids can be used to constrain pyroxene composition and structure. The results of this study suggest that detailed analysis of absorption features in the 506 nm region is a powerful tool for determining the composition and structure of pyroxenes. The spectral resolution of the VIR-MS spectrometer aboard the Dawn spacecraft - which will examine Asteroid 4 Vesta, a body possessing surficial pyroxenes - will be sufficient to provide some constraints on pyroxene composition.  相似文献   

10.
We present a detailed study of an Iapetus mosaic of VIMS data with high spatial resolution (0.5 × 0.5° or ∼6.4 km/pixel). The spectra were taken in August 2007 and provide the highest VIMS spatial resolution data for this object during Cassini’s primary mission. We analyze this set of data using a statistical clustering approach to reduce the analysis of a large number of data (∼104 spectra from 0.35 to 5.10 μm) to the study of seven representative groups accounting for 99.6% of the surface covered by the original sample. We analyze the spectral absorption bands in the spectra of the different clusters indicative of different composition over the observed surface. We find coherence between the distribution of the clusters and the geographical features on the surface. We give special attention to the study of the water ice and CO2 bands. We find that CO2 is widespread over the entire surface being studied, including the bright and dark areas on Iapetus’ surface, and is probably trapped at the molecular level with other materials. The strength of the CO2 band in the areas where both, H2O- and carbon-bearing materials exist, gives support to the hypothesis that this volatile is formed on the surface of Iapetus as a product of irradiation of these two components. Finally, we also compare the Iapetus CO2 with that on other satellites confirming, that there are evident differences on the center, depth and width of the band on Iapetus and Phoebe, where CO2 has been suggested to be endogenous.  相似文献   

11.
12.
Methane is, together with N2, the main precursor of Titan’s atmospheric chemistry. In our laboratory, we are currently developing a program of laboratory simulations of Titan’s atmosphere, where methane is intended to be dissociated by multiphotonic photolysis at 248 nm. A preliminary study has shown that multiphotonic absorption of methane at 248 nm is efficient and leads to the production of hydrocarbons such as C2H2 (Romanzin et al., 2008). Yet, at this wavelength, little is known about the branching ratios of the hydrocarbon radicals (CH3, CH2 and CH) and their following photochemistry. This paper thus aims at investigating methane photochemistry at 248 nm by comparing the chemical evolution observed after irradiation of CH4 at 248 and at 121.6 nm (Ly-α). It is indeed important to see if the chemistry is driven the same way at both wavelengths in particular because, on Titan, methane photolysis mainly involves Ly-α photons. An approach combining experiments and theoretical analysis by means of a specifically adapted 0-D model has thus been developed and is presented in this paper. The results obtained clearly indicate that the chemistry is different depending on the wavelength. They also suggest that at 248 nm, methane dissociation is in competition with ionisation, which could occur through a three-photon absorption process. As a consequence, 248 nm photolysis appears to be unsuitable to study methane neutral photochemistry alone. The implications of this result on our laboratory simulation program and new experimental developments are discussed. Additional information on methane photochemistry at 121.6 nm are also obtained.  相似文献   

13.
Observations of the 1.10- and 1.18-μm nightside windows by the SPICAV-IR instrument aboard Venus Express were analyzed to characterize the various sources of gaseous opacity and determine the H2O mole fraction in the lower atmosphere of Venus. We showed that the line profile model of Afanasenko and Rodin (Afanasenko, T.S., Rodin, A.V. [2007]. Astron. Lett. 33, 203–210) underestimates the CO2 absorption in the high-wavelength wing of the 1.18-μm window and we derived an empirical lineshape that matches this wing well. An additional continuum opacity is required to reproduce the variation of the 1.10- and 1.18-μm radiances with surface elevation as observed by the VIRTIS-M instrument aboard Venus Express. A constant absorption coefficient of 0.7 ± 0.2 × 10−9 cm−1 am−2 best reproduces the observed variation. We compared spectra calculated with different CO2 and H2O line lists. We found that the CDSD line list lacks the 5ν1 + ν3 series of CO2 bands, which provide significant opacity in Venus’ deep atmosphere, and we have constructed a composite line list that best reproduces the observations. We also showed for the first time that HDO brings significant absorption at 1140–1190 nm. Using the best representation of the atmospheric opacity we could reach, we retrieved a water vapor mole fraction of ppmv, pertaining to the altitude range 5–25 km. Combined with previous measurements in the 1.74- and 2.3-μm windows, this result provides strong evidence for a uniform H2O profile below 40 km, in agreement with chemical models.  相似文献   

