首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The ultraviolet and visible albedos of a number of terrestrial basalts, gabbros and anorthosites have been investigated over the wavelength range 800 Å to 8000 Å and compared with previously reported measurements of the lunar albedo. For most of the terrestrial samples the albedo changed only slightly between visible and middle ultraviolet wavelengths in striking contrast to the Moon where the ultraviolet albedo is about a factor of five or ten less than it is in the visible. Some of the lighter coloured terrestrial anorthositic samples were however found to have albedo curves that fairly closely approximate the ultraviolet darkening of the Moon. The general shape of the lunar ultraviolet albedo may be caused by a layer of anorthositic fragments on the Moon such as have been found to be a very abundant component of the Apollo ‘coarse-fines’.  相似文献   

2.
Four colour contrasts have been studied for 104 lunar regions between wavelengths 4000 Å and 8000 Å. Distinct colour differences are found. The greatest contrast between topographs occurs at longer wavelengths. The regional colour differences between the two short wavelengths 4035 Å and 5538 Å show a general trend of increasing reddening with age. For the other three colour differences \(\Delta (\tfrac{{{\text{4 7 6 5}}}}{{{\text{7 9 2 2}}}}), \Delta (\tfrac{{{\text{4 7 6 5}}}}{{{\text{6 6 9 2}}}}) and \Delta (\tfrac{{{\text{6 6 9 2}}}}{{{\text{7 9 2 2}}}})\) , a trend of variation with albedo is detected, and the less scatter on points for the colour differences above the wavelength 6000 Å.  相似文献   

3.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

4.
Optical properties of small particles of olivine (less than 0.1 μ) have been studied in the ultraviolet as an example of an insulating solid. Very little structure survives in the ultraviolet extinction curves for such small particles. By contrast ‘surface modes’, observed for graphite small particles in the ultraviolet and for olivine particles in the infrared, produce dominant and persistent structure in extinction. The general trend of optical properties of graphite is surprisingly similar to the behavior required to explain all features of the interstellar extinction and albedo curves from near visible to 1000 Å. Measured extinction of small olivine particles in the infrared agrees with calculations based on newly measured optical constants, but dominant sharp structure in the 10μ region still presents a bit of a problem in explaining ‘silicate’ features in astronomical data.  相似文献   

5.
Normal albedos of thirteen lunar regions are determined at five wavelengths between 4000 and 8000 Å. The deduced values agree with those of the previous investigators except those given by Gehrelset al. (1964) and Van Diggelen (1965). They increase monotonically with the wavelength. At the shortest wavelength, a slight enhancement is detected for most of the regions observed.  相似文献   

6.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   

7.
We reduced ultraviolet spectra of Saturn from the IUE satellite to produce a geometric albedo of the planet from 1500 to 3000 Å. By matching computer models to the albedo we determined a chemical composition consistent with the data. This model includes C2H2 and C2H6 with mixing ratios and distributions of (9 ± 3) × 10?8 in the top 20 mbar of the atmosphere with none below for C2H2 and (6 ± 1) × 10?6 also in the top 20 mbar with none below for C2H6. The C2H2 and C2H6 distributions and the C2H6 mixing ratio are taken directly from the Voyager IRIS model [R. Courtin et al., Bull. Amer. Astron. Soc.13, 722 (1981), and private communication]. The Voyager IRIS model also includes PH3, which is not consistent with the uv albedo from 1800 to 2400 Å. Our model requires a previously unidentified absorber to explain the albedo near 1600 Å. After considering several candidates, we find that the best fit to the data is obtained with H2O, having a column density of (6 ± 1) × 10?3 cm-am.  相似文献   