14.
We obtained time-resolved, near-infrared spectra of Io during the 60-90 min following its reappearance from eclipse by Jupiter on five occasions in 2004. The purpose was to search for spectral changes, particularly in the well-known SO2 frost absorption bands, that would indicate surface-atmosphere exchange of gaseous SO2 induced by temperature changes during eclipse. These observations were a follow-on to eclipse spectroscopy observations in which Bellucci et al. [Bellucci et al., 2004. Icarus 172, 141-148] reported significant changes in the strengths of two strong SO2 bands in data acquired with the VIMS instrument aboard the Cassini spacecraft. One of the bands (4.07 μm [ν1 + ν3]) observed by Bellucci et al. is visible from ground-based observatories and is included in our data. We detected no changes in Io’s spectrum at any of the five observed events during the approximately 60-90 min during which spectra were obtained following Io’s emergence from Jupiter’s shadow. The areas of the three strongest SO2 bands in the region 3.5-4.15 μm were measured for each spectrum; the variation of the band areas with time does not exceed that which can be explained by the Io’s few degrees of axial rotation during the intervals of observation, and in no case does the change in band strength approach that seen in the Cassini VIMS data. Our data are of sufficient quality and resolution to show the weak 2.198 μm (4549.6 cm−1) 4ν1 band of SO2 frost on Io for what we believe is the first time. At one of the events (June 22, 2004), we began the acquisition of spectra ∼6 min before Io reappeared from Jupiter’s shadow, during which time it was detected through its own thermal emission. No SO2 bands were superimposed on the purely thermal spectrum on this occasion, suggesting that the upper limit to condensed SO2 in the vertical column above Io’s surface was ∼4 × 10−5 g cm−2.  相似文献   

15.
Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus’ dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO2 would be 2.3 × 108 kg.Previous studies note that free CO2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 107 kg year−1. Thus, Iapetus’ entire inventory of surface CO2 could be lost within a few decades.The high loss/destruction rate of CO2 requires an active source. We conducted experiments that generated CO2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon (13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO2 production at a rate of 2.0 × 1012 mol s−1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus’ surface area, we calculated that CO2 production for the entire surface would be 1.1 × 107 kg year−1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO2 is a plausible source of the detected CO2.  相似文献   

16.
L.A. Sromovsky  P.M. Fry 《Icarus》2010,210(1):230-257
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter’s atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). A prominent characteristic of these spectra is the presence of a strong absorption at wavelengths from about 2.9 μm to 3.1 μm, previously noticed in a 3-μm spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (Brooke, T.Y., Knacke, R.F., Encrenaz, T., Drossart, P., Crisp, D., Feuchtgruber, H. [1998]. Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229), using significantly revised NH3 gas absorption models, showed that ammonium hydrosulfide (NH4SH) provided a better fit to the ISO spectrum than NH3, but that the best fit was obtained when both NH3 and NH4SH were present in the clouds. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-μm absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH4SH and NH3 particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles (r ∼ 0.3 μm) overlying but often close to an optically thicker but still modest layer of much larger NH4SH particles (r ∼ 10 μm), with a deeper optically thicker layer, which might also be composed of NH4SH. Although these fits put NH3 ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH3 features in Jupiter’s longwave spectrum because the reflectivity of the core particles strongly suppresses the NH3 absorption features, at both near-IR and thermal wavelengths. Unlike Jupiter, Saturn lacks the broad 3-μm absorption feature, but does exhibit a small absorption near 2.965 μm, which resembles a similar jovian feature and suggests that both planets contain upper tropospheric clouds of sub-micron particles containing ammonia as a minor fraction.  相似文献   

17.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate.  相似文献   

18.
We used Mars Express HRSC and OMEGA data to investigate mesospheric cloud features observed in the equatorial belt of Mars from December 2007 until early March 2008. This period corresponds to early northern spring of Martian year 29. The reflection peak at 4.26 μm in OMEGA data identifies the clouds as CO2 ice clouds. HRSC observed the clouds together with OMEGA in five orbits. Cloud features are most prominent in the shortwave HRSC colour channels with wavelength centers at 440 and 530 nm, but rarely visible in all other channels. In the period of Ls 0-36°, OMEGA and HRSC together detected mesospheric CO2 ice clouds in 40 orbits. They occur in a latitude belt of ±20° around the equator and at longitudes between 240°E (Tharsis) in the West and 30°E (Sinus Meridiani) in the East. The clouds were observed between 3 and 5 p.m. local time with mainly ripple-like to filamentary cloud forms. The viewing angles of the HRSC blue and green colour channels differ by 6.6° and the resulting parallax can be used to directly measure cloud heights by means of ray intersection. 17 HRSC data takes were found to exhibit clouds with heights from 66 to 83 km with an accuracy of 1-2 km. The pushbroom imaging technique also yields a time delay for the two observations in the order of 5-15 s close to periapsis, and therefore time-related cloud movements can be detected. A method was developed to determine the across-track cloud displacements, which can directly be translated to wind velocities. Zonal cloud movements could be measured in 13 cases and were oriented from East to West. Related wind speeds range between 60 and 93 m/s with an accuracy of 10-13 m/s.  相似文献   

19.
Variations of the upper cloud boundary and the CO, HF, and HCl mixing ratios were observed using the CSHELL spectrograph at NASA IRTF. The observations were made in three sessions (October 2007, January 2009, and June 2009) at early morning and late afternoon on Venus in the latitude range of ±60°. CO2 lines at 2.25 μm reveal variations of the cloud aerosol density (∼25%) and scale height near 65 km. The measured reflectivity of Venus at low latitudes is 0.7 at 2.25 μm and 0.028 at 3.66 μm, and the effective CO2 column density is smaller at 3.66 μm than those at 2.25 μm by a factor of 4. This agrees with the almost conservative multiple scattering at 2.25 μm and single scattering in the almost black aerosol at 3.66 μm. The expected difference is just a factor of (1 − g)−1 = 4, where g = 0.75 is the scattering asymmetry factor for Venus’ clouds. The observed CO mixing ratio is 52 ± 4 ppm near 08:00 and 40 ± 4 ppm near 16:30 at 68 km, and the higher ratio in the morning may be caused by extension of the CO morningside bulge to the cloud tops. The observed weak limb brightening in CO indicates an increase of the CO mixing ratio with altitude. HF is constant at 3.5 ± 0.2 ppb at 68 km in both morningside and afternoon observations and in the latitude range ±60°. Therefore the observations do not favor a bulge of HF, though HF is lighter than CO. Probably a source in the upper atmosphere facilitates the bulge formation. The recent measurements of HCl near 70 km are controversial (0.1 and 0.74 ppm) and require either a strong sink or a strong source of HCl in the clouds. The HCl lines of the (2-0) band are blended by the solar and telluric lines. Therefore we observed the P8 lines of the (1-0) band at 3.44 μm. These lines are spectrally clean and result in the HCl mixing ratio of 0.40 ± 0.03 ppm at 74 km. HCl does not vary with latitude within ±60°. Our observations support a uniformly mixed HCl throughout the Venus atmosphere.  相似文献   

20.
N. Thomas  G. Portyankina 《Icarus》2011,212(1):66-85
The High Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to monitor the seasonal evolution of several regions at high southern latitudes on Mars and, in particular, the jet-like activity which may result from the process described by Kieffer (Kieffer, H.H. [2007]. J. Geophys. Res. (Planets) 112, E08005. doi:10.1029/2006JE002816) involving translucent CO2 ice. In this work, we concentrate on attempting to model the dusty CO2 gas jets using a computational fluid dynamics code. Models that included surface slopes of up to 20° (as an analogy to the jet activity seen in “Inca City”, 81°S, 296°E), wind (from 0 to 6 m s−1), variable vent cross-section and length, particles (including a particle size distribution) and mass loading (with dust to gas ratios exceeding 1) were investigated. The structure of the resulting gas jets, the particle distribution within the jets, the deposition patterns (including their dependence on particle size), and the appearance of jets when viewed from different orientations (including from a nadir-pointing camera) have been investigated for a range of input parameters. The results provide predictions for the size-dependency of altitudes of particles within a plume and the distribution of particle sizes in the deposition fans. Where slopes are a dominant influence, larger particles are expected to be seen furthest from the vent. Where wind is dominant, smaller particles should travel to larger distances. Models producing deposition patterns consistent in length (∼80 m) and form with fans observed by HiRISE on MRO have been demonstrated. The models also suggest that downward flow of gas produced by drag effects from particles falling from the jet under gravity could provide a mechanism for the production of bright haloes which are observed to surround dark fan deposits in MOC, HiRISE and CRISM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号