8.
The lunar photometric function, which describes the dependency of the observed radiance on the observation geometry, is used for photometric correction of lunar visible/near-infrared data. A precise photometric correction parameter set is crucial for many applications including mineral identification and reflectance map mosaics. We present, for the first time, spectrally continuous photometric correction parameters for both sides of the Moon for wavelengths in the range 0.5-1.6 μm and solar phase angles between 5° and 85°, derived from Kaguya (SELENE) Spectral Profiler (SP) data. Since the measured radiance also depends on the surface albedo, we developed a statistical method for selecting areas with relatively uniform albedos from a nearly 7000-orbit SP data set. Using the selected data set, we obtained empirical photometric correction parameter sets for three albedo groups (high, medium, and low). We did this because the photometric function depends on the albedo, especially at phase angles below about 20° for which the shadow hiding opposition effect is appreciable. We determined the parameters in 160 bands and discovered a small variation in the opposition effect due to the albedo variation of mafic mineral absorption. The consistency of the photometric correction was checked by comparing observations made at different times of the same area on the lunar surface. Variations in the spectra obtained were lower than 2%, except for the large phase angle data in mare. Lastly, we developed a correction method for low solar elevation data, which is required for high latitude regions. By investigating low solar elevation data, we introduced an additional correction method. We used the new photometric correction to generate a 1° mesh global lunar reflectance map cube in a wavelength range of 0.5-1.6 μm. Surprisingly, these maps reveal that high latitude (?75°) regions in both the north and south have much lower spectral continuum slopes (color ratio r1547.7nm/r752.8nm ? 1.8) than the low and medium latitude regions, which implies lower degrees of space weathering.  相似文献   

9.
John Caldwell 《Icarus》1973,18(3):489-496
Ultraviolet albedos of Mars in the region γγ2000–3600 Å are discussed. When the reflectivity due to the known amount of CO2 on Mars is accounted for, the remaining reflectivity may be used to set an upper limit for the surface albedo. The result disagrees qualitatively with published ultraviolet reflectivities of limonite and carbon suboxide. An alternate interpretation of the observations leads to the conclusion that CO2 comprises at least 60% of the molecular atmosphere of Mars, assuming the remainder to be argon. A comparison of the OAO results with 1969 Mariner ultraviolet data reveals some important areas of conflict.Attempts to detect Mars at wavelengths less than γ2000 Å were unsuccessful, with only very high upper limits being set.  相似文献   

10.
We discuss observations of the Moon at a wavelength of 49.3 cm made with the Owens Valley Radio Observatory Interferometer. These observations have been fit to models in order to estimate the lunar dielectric constant, the equatorial subsurface temperature, the latitude dependence of the subsurface temperature, and the subsurface temperature gradient. The models are most consistent with a dielectric constant of 2.52 ± 0.01 (formal errors), an equatorial subsurface temperature of 249?5+8K, and a change in the subsurface temperature with latitude (ψ), which is proportional to cos0.38ψ. Since the temperature of the Moon has been measured by the Apollo Lunar Heat Flow Experiment, we have been able to use our determination of the equatorial temperature to estimate the error in the flux density calibration scale at 49.3cm (608 MHz). This results in a correction factor of 1.03 ± 0.04, which must be applied to the flux density scale. This factor is much different from 1.21 ± 0.09 estimated by Muhleman et al. (1973) from the brightness temperature of Venus and apparently indicates that the observed decrease in the brightness temperature of Venus at long wavelengths is a real effect.The estimates of the temperature gradient, which are based on the measurement of limb darkening, are small and negative (temperature decreases with depth) and may be insignificantly different from zero since they are only as large as their formal errors. We estimate that a temperature gradient in excess of 0.6K/m at 10m depth would have been observed. Thus, a temperature gradient like that measured in situ at the Apollo 15 and 17 landing sites in the upper 2m of the regolith is not typical of the entire lunar frontside at the 10m depths where the 49.3 cm wavelength emission originates. This result may indicate that the mean lunar heat flow is lower than that measured at the Apollo landing sites, that the thermal conductivity is greater at 10m depth than it is at 2m depth, or that the radio opacity is greater at 10m depth than at 2m depth. The negative estimates of the temperature gradient indicate that the Moon appeared limb bright and might be explained by scattering of the emission from boulders or an interface with solid rock. The presence of solid rock at 10m depths will probably cause heat flows like those measured by Apollo to be unobservable by our interferometric method at long wavelengths, since it will cause both the thermal conductivity and radio opacity of the regolith to increase. Thus, our data may be most consistent with a change in the physical properties of the regolith to those of solid rock or a mixture of rock and soil at depths of 7 to 16m. Our results show that future radio measurements for heat flow determinations must utilize wavelengths considerably shorter than 50 cm (25 cm or less) to avoid the rock regions below the regolith.  相似文献   

11.
Intermediate resolution (6Å) photoelectric spectral scans of Titan, Saturn, Saturn's Rings and the Moon appear in two forms: ratio spectra of Titan vs the Rings and of Saturn vs the Rings, and relative reflectivities, which are compared to previously published results. Titan's geometrical albedo of 0.094 ± 0.012 was measured at 4255Å with a 50Å bandpass. From this and the spectral measurements, we derived the geometrical albedo as a function of wavelength. We find that the wavelength dependences of Titan's uv spectrum and the spectrum of Saturn's Rings are remarkably similar. No trace of any absorption bands is apparent. These results imply that uv gaseous absorption and Rayleigh scattering play a strongly subdued role in Titan's atmosphere. Any homogeneous atmospheric model implies that the absorber responsible for Titan's uv spectral albedo varies strongly with wavelength. On the other hand, we find that the uv observations can be satisfied by an absorber having a relatively weak dependence upon wavelength if an inhomogeneous atmospheric model is employed. In particular, a fine dust, which absorbs as 1/λ, can explain the uv observations provided that it is preferentially distributed high up in Titan's atmosphere where the optical depth from Rayleigh scattering is low. The likely presence of such a dust in Jupiter's atmosphere and the difficulty in explaining the nature of a continuous uv absorber which varies rapidly with wavelength suggest that the gas and aerosol in Titan's atmosphere are inhomogeneously distributed.  相似文献   

12.
John Caldwell 《Icarus》1975,25(3):384-396
Broadband filter photometry from 2100 to 4300 Å has been obtained by OAO-2 for the following objects: The Galilean satellites; Titan; the rings of Saturn; and three asteroids. Agreement with independent ground-based photometry in the region of overlap is good. The previously known decrease in reflectivity from visual to ground-based ultraviolet wavelengths continues to 2590 Å for all these objects. Europa's reflectivity continues to decline towards 2110 Å, and the rings' reflectivity levels off from 2590 to 2110 Å. Other targets were too faint at 2110 Å to be measured reliably by OAO-2.The low ultraviolet albedo of Titan has important implications for that planet's atmospheric structure (Caldwell, Larach, and Danielson, 1973; Danielson, Caldwell, and Larach, 1973; Caldwell, 1974b). The ultraviolet reflectivity of Saturn's rings is suggestive of a two-component system, one being pure H2O particles. The ultraviolet albedos of the Galilean satellites are consistent with existing upper limits for atmospheric abundances, but require either that former estimates of the fractional coverage of H2O frost are too high, an unlikely circumstance, or that the frost has been darkened by some external agent in the space environment.  相似文献   

13.
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data.  相似文献   

14.
《Icarus》1987,72(2):358-380
We present the results of an 8-year program of spectrophometry of the Galilean satellites of Jupiter that was undertaken using the International Ultraviolet Explorer (IUE) Spacecraft. The ultraviolet geometric albedos of all four satellites are low. This is consistent with the hypothesis that sulfurous materials escaping from the surface of Io are being distributed by magnetospheric processes to the surfaces of the other three objects. Although iron bearing silicates may also cause UV darkening, these materials also have spectral features in the visible region of the spectrum which are not found in the spectra of the Galilean satellites. For Io, we find that the ultraviolet geometric albedo is very low (Puv ∼ 0.04). The trailing hemisphere has an albedo that is higher than that of the leading hemisphere. This is opposite of what is observed at visual wavelengths. The decrease of albedo shortward of 0.33 μm is consistent with groundbased observations (Nelson and Hapke, 1978) and the laboratory reflection spectrum of sulfur dioxide frost. The hemispheric albedo asymmetry is consistent with a variable distribution of the frost, it being present in greater abundance on Io's leading hemisphere. The strenght of this feature has not changed with respect to longitude over the8 years of this study. The phase coefficients and opposition surges at ultraviolet wavelenghts indicate that Io's surface regolith is very porous. Europa has the highest ultraviolet albedo of all the Galilean satellites (Puv ∼ 0.2). This not inconsistent with the hypothesis of recent resurfacing. However, this albedo is not high enough to be consistent with a surface of pure water ice. We confirm a previously reported ultraviolet spectral asymmetry between Europa's leading and trailing hemispheres. The new data are consistent with the previous analyses which interpreted this as the spectral signature of sulfur ions from the Jovian magnetosphere which had been embedded preferentially on the trailing side of Europa's predominately water ice.surface. The opposition surge observed for Europa's trailing side is greater than that for the leading side. This implies that the trailing side is less compact than the leading side, perhaps due to gardening from the ion implantation process. Ganymede's ultraviolet albedo (Puv ∼ 0.10) is lower than Europa's. Ganymede has an ultraviolet spectral asymmetry that is similar to Europa's for wavelenghts longer than 0.28 μm. However, at wavelengths shorter than 0.28 μm, the two objects have different opposite hemispherical spectral ratios, indicating that the same mechanism cannot be used to explain the ultraviolet spectral albedo of both objects. One possible explanation is that ozone is present in addition to sulfur embedded on Ganymede's surface. The ultraviolet albedo and opposite hemispherical spectral ratio of Calisto is spectrally flat, indicating that the surface is covered by a material that is spectrally absorbing in the ultraviolet but has no change in absorption at the ultraviolet wavelenghts. The orbital phase variation in the ultraviolet indicates that the absorber is assymmetrically distributed in longitude.  相似文献   

15.
Voyager full-disk images of Io, available at solar phase angle of α = 2?29° and 101?159°, allow comparisons of the satellite's near-opposition photometric behavior with Earth-based results and the determination of the phase curve out to very high phase angles. The near-opposition data were reduced iteratively for self-consistent phase and rotation curves in each Voyager filter; the resulting phase coefficients, geometric albedos, and rotational lightcurves are consistent with Earth-based findings, except for a previously noted tendency for Voyager to yield somewhat redder spectral information. The derived near-opposition phase coefficients, ranging between 0.016 and 0.024 mag/ deg, decrease with increasing wavelength, a trend weakly noted in some Earth-based observations. The full, α = 2?159° phase curves allow the first direct determination of the phase integral of Io at several wavelengths: q rises from ≈0.7 in the ultraviolet to ≈0.8 in the orange. Combination of the Voyager phase integrals with Earth-based albedo information leads to a best estimate of the bolometric Bond albedo of 0.50 ± 0.10, a value consistent with, but slightly below, previous estimates.  相似文献   

16.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   

17.
Photoelectric photometric (slit) scans of Mercury have been obtained and combined with a man of the surface markings to yield relative normal albedoes over about one quarter of the planet's total surface at a wavelength of 0·45 microns. Maximum albedo ratios at a resolution of one fifth of the planetary diameter are not less than 2 to 1 and probably near 2·5 to 1. The corresponding average lunar value is 2·3 to 1. The blurring effects of seeing conditions on previous visual estimates of Mercury's albedo ratios are briefly discussed.  相似文献   

18.
Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.  相似文献   

19.
20.
B. Buratti  J. Veverka 《Icarus》1984,58(2):254-264
Voyager imaging observations provide new photometric data on Saturn's satellites at large phase angles (up to 133° in the case of Mimas) not observable from Earth. Significant new results include the determination of phase integrals ranging from 0.7 in the case of Rhea to 0.9 for Enceladus. For Enceladus we find an average geometric albedo pv = 1.04 ± 0.15 and Bond albedo of 0.9 ± 0.1. The data indicate an orbital lightcurve with an amplitude of 0.2 mag, the trailing side being the brighter. For Mimas, the lightcurve amplitude is probably less than 0.1 mag. The value of the geometric albedo of Mimas reported here, pv = 0.77 ± 0.15 (corresponding to a mean opposition magnitude V0 = +12.5) is definitely higher than the currently accepted value of about 0.5. For Dione, the Voyager data show a well-defined orbital lightcurve of amplitude about 0.6 mag, with the leading hemisphere brighter than the trailing one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